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Abstract

Introduction: Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an emerging acute kidney injury (AKI) biomarker.
We evaluated the performance of urinary TIMP-2 in an adult mixed ICU by comparison with other biomarkers that
reflect several different pathways of AKI.

Methods: In this study, we prospectively enrolled 98 adult critically ill patients who had been admitted to the adult
mixed ICU. Urinary TIMP-2 and N-acetyl-β-D-glucosaminidase (NAG) and plasma neutrophil gelatinase-associated
lipocalin (NGAL), interleukin-6 (IL-6) and erythropoietin (EPO) were measured on ICU admission. We evaluated these
biomarkers’ capability of detecting AKI and its severity as determined by using the Kidney Disease Improving Global
Outcomes serum creatinine criteria, as well as its capacity to predict in-hospital mortality. The impact of sepsis, the
leading cause of AKI in ICUs, was also evaluated.

Results: We found AKI in 42 patients (42.9%). All biomarkers were significantly higher in AKI than in non-AKI. In
total, 27 patients (27.6%) developed severe AKI. Urinary TIMP-2 was able to distinguish severe AKI from non-severe
AKI with an area under the receiver operating characteristic curve (AUC-ROC) of 0.80 (95% confidence interval, 0.66
to 0.90). A total of 41 cases (41.8%) were complicated with sepsis. Although plasma NGAL and IL-6 were increased
by sepsis, urinary TIMP-2 and NAG were increased not by sepsis, but by the presence of severe AKI. Plasma EPO
was increased only by septic AKI. In-hospital mortality was 15.3% in this cohort. Urinary TIMP-2 and NAG, and
plasma NGAL, were significantly higher in non-survivors than in survivors, although plasma IL-6 and EPO were not.
Among the biomarkers, only urinary TIMP-2 was able to predict in-hospital mortality significantly better than serum
creatinine.

Conclusion: Urinary TIMP-2 can detect severe AKI with performance equivalent to plasma NGAL and urinary NAG,
with an AUC-ROC value higher than 0.80. Furthermore, urinary TIMP-2 was associated with mortality. Sepsis appeared
to have only a limited impact on urinary TIMP-2, in contrast to plasma NGAL.
Introduction
Acute kidney injury (AKI), a common problem in inten-
sive care units (ICUs) [1], is associated with significantly
increased mortality, hospital length of stay and medical
costs [2]. Effective treatment for established AKI other
than supportive therapy including dialysis remains un-
known [3]. Therefore, it is crucially important to identify
patients who are expected to develop AKI and prevent
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AKI if possible. For this purpose, many AKI biomarkers,
including neutrophil gelatinase-associated lipocalin
(NGAL), interleukin-18 (IL-18) and L-type fatty acid-
binding protein (L-FABP), have been investigated
[4-6]. Recently, tissue inhibitor of metalloproteinase-2
(TIMP-2) was reported as an emerging biomarker for
predicting severe AKI in critically ill patients [7,8]. In
cells of various different types, including cells in renal
tubules and glomeruli, TIMP-2 is expressed constitu-
tively [9]. Reportedly, TIMP-2 is involved with G1 cell
cycle arrest during the early phases of cell injury [10].
Renal tubular cells enter a short period of G1 cell cycle
tral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,
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arrest following renal ischemic insult [11]. Therefore,
enhanced TIMP-2 expression can be expected in the
pathological condition of AKI.
A clinical evaluation revealed that urinary TIMP-2 was

