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Abstract

Introduction: Pandemic A/HTN1/2009 influenza causes severe lower respiratory complications in rare cases. The
association between host immune responses and clinical outcome in severe cases is unknown.

Methods: We utilized gene expression, cytokine profiles and generation of antibody responses following
hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying
host immune responses associated with clinical outcome. Ingenuity pathway analysis 85 (IPA) (Ingenuity Systems,
Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA
analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups.
Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using
BRB-Array Tools v.3.8.1.

Results: The majority of patients were characterized by the presence of comorbidities and the absence of
immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease
onset and defined an early period of innate immune response and a late period of adaptive immune response to
the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe
patients died. During the late phase, the most severe patient group had impaired expression of a number of genes
participating in adaptive immune responses when compared to less severe patients. These genes were involved in
antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and
protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory
hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in
serum.

Conclusions: Our findings suggest an impaired development of adaptive immunity in the most severe cases of
pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release.
Interruption of this deleterious cycle may improve disease outcome.
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Introduction

Pandemic 2009 influenza A(H1N1)(p2009A(H1N1)) viral
infections continues to be a public health threat [1].
While the overall case fatality rate is low (< 0.5%),
approximately 9 to 31% of hospitalized patients require
admission to an intensive care unit (ICU), and 14 to
46% of these severe patients have a fatal outcome [2-5].
Understanding the pathogenic events leading to critical
pandemic H1N1disease is important for designing better
strategies for prevention and treatment of severe out-
comes. Previous studies examining host immune
responses in other emerging viruses such as severe
acute respiratory syndrome (SARS)-associated corona-
virus, suggest that severe disease is characterized by a
malfunction of the switch from innate to adaptive
immunity in response to the virus [6]. Similar to severe
infections caused by H5N1 influenza virus [7] dysregu-
lated cytokine secretion have been described in severe
cases of p2009A(H1N1) [8,9]. Infection by pandemic
2009 influenza virus causes defective host responses to
S. pneumoniae as showed in ex vivo cultured peripheral
blood mononuclear cells from pandemic 2009 influenza
(A/HIN1) patients [10]. In ferrets infected with pan-
demic influenza virus, recovery from infection and
improved clinical signs are paralleled by a switch
between the innate and the adaptive phase of host
immune responses [11].

The potential for the use of gene signatures to better
assess the immunopathology and clinical management
of severe viral infections has been widely demonstrated
in the past [6,12,13]. By using a systems biology-based
approach, we analyzed the response to viral infection
following hospitalization of 19 p2009A(H1N1) critically
ill patients admitted to seven Spanish intensive care
units. Our results indicate that pandemic HIN1 patients
with severe respiratory disease and poor outcome are
characterized by an impaired activation of those genes
participating in the development of the antiviral adaptive
response.

Materials and methods

Study design, participants and sample collection
Nineteen patients attending the participants’ ICUs with
primary viral pneumonia during the acute phase of
influenza virus illness with acute respiratory distress and
unequivocal alveolar opacification involving two or
more lobes with negative respiratory and blood bacterial
cultures at admission were recruited from 1 November
to 31 December 2009. Patients older than 65 years and
younger than 18 years were excluded from the study to
avoid immaturity/aging of the immune system as confu-
sion factor in the analysis. Only those patients with con-
firmed HIN1 infection by real-time polymerase chain
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reaction (PCR) were included in the study (n = 19).
Serial blood samples for plasma, serum and RNA were
collected by using serum, ethylenediaminetetraacetic
acid (EDTA) and PaxGene (BD) venous blood vacuum
collection following the manufacturer’s instructions at
days 1, 3/5 and 7 after admission to the ICU, according
to a unified protocol for all the participant centers. A
pharyngeal sample was collected in parallel. Fifteen
healthy volunteers of similar age to the patients were
recruited between workers of the University of Vallado-
lid, Spain. A standard survey was employed to collect
the clinical data, including history and physical examina-
tion, oximetric measurement, hematological, biochem-
ical, radiological and microbiological investigation in all
the participant centers. Treatment decisions for all
patients, including corticosteroid therapy, were not stan-
dardized and were decided by the attending physician.
Informed consent was obtained directly from each
patient or their legal representative and also from the
healthy controls before enrollment. Patient and control
identification remained anonymous. Approval of the
study protocol in both the scientific and the ethical
aspects was obtained from the Scientific Committees for
Clinical Research of each one of the participant centers.