not inferior to any other biomarker, especially in patients
with sepsis [7]. The authors of a multinational prospect-
ive observational report described that the most frequent
contributing factor to AKI is sepsis, which is observed at
a rate of approximately 50% [12]. Authors of other re-
ports have described that 45% to 70% of all AKIs are as-
sociated with sepsis [13-15]. It is also widely recognized
that patients with both sepsis and AKI have an un-
acceptably high mortality rate [13]. Reportedly, inflam-
matory cytokine interleukin-6 (IL-6) was increased in
septic AKI patients [16-18], and plasma NGAL detected
septic AKI along with endotoxin activity assay [19].
Hypoxic insult is assumed to play a crucially important
role in AKI, based on findings obtained from basic re-
search [20]. Erythropoietin (EPO) was shown to have
non-hematopoietic tissue-protective effects in animal AKI
models [21-23]. Although a previous clinical trial revealed
no protective effect of EPO against AKI [24], little is
known about whether the blood EPO level is useful to de-
tect renal hypoxic injury or to monitor AKI severity.
This study was conducted to evaluate the performance

of urinary TIMP-2 in an adult mixed ICU by compari-
son with other biomarkers used to monitor different
pathways: plasma NGAL and IL-6 for inflammation,
plasma EPO for hypoxia and urinary N-acetyl-β-D-glu-
cosaminidase (NAG) for renal tubular epithelial injury.
These comparisons of different biomarkers were ex-
pected to reveal the contributing pathophysiological
pathway to AKI development and mortality. We also
evaluated the influence of sepsis and the prediction of
mortality in each biomarker. Although researchers in a
multicenter international study previously evaluated the
performance of urinary TIMP-2 with a larger population,
the present study includes the important strength of
comparing urinary TIMP-2 with other biomarkers that
are not limited to AKI and can be used to monitor dif-
ferent mechanisms of diseases. Moreover, this additional
validation study is the first conducted by a research
group independent from the group that originally re-
ported the performance of urinary TIMP-2 [7,8].

Materials and methods
Participants and study design
All patients in this study were older than 20 years of
age. All had been admitted to ICUs other than the cor-
onary care unit of The University of Tokyo Hospital. In
this study, we enrolled 100 consecutive ICU patients
from July 2011 to October 2011. Patients were excluded
if they had end-stage renal disease or if any of their data
were missing. One patient with end-stage renal disease
and another patient who had insufficient data were ex-
cluded from this cohort. The study protocol was ap-
proved by The University of Tokyo Institutional Review
Board. Informed consent was obtained from each par-
ticipant or the participant’s family.
The following clinical variables were evaluated: age,

sex, complication of diabetes mellitus and/or hyperten-
sion, surgical state, serum creatinine and blood lactate at
ICU admission, Acute Physiology and Chronic Health
Evaluation (APACHE) II score [25] and non-renal APA-
CHE II score (APACHE II score without renal score),
ICU length of stay and in-hospital mortality. This infor-
mation was obtained from medical records. AKI was
determined by changes in serum creatinine according to
the Kidney Disease Improving Global Outcomes (KDIGO)
criteria for AKI [3] from ICU admission to 7 days later.
AKI was defined as an increase in serum creatinine by
0.3 mg/dl within 48 hours or an increase in serum creatin-
ine to 1.5 times baseline. Baseline serum creatinine was
defined as the minimum among the outpatient values
measured within 6 months before hospital admission, the
inpatient value before ICU admission and the last value
before hospital discharge. For a patient with no creatinine
measurement within 6 months before ICU admission, the
baseline was defined as the minimum among the last value
before hospital discharge and the estimated value using
the Modification of Diet in Renal Disease equation for
Japan [26] for the lower end of the reference range (that
is, 75 ml/min/1.73 m2) as the KDIGO guidelines suggest.
Severe AKI was defined as KDIGO stages 2 and 3.
Late-onset AKI was defined as follows: no AKI diag-
nosis was made at ICU admission, but serum creatin-
ine increased to meet the criteria or renal replacement
therapy was started within 1 week. Progression of AKI
was defined as worsening of the AKI stage (from non-
AKI to AKI of any stage, from stage 1 to either stage 2
or stage 3, or from stage 2 to stage 3). The diagnosis
of sepsis was made according to the American
College of Chest Physicians and the Society of Critical
Care Medicine Consensus Conference Committee guide-
lines [27].