Samples were stored at -80°C until cytokine, antibody
and RNAm profiling. Attending to timing of seroconver-
sion (production of antibodies against p2009A(H1N1)),
day 9 from onset of symptoms was considered as the
border between the innate and the adaptive immune
response in the patients, establishing two moments in
the evolution of the disease: an early phase (from onset
of symptoms (day 0) to day 8) and a late phase (from
day 9 and above). Patients were divided into two groups,
depending on their respiratory status. The MV group
needed invasive mechanical ventilation following admis-
sion; the NMV group was composed of those patients
not needing mechanical ventilation at any moment dur-
ing hospitalization. Cytokines, gene expression and viral
load of MV patients were compared with those of NMV
patients in both early and late phases separately. The
number of samples analyzed in each phase is detailed in
the Additional file 1.

Virological works

Viral diagnosis was performed on RNA from pharyngeal
swabs in the Microbiology Services of the participant
hospitals by reverse transcription-polymerase chain reac-
tion (RT-PCR)-based methods using reagents provided
free of charge by the Centers for Disease Control (CDC,
Atlanta, GA, USA) or purchased from Roche (Basel,
Switzerland) (H1N1 detection set). These samples were
also assessed by multiplex PCR (Luminex) with the
xTAG RVP kit from Luminex-Abbott for coinfection
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with respiratory syncytial virus, influenza B virus, para-
influenza viruses 1-4, human metapneumovirus, entero-
viruses, rhinovirus, adenovirus, bocavirus and
coronaviruses NL63, HKU1, 229E, OC43, in accordance
with the manufacturer’s instructions. Viral load was
quantified in both pharyngeal swabs and plasma in the
Virology Lab of the WHO-associated center at Hospital
Clinic in Barcelona, Spain, as detailed in Additional file
1. Oseltamivir resistance was directly detected in the
initial positive pharyngeal swab by RT-PCR and sequen-
cing of a 1296-bp fragment of the neuraminidase gene
for the presence of the mutation H274Y by using an
ABI 3130XL Genetic Analyzer.

Hemagglutination inhibition assays (HAI)

HALI assays were performed on a 100-pl aliquot of the
samples at University Health Network (UHN), Toronto,
Ontario, Canada. The sera were treated with receptor-
destroying enzyme (RDE) of V. cholerae by diluting one
part serum with three parts enzyme and were incubated
overnight in a 37°C water bath. The enzyme was inacti-
vated by 30-min incubation at 56°C followed by the addi-
tion of six parts 0.85% physiological saline for a final
dilution of 1/10. HI assays were performed in V-bottom
96-well microtiter plates (Corning Costar Co., Cambridge,
MA, USA) with 0.5% turkey erythrocytes as previously
described [14] using inactivated pandemic influenza A/
California/07/2009(p2009A(H1N1)) antigens.

Microarrays

Microarrays were performed at University Health Net-
work (UHN), Toronto, Ontario, Canada. More detailed
explanation of microarray assays is provided in Addi-
tional file 1. Ingenuity Pathway Analysis 8.5 (IPA) (Inge-
nuity Systems, Redwood City, CA, USA) was used to
select, annotate and visualize genes by function and
pathway (gene ontology). IPA analysis identified those
canonical pathways differentially expressed (P < 0.05)
between comparison groups. Hierarchical clustering of
those genes differentially expressed between groups by
IPA analysis was performed using BRB-Array Tools
v.3.8.1 stable release developed by Dr. Richard Simon
and the BRB-array tools development team. Resulting
microarray data sets have been uploaded at the GEO
microarray data repository [GEO:GSE21802] [15]. We
verified changes in microarray gene expression using
quantitative real-time PCR (QRT-PCR) for representa-
tive genes from our analysis (Figure S1 in Additional file
2). Primers specific for human GAPDH mRNA were
used to normalize samples.