Biomarker measurement
Paired urine and blood samples were collected at the
time of ICU admission. Plasma and urine supernatants
were frozen after centrifugation and were stored at −80°C
until measurements were taken. Urinary TIMP-2 and
NAG and plasma NGAL, IL-6, and EPO were mea-
sured. Urinary TIMP-2 and plasma IL-6 were measured
using research assays based on enzyme-linked immuno-
sorbent assay (R&D Systems, Minneapolis, MN, USA;
Toray Industries, Kamakura, Japan). Urinary NAG was
measured at The University of Tokyo Hospital Clinical
Laboratory using the 4-HP-NAG substrate method



Table 1 Baseline clinical data and outcomes of enrolled
patientsa

Non-AKI
(N = 56)

AKI
(N = 42)

P-
value

Age (yr) 63.0
(43.0 to 75.8)

69.0
(60.0 to 75.3)

0.05

Males, n (%) 37 (66.1) 34 (81.0) 0.12

Diabetes, n (%) 6 (10.7) 15 (35.7) 0.01

Hypertension, n (%) 20 (35.7) 20 (47.6) 0.30

Elective surgical, n (%) 12 (21.4) 2 (4.8) 0.02

Emergency surgical, n (%) 9 (16.1) 4 (9.5) 0.39

Medical, n (%) 35 (62.5) 36 (85.7) 0.01

Sepsis, n (%) 15 (26.8) 26 (61.9) 0.001

Baseline serum creatinine
(mg/dl)

0.65
(0.46 to 0.79)

0.68
(0.49 to 0.91)

0.23

Measured in outpatient
department, n (%)

15 (28.6) 13 (31.0) 0.42

Measured on general ward
before ICU admission, n (%)

7 (12.5) 4 (9.5)

Measured just before
hospital discharge, n (%)

30 (53.6) 18 (42.9)

Estimated by MDRD
formula, n (%)

4 (7.1) 7 (16.7)

Serum creatinine on ICU
admission (mg/dl)

0.70 (0.52 to
0.89)

1.46 (0.99 to
2.87)

<0.0001

APACHE II score 14.5 ± 8.1 27.0 ± 8.5 <0.0001

ICU length of stay (days) 5 (3 to 8) 9 (5 to 17) 0.001

In-hospital mortality, n (%) 4 (7.1) 11 (26.2) 0.01
aAKI, Acute kidney injury; APACHE, Acute Physiology and Chronic Health
Evaluation; ICU, Intensive care unit. Baseline serum creatinine was defined as
the minimum among the outpatient values measured within 6 months before
hospital admission, the inpatient value before ICU admission and the last
value before hospital discharge. For a patient with no creatinine measurement
within 6 months before ICU admission, the baseline was defined as the lesser
of the last value before hospital discharge and the estimated value using the
Modification of Diet in Renal Disease (MDRD) equation.
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(L-Type NAG; Wako Pure Chemical Industries, Osaka,
Japan). Plasma NGAL was determined (Triage NGAL
Device; Alere Medical, San Diego, CA, USA) as de-
scribed previously [28]. Plasma EPO was measured
using a human hypoxia multiplex kit (Meso Scale
Discovery, Rockville, MD, USA) and a Sector Imager
(MSD 2400; Meso Scale Discovery) according to the
manufacturer’s instructions.

Statistical analyses
For this study, data were expressed as mean ± standard
deviation and as median (interquartile range) when the
data were not normally distributed. Continuous variables
were compared using the Wilcoxon rank-sum test or
Kruskal–Wallis test for one-way analysis of variance.
When the Kruskal–Wallis test for one-way analysis of
variance showed statistical significance, a post hoc Steel–
Dwass test was subsequently conducted. Categorical var-
iables were described as proportions and were compared
using either the Pearson χ2 test or the two-sided Fisher’s
exact test. The biomarker performance was assessed
using receiver operating characteristic (ROC) curve ana-
lysis. Comparisons of ROC curves were performed as re-
ported previously [29,30]. To evaluate the impact of the
biomarkers evaluated in this study of severe AKI detec-
tion and in-hospital mortality prediction, we determined
the continuous net reclassification improvement (NRI)
index and the integrated discrimination improvement
(IDI) index [31-33]. Calculations were conducted using
statistical analysis software (JMP Pro 11.0.0; SAS Insti-
tute, Cary, NC, USA) and R 3.1.1 (R Foundation for Stat-
istical Computing, Vienna, Austria). The null hypothesis
was rejected for P < 0.05.

Results
Patient characteristics and outcomes
Table 1 presents baseline clinical data and outcomes of
the enrolled patients. AKI occurred in 42 (42.9%) cases
including 27 severe AKI (KDIGO stages 2 and 3). Com-
pared with the non-AKI patients, the patients with AKI
were older and more frequently had diabetes complica-
tions. Forty-one cases (41.8%) were complicated with
sepsis. Sepsis was associated significantly with AKI. The
APACHE II scores in the AKI group were significantly
higher than in the non-AKI group. In-hospital mortality
was 15.3% in the overall cohort. The AKI group showed
significantly higher in-hospital mortality.
Among 42 patients with AKI, 9 patients (21%) were

not diagnosed as having AKI at ICU admission but
showed sufficient serum creatinine elevation for AKI
diagnosis within 1 week thereafter (late-onset AKI). Of
the 42 patients with AKI, 16 (38%) showed further in-
crease of AKI severity after ICU admission (progres-
sion of AKI).
Acute kidney injury detection by biomarkers
All biomarkers were significantly higher in the AKI
group than in the non-AKI group (Table 2). Plasma
NGAL and urinary NAG appeared to be increased along
with the severity of AKI (Figure 1). ROC analysis for de-
tecting AKI revealed that plasma NGAL and urinary
NAG showed higher area under the ROC curve (AUC-
ROC) values than the other biomarkers did (Table 3).
Similar results were observed when ROC analysis was
conducted for detection of severe AKI (KDIGO stages
2 and 3). For detecting late-onset AKI, only plasma
NGAL showed AUC-ROC values higher than 0.70
with statistical significance. All the evaluated bio-
markers except plasma EPO were able to detect AKI
progression (Additional file 1: Table S1 and Additional
file 2: Table S2).



Table 2 Biomarkers in acute kidney injurya

Non-AKI (N = 56) AKI (N = 42) P-value

Plasma NGAL
(ng/ml)

80 (60 to 142) 322 (157 to 540) <0.0001

Plasma IL-6
(pg/ml)

45.1 (22.9 to 226.3) 322.4 (70.3 to 5150.6) 0.0002

Plasma EPO
(mIU/ml)

16.1 (9.9 to 28.5) 27.8 (10.2 to 106.0) 0.02

Urinary TIMP-2
(ng/ml)

2.08 (0.72 to 4.59) 10.85 (2.23 to 34.60) <0.0001

Urinary NAG (U/L) 5.9 (3.1 to 15.0) 31.8 (14.1 to 71.4) <0.0001
aAKI, Acute kidney injury; EPO, Erythropoietin; IL, Interleukin; NAG, N-acetyl-β-D-
glucosaminidase; NGAL, Neutrophil gelatinase-associated lipocalin; TIMP-2,
Tissue inhibitor of matrix metalloproteinase-2.