Immune mediator profiling
Immune mediator levels in serum were measured in
patients and controls by using the multiplex Bio-Rad
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27-plex assay (Hercules, CA, USA) in the Infection &
Immunity Unit (Hospital Clinico Universitario-IECS-
CYL, Valladolid, Spain). This system allows for quantita-
tive measurement of 27 different chemokines, cytokines,
growth factors and immune mediators while consuming
a small amount of biological material. A number of
additional soluble mediators were measured by using
enzyme-linked inmunosorbent assays (ELISAs): inter-
feron o and B (Verikine kits purchased from Pbl Inter-
feron Source, Piscataway, NJ, USA), IL-23, TGF-B1
(Quantikine kits purchased from R&D Systems, Minnea-
polis, MN, USA), IL28A (Legend Max kit purchased
from BioLegend, San Diego, CA, USA). Immune media-
tor’s concentration of each individual sample was nor-
malized against the median of the concentration of the
control group (n = 15), and the resultant ratios were
compared between groups of patients.

Statistical analysis

The Mann-Whitney U test was employed for cytokine
comparison purposes, since the Saphiro Wilk test evi-
denced absence of normal distribution of the data, and
the Levene test demostrated absence of homogeneity of
variance in both MV and NMYV groups. Correlation stu-
dies between cytokine levels, gene expression levels,
viral load and clinical parameters were done by calculat-
ing the Spearman correlation coefficients. All statistical
tests were two-sided, and P < 0.05 was considered
significant.

Results

Clinical characteristics of p2009A (H1N1) Patients

All patients were positive for p2009A(H1N1) at admis-
sion to the Intensive Care Unit (ICU), with absence of
any other respiratory virus in the pharyngeal swabs.
None of the patients had received the vaccine against
P2009A(HINT1). All patients received oseltamivir therapy
by the day of admission to ICU. None of the viral sam-
ples examined showed the mutation H274Y conferring
resistance to oseltamivir. Twelve patients showed
respiratory work severe enough for need of invasive
mechanical ventilation at ICU admission (these patients
were classified as MV group), while none of the remain-
ing seven were mechanically ventilated during their hos-
pitalization (these patients were classified as NMV
group). The most common symptoms at onset were
fever > 38°C (cases in MV, cases in NMV) (11, 6), myal-
gias (8, 6), cough (11, 7) and dyspnea (12, 7). Nine
patients of the most severe group and six of the less
severe ones had concomitant preexistent conditions
(Table 1). None of the patients except one patient of the
NMYV group who was receiving treatment with bortezo-
mib were under immunosuppressory therapy by the day
of admission. Five of 12 MV patients, for four of seven
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Table 1 Clinical and laboratory characteristics of the patients
MV (n = 12) NMV (n =7)
Gender (M/F) 7/5 2/5
Age 456 (10.3) 385 (13.1)
Ethnicity Caucasian (10/12), gipsy (1/12), India (1/12) Caucasian (5/7), Black (1/7), Magreb
(1/7)
BMI 27.7 (6.3) 27.1 (5.5
Pandemic influenza vaccine 0/12 0/7
Chronic respiratory disease 2/12 1/7
Chronic renal disease 1712 2/7
Cardiovascular disease 1712 0/7
Neurological disease 3/12 1/7
Gastrointestinal disease 2/12 0/7
Cancer 0/12 1/7
Obesity (BMI > 30) 3/12 2/7
Diabetes 1712 0/7
Pregnancy 1/12 (32 weeks) 2/7 (31 and 27 weeks)
Dyslipemia 2/12 0/7
Alcoholism 1/12 2/7
Smoker 6/12 3/7
Fatal outcome/survivors 7/5 0/7
Duration of symptoms at ICU admission 57 (2.3) 6.5 (1.2)
0, saturation at admission 88.0 (10.8) 953 (2.7)
(room air)
Days at ICU 175 (22.1) 46 (23)
Days at hospital 142 (74) 118 (6.1)
Days since onset to intubation 6 (24) na
Oseltamivir® 12/12 7/7
Duration of symptoms before oseltamivir 53 (2.3) 6.1 (1.2)
Days with oseltamivir (days) 8.7 (5.0) 7.1 24)
Steroids at sampling 5/12 4/7
Infiltrates in chest X-ray 12/12 7/7
Progression of infiltrates to all 4 quadrants on chest X-ray 6/12 1/7
Bacterial/fungal 1. S. aureus, A. fumigatus, RC, E. faecalis, HC, 2,10 n.a
Superinfection 2. S. marcenses, HC, 7,10
[Microbe, sample (resp culture-RC; hemoculture-HC), 3. P. aeruginosa, RC, 5,14
days from ICU admission to first bacterial isolation, 4. C. albicans, S. Marcenses, RC, 43,52
days from symptoms onset to first bacterial isolation] 5. A fumigatus, C. Albicans, RC, 6, 12
MV early MV late NMV early NMYV late
SOFA score 4.0 (34) 75 (3.0) 34 (2.1) 3528
Creatinine (mg/dl) 0.7 (0.3) 0.7 (04) 17 (2.8) 1.7 (1.6)
AST (U/liter) 63.5 (34.6) 73.7 (37.3) 73.8 (39.9) 61.8 (78.3)
ALT (U/liter) 26.8 (16.1) 5838 (38.9) 75.6 (59.9) 76.6 (86.7)
CPK (IU/liter) 221.2 (290.8) 713.0 4490 152.7
(640.5) (697.8) (171.6)
Leucocytes/h’m’13 2594.6 (2907.5) 79236 29173 35244
(71004) (3723.0) (5208.6)
Neutrophils (%) 524 (37.9) 733 (27.3) 38.6 (42.9) 34.8 (38.1)
Lymphocytes x10° /mm? 22 (24) 08 (06) 06 (0.2) 1.1 (0.5)