Figure 1 Biomarker values grouped by acute kidney injury severity. V
admission are shown in each acute kidney injury (AKI) severity category (no
*P < 0.05. Cre, Creatinine; EPO, Erythropoietin; IL-6, Interleukin-6; NAG, N-ace
lipocalin; TIMP-2, Tissue inhibitor of matrix metalloproteinase-2.
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Biomarkers in septic acute kidney injury
Sepsis and severe AKI synergistically worsen the out-
comes of critically ill patients in ICUs. Therefore, we
further evaluated the performance of biomarkers for de-
tecting severe septic AKI. In accordance with previous
reports, plasma NGAL and IL-6 were increased by sep-
sis, irrespective of AKI complication. However, urinary
TIMP-2 and NAG were not influenced by sepsis. Plasma
EPO was increased only in AKI cases that were compli-
cated with sepsis (Figure 2). It is noteworthy that plasma
NGAL showed a remarkably high AUC-ROC value of
0.94 (95% confidence interval, 0.88 to 0.97) and 0.92
(0.84 to 0.96) for detecting septic AKI and septic severe
AKI, respectively (Table 3). Subanalysis of the septic and
non-septic populations revealed that the performance of
alues of the evaluated biomarkers measured at intensive care unit
n-AKI (n = 56), stage 1 (n = 15), stage 2 (n = 7), stage 3 (n = 20)).
tyl-β-D-glucosaminidase; NGAL, Neutrophil gelatinase-associated



Table 3 Area under the receiver operating characteristic curve values for acute kidney injury detection by biomarkersa

AKI Severe AKI Septic AKI Septic severe AKI

Plasma NGAL 0.84 (0.74 to 0.91)b 0.87 (0.76 to 0.93)b 0.94 (0.88 to 0.97)c 0.92 (0.84 to 0.96)d

Plasma IL-6 0.72 (0.61 to 0.81) 0.70 (0.57 to 0.80) 0.88 (0.79 to 0.93)d 0.84 (0.74 to 0.91)

Plasma EPO 0.63 (0.51 to 0.74) 0.71 (0.57 to 0.82) 0.65 (0.52 to 0.77) 0.78 (0.66 to 0.87)

Urinary TIMP-2 0.75 (0.63 to 0.84) 0.81 (0.66 to 0.90) 0.78 (0.65 to 0.88) 0.84 (0.68 to 0.92)

Urinary NAG 0.84 (0.73 to 0.90)e 0.88 (0.78 to 0.94)b 0.84 (0.72 to 0.91)d 0.90 (0.81 to 0.95)d

aAKI, Acute kidney injury; EPO, Erythropoietin; IL, Interleukin; NAG, N-acetyl-β-D-glucosaminidase; NGAL, Neutrophil gelatinase-associated lipocalin; TIMP-2, Tissue
inhibitor of matrix metalloproteinase-2. bP < 0.05 vs. IL-6 and EPO; cP < 0.05 vs. EPO, TIMP-2 and NAG; dP < 0.05 vs. EPO; eP < 0.05 vs. EPO and TIMP-2. Data are areas
under the receiver operating characteristic curve with 95% confidence intervals.

Figure 2 Biomarker values in septic severe acute kidney injury. Values of the evaluated biomarkers in the four groups categorized by sepsis
and severe acute kidney injury (AKI) complication are shown. Non-septic, non-severe AKI (n = 49), septic non-severe AKI (n = 22), non-septic severe
AKI (n = 8) and septic severe AKI (n = 19). *P < 0.05. Cre, Creatinine; EPO, Erythropoietin; IL-6, Interleukin-6; NAG, N-acetyl-β-D-glucosaminidase;
NGAL, Neutrophil gelatinase-associated lipocalin; TIMP-2, Tissue inhibitor of matrix metalloproteinase-2.

Yamashita et al. Critical Care  (2014) 18:716 Page 5 of 9



Yamashita et al. Critical Care  (2014) 18:716 Page 6 of 9
biomarkers evaluated by ROC analysis in the septic
population was better than that in the non-septic popu-
lation (Additional file 3: Table S3). We also determined
the NRI and IDI indices in septic and non-septic AKI
(Additional file 4: Table S4). Continuous NRI and IDI
revealed that the biomarkers that are less influenced
by sepsis—TIMP-2, NAG and EPO—improved predic-
tion of severe AKI in the septic population when
added to the clinical model, which incorporated age,
sex, complication of diabetes, medical admission and
serum creatinine.
Mortality prediction by biomarkers measured at ICU
admission
Urinary TIMP-2 and NAG and plasma NGAL were
significantly higher in non-survivors than in survivors,
although plasma IL-6 and EPO were not associated
significantly with mortality (Table 4). Urinary TIMP-2
showed the highest AUC-ROC values for 7-day and
in-hospital mortality among the measured biomarkers,
including serum creatinine (Table 5). The AUC-ROC
values for 7-day mortality of urinary TIMP-2 and
NAG were significantly superior to those of creatinine,
whereas only urinary TIMP-2 showed a significantly
higher AUC-ROC value for in-hospital mortality than
that of creatinine.
Improvement of AKI detection and mortality prediction
by addition of biomarkers to the clinical model
In the clinical model, we incorporated age, sex, compli-
cations of diabetes and sepsis, medical admission, and
serum creatinine. Addition of the five biomarkers evalu-
ated in this study to the clinical model did not increase
AUC-ROC values significantly. We also determined the
continuous NRI and the IDI indices. Addition of urinary
TIMP-2 or NAG significantly improved risk prediction
of severe AKI when evaluated using continuous NRI and
IDI. Addition of urinary TIMP-2 also showed significant
improvement of in-hospital mortality as evaluated by
continuous NRI (Table 6).
Table 4 Biomarkers and in-hospital mortality

Survivors (N = 83)

Plasma NGAL (ng/ml) 111 (60 to 282)

Plasma IL-6 (pg/ml) 78.2 (25.1 to 545.5)

Plasma EPO (mIU/ml) 17.1 (9.8 to 36.9)

Serum creatinine (mg/dl) 0.83 (0.61 to 1.41)

Urinary TIMP-2 (ng/ml) 2.8 (0.9 to 6.9)

Urinary NAG (U/L) 11.9 (3.5 to 24.9)

EPO, Erythropoietin; IL, Interleukin; NAG, N-acetyl-β-D-glucosaminidase; NGAL, N
metalloproteinase-2.
Discussion
This study demonstrates that urinary TIMP-2 can detect
severe AKI with performance as good as that of plasma
NGAL and urinary NAG, with an AUC-ROC value
higher than 0.80. We observed no significant impact of
sepsis on urinary TIMP-2, although the authors of a pre-
vious report presented a better prediction of AKI by the
combination of TIMP-2 and insulin-like growth factor-
binding protein-7 (IGFBP-7) in septic subjects than in
post-surgery subjects [7]. The enrolled patients treated
in a mixed ICU in the present study might have had
not only AKI but also several other organ injuries. In
addition to AKI detection, urinary TIMP-2 was able to
predict mortality better than serum creatinine. These
data, obtained with a heterogeneous ICU population
in the present study, validate previous reports that
demonstrated the clinical significance of measuring urin-
ary TIMP-2 [7,8,34] and confirmed its generalizability for
clinical translation.
Actually, TIMP-2 has been identified as a potential

new AKI biomarker by examination of over 300
markers with a heterogeneous AKI cohort comprising
sepsis, shock, major surgery and trauma [7]. Together
with TIMP-2, IGFBP-7 was also found to be the best-
performing marker in the discovery study. These two
molecules are reportedly involved with cell cycle arrest
at G1 phase [10,35,36]. Therefore, the utility of TIMP-
2 and IGFBP-7 suggests a crucial role of cell cycle
regulation in the pathogenesis of AKI. Recently, in
another independent study of urine proteome analysis
using gel electrophoresis and mass spectrometry,
researchers identified IGFBP-7 as a novel prognostic
marker for AKI [37]. Although urinary IGFBP-7
showed performance similar to NGAL in terms of AKI
detection and reflection of AKI severity in an inde-
pendent verification group of 28 patients with AKI
and 12 control patients without AKI, urinary NGAL
appeared to predict mortality better than IGFBP-7 did.
In the present study, we did not measure urinary
IGFBP-7. Further validation studies must be under-
taken to confirm the utility of the combination of
urinary TIMP-2 and IGFBP-7.
Non-survivors (N = 15) P-value