Data are shown as means with SD where appropriate. N.a., not applicable. R.C,, respiratory culture; HC: hemoculture. *Oseltamivir was administered orally or by

nasogastric route in accordance with CDC recommendations [31].
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patients in the NMV group, were receiving steroids at
the time of sample collection (Table 1). Seven MV
patients failed to recover from disease and died with a
mean illness duration time of 16.7 and 5.8 days (mean,
SD). All NMV patients recovered from p2009A(H1N1)
disease. The leading cause of death was primary respira-
tory failure with refractory hypoxemia in five patients
and multiorganic failure in the remaining two patients
(Table S1 in Additional file 3). While no differences
were found in viral load between MV and NMV patients
in the early stage of the disease, MV patients showed
significantly higher viral loads than NMV in pharynx in
the late stage of the disease (P < 0.05) (Figure 1). Three
MYV patients and one NMV showed detectable viremia
at the day of ICU admission, with undetectable virus in
plasma afterward. Viral load in pharynx showed a direct
correlation with SOFA score (r = 0.4) and an inverse
one with O, saturation (r = -0.3) during the course of
the disease. Five MV patients suffered from a bacterial
or fungal superinfection at some point during hospitali-
zation (Table 1). Three patients suffering from bacterial
superinfection died (Table S1, Additional file 3).
Remarkably, none of the patients in the NMV group
suffered from bacterial superinfection. All but three
patients (two MV and one NMV) had produced antibo-
dies (HAI titers > 1/40) by the last day of sample collec-
tion. Seroconversion took place 9.7 (4.6) days from the
onset the symptoms in the MV group and 8.8 (1.6) days
in the NMV group (mean, SD), with no significant dif-
ference between the two groups.
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Gene expression profiling

Comparison of gene expression profiles between MV
and NMV patients in the early phase of the disease
revealed the absence of differentially expressed genes
between both groups. On the other hand, comparisons
in the late phase of the disease revealed 4559 genes dif-
ferentially expressed between MV and NMYV patients (P
< 0.05, FDR = 0.06). IPA analysis identified in this late
phase a significant depression of a group of intracellular
signaling pathways important for the development of
the antiviral immune response in the most severe group
of patients (MV) compared to NMV group (Figure 2). A
number of genes involved in antigen presentation (Fig-
ure 3), B cell development (Figure S2 in Additional file
4), CD28 signaling in T helper cells (Figure S3 in Addi-
tional file 5), granzyme B signaling (Figure S4 in Addi-
tional file 6), T helper cell differentiation, protein
ubiquitination, dendritic cell maturation, apoptosis and
B-cell receptor (BCR) signaling were differentially regu-
lated between these two groups and significantly lower
in the MV group. On the contrary, the MV group
showed significantly higher expression of the IL-6 and
IL-10 signaling pathways (Figures S5 and S6 in Addi-
tional files 7 and 8). Tables S2-S9 (Additional files 9, 10,
11, 12, 13, 14, 15 and 16) show the genes differentially
expressed between groups classified by individual path-
way. IPA did not identify any signaling pathway differ-
entially expressed between the seven MV patients with
fatal outcome and the remaining five who survived the
infection. Expression levels of HLA-DMA, HLA-DRB3,
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Figure 2 Histogram depicting the mean and median of the differences in gene expression levels between MV-NMV by intracellular
signaling pathways. (< 0) means that expression in MV < expression in NMV; (> 0) means that expression in MV > expression in NMV).