269 (91 to 583) 0.03

342.7 (48.3 to 924.0) 0.06

33.6 (10.4 to 88.7) 0.21

1.04 (0.75 to 2.42) 0.19

11.4 (3.8 to 65.7) 0.004

33.0 (13.4 to 51.1) 0.01

eutrophil gelatinase-associated lipocalin; TIMP-2, Tissue inhibitor of matrix



Table 5 Area under the receiver operating characteristic
curve values for mortality prediction by biomarkers

7-day mortality In-hospital mortality

Plasma NGAL 0.79 (0.67 to 0.88) 0.68 (0.53 to 0.80)

Plasma IL-6 0.82 (0.57 to 0.94) 0.66 (0.50 to 0.79)

Plasma EPO 0.63 (0.38 to 0.90) 0.60 (0.44 to 0.75)

Serum creatinine 0.67 (0.53 to 0.78) 0.61 (0.45 to 0.74)

Urinary TIMP-2 0.83 (0.59 to 0.94)* 0.74 (0.60 to 0.85)*

Urinary NAG 0.80 (0.58 to 0.92)* 0.70 (0.54 to 0.82)

EPO, Erythropoietin; IL, Interleukin; NAG, N-acetyl-β-D-glucosaminidase; NGAL,
Neutrophil gelatinase-associated lipocalin; TIMP-2, Tissue inhibitor of matrix
metalloproteinase-2. *p < .05 vs. serum creatinine.
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Especially for critically ill patients treated in ICUs for
non-surgical conditions, sepsis is the most important
factor affecting their prognosis. As also reported in earl-
ier studies [19,38-40], NGAL was able to detect septic
AKI with high AUC-ROC values, above 0.90, in the
present study. The results of the present study show that
IL-6 was increased not by AKI alone, but also by septic
AKI, although plasma EPO was increased only by septic
AKI. Urinary TIMP-2 and NAG were elevated in AKI,
irrespective of sepsis complication. These distinct char-
acteristics of the five examined biomarkers will enable
discrimination of the etiologies of AKI. The 10th Acute
Dialysis Quality Initiative (ADQI) Consensus Conference
recommended that the etiology of AKI should be ascer-
tained by measuring several different biomarkers that
help differentiate AKI of uncertain etiology [41]. Further
studies must be conducted to determine the specificity
of damage and biomarkers for individual disease states.
It is noteworthy that only urinary TIMP-2 showed better

prediction of in-hospital mortality among the evaluated
biomarkers compared with serum creatinine (Table 5).
This feature of new AKI biomarkers has recently been ad-
dressed. One meta-analysis showed that blood and urinary
NGAL can detect patients who have increased risk of ad-
verse outcomes including mortality, even in the absence of
sufficient serum creatinine increase for AKI diagnosis
Table 6 AUC-ROC, continuous net reclassification improveme
index when each biomarker was added to the clinical modela

Severe AKI

AUC-ROC Continuous NRI IDI

Clinical model 0.87 (0.76 to 0.94)

+ NGAL 0.89 (0.77 to 0.95) 25 (−19 to 69) 0.03 (−0.00 to

+ IL-6 0.88 (0.76 to 0.94) −8 (−51 to 35) 0.00 (−0.00 to

+ EPO 0.88 (0.75 to 0.94) 34 (−10 to 78) 0.01 (−0.01 to

+ TIMP-2 0.89 (0.76 to 0.95) 41 (1 to 82)b 0.04 (0.00 to 0

+ NAG 0.93 (0.82 to 0.97) 79 (38 to 119)b 0.13 (0.05 to 0
aAKI, Acute kidney injury; AUC-ROC, Area under the receiver operating characteristic
IL, Interleukin; NAG, N-acetyl-β-D-glucosaminidase; NGAL, Neutrophil gelatinase-asso
inhibitor of matrix metalloproteinase-2. bP < 0.05 vs. clinical model.
[42]. Another report described a better prediction of mor-
tality of ICU patients by urinary NGAL and L-FABP than
that by serum creatinine [40]. These observations suggest
that new AKI biomarkers, including TIMP-2, can detect
renal structural damage independently from functional
changes shown by serum creatinine elevation and
that a combination of kidney functional and damage
markers enable stratification of patients with AKI at
risk for poor outcomes [43].
Several limitations might affect the results obtained

from this study. First, this study was conducted at a sin-
gle center. The number of patients analyzed was insuffi-
ciently large. Evaluations in multicenter ICUs with larger
cohorts should be conducted to verify our findings. Sec-
ond, most AKI cases (79%) were diagnosed as AKI on
ICU admission, which might indicate that we were un-
able to enroll proper patients with an early phase of
AKI, where novel biomarkers might have had more
value than creatinine. Third, we evaluated AKI and sep-
sis, but did not evaluate their mutual cause-and-effect
relationship. Although the pathophysiological mecha-
nisms of sepsis-induced AKI have been investigated
widely [44], sepsis can be not only a cause but also a
consequence of AKI in a clinical setting. In a multicenter
observational study of AKI, researchers reported the
clinical consequences of sepsis with AKI [45]. Among
the 611 patients with AKI, 174 patients (28%) had sepsis
before AKI and 243 patients (40%) developed sepsis after
AKI. The relationship of cause and effect between AKI
and sepsis can affect biomarker behavior.
Conclusions
A new urine biomarker, TIMP-2, can detect severe AKI
with performance as good as that of plasma NGAL and
urinary NAG, with an AUC-ROC value higher than 0.80.
In addition, urinary TIMP-2 was associated with mortal-
ity. Sepsis appeared to have a limited impact on urinary
TIMP-2, in contrast to plasma NGAL. These distinct
nt index and integrated discrimination improvement

In-hospital mortality

AUC-ROC Continuous NRI IDI

0.72 (0.57 to 0.83)

0.07) 0.72 (0.58 to 0.83) 24 (−31 to 79) 0.00 (−0.01 to 0.01)

0.01) 0.72 (0.58 to 0.83) 10 (−44 to 64) 0.01 (−0.02 to 0.04)

0.03) 0.72 (0.57 to 0.83) −13 (−68 to 42) 0.00 (−0.00 to 0.01)

.08)b 0.76 (0.64 to 0.86) 64 (17 to 109)b 0.03 (−0.01 to 0.06)

.21)b 0.74 (0.61 to 0.84) 24 (−30 to 78) 0.01 (−0.01 to 0.03)

curve; EPO, Erythropoietin; IDI, Integrated discrimination improvement index;
ciated lipocalin; NRI, Net reclassification improvement index; TIMP-2, Tissue
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features of biomarkers might enable the evaluation of
the contribution of sepsis to AKI development.

Key messages

� Urinary TIMP-2 was increased, especially in severe
AKI, and was associated with mortality.

� Sepsis had no significant impact on urinary TIMP-2
and NAG, although plasma NGAL and IL-6 were
increased by sepsis and AKI.

� Distinct characteristics of respective biomarkers
might be helpful to differentiate the AKI etiology.

Additional files

Additional file 1: Biomarkers in established AKI, late-onset AKI and
progression of AKI.

Additional file 2: AUC-ROC values for detection of established AKI,
late-onset AKI or progression of AKI.

Additional file 3: AUC-ROC values in subanalysis of septic and
non-septic population when each biomarker is added to the
clinical model.

Additional file 4: Continuous NRI and IDI in subanalysis of septic
and non-septic population when each biomarker is added to the
clinical model.
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