HLA-DRB4, HLA-DQA1, HLA-DRA1, HLA-DMB,
HLA-DPA1, CD4, CD8A and CD8B showed a negative
correlation with viral load in pharynx during the late
phase of disease (P < 0.05, r < (-0.4)). These genes, with
the exception of HLA-DRB4, correlated positively with
O, saturation in this phase (P < 0.05, r > 0.5). They
showed also a negative association with the SOFA
score for severity, as also did CD74 and HLA-C
(P < 0.05, r < (-0.5)).

Immune mediators profiling

NMYV and MV groups did not show major differences in
the cytokine and chemokine profiles during the early
phase of disease (Table S10 in Additional file 17). How-
ever, in the late phase, MV patients showed significantly
higher levels of the chemokines IP-10 (CXCL10), IL8
(CXCL8) and MCP-1 (CCL2) (Figure 4 and Table S11
in Additional file 18). During the late phase, MV
patients showed higher levels of two key Thl cytokines
(IL-12p70 and IFN-y), IL6 (a Th17 related cytokine) and
also two cellular growth factors (VEGF, GM-CSF) than
the less severe patients (NMV). Also during the late
phase, MV patients showed increased levels of two
immunomodulatory cytokines (IL-10, IL-1ra) (Figure 4
and Table S11 in Additional file 18). Levels of IP-10, IL-
6, and IL-8 showed a positive correlation with viral load

in pharynx during the course of the disease (P < 0.05,
r coefficient < 0.5). IL-6, IL-8, IL-10, IL-15, IL-12p70,
GM-CSF and IFN-y showed a positive correlation with
the SOFA score for severity (P < 0.05, r coefficient
< 0.5). IL-10 levels showed an inverse association with
HLA-DRB3, HLADPB1 and CD74 expression levels;
IL-1ra showed an inverse association with HLA-C expres-
sion levels (P < 0.05, r < (-0.5)). IFN-a, IFN-A (IL-28) and
IL-23 were undetectable in the vast majority of the
patients in both groups along the course of the disease.

Discussion
Here we examined host immune responses in severe
patients requiring admission to the ICU. On the basis of
the presence of anti-p2009A(H1N1) antibodies, we were
able to identify two phases of disease in severe patients:
an early phase characterized by the absence of antibo-
dies (innate immunity phase) and a later phase defined
by the presence of circulating anti-p2009A(H1N1) anti-
bodies (adaptive immunity phase). Analysis of gene
expression and cytokine profiles led to the characteriza-
tion of signatures that are associated with disease sever-
ity and poor outcome in the late phase.

The impaired expression of a number of MHC class 1I
(DM, DP, DQ, DR), MHC class I (HLA-C) genes, of T
cell receptor-associated genes (CD4, CD8A, CD8B1) and
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also of a group of genes participating in dendritic cell
maturation (CCR7, CD1C, IL18) points to the existence
of a defective antigen presentation in the most severe
group of patients (those who needed mechanical ventila-
tion, MV) in the late phase of adaptive immunity. An
adequate antigen presentation is needed to develop an
effective adaptive immunity to influenza viruses [16].
Under some circumstances, changes affecting antigen
presentation more strongly impact viral kinetics in the
host than other viral or immune factors [16]. Disruption
of antigen presentation prevents an effective adaptive
immune response. Evidence on the potential role of an
altered antigen presentation on the development of an
appropriated adaptive response against the virus comes
from the impaired expression of a group of genes pivo-
tal to the activation and function of both T and B cells
observed in the MV group in the late phase. Defective

expression of CXCR5, MHC class II molecules,
IL12RB1, IL21R and IL6R supports an impaired T
helper cell differentiation signaling in this group of
patients. Poor expression of CD4, FYN, GRB2, MHC
class II molecules, ITPR3, MALT1, NFATCI1, NFATC3,
PDPK1, PIK3R1 and PLCG1 genes indicates a disruption
in CD28 signaling in T helper cells, which is needed for
effective primary T-cell expansion [17]. Impaired expres-
sion of DFFA, ENDOG, NUMA1, PARP1 and PRKDC
affects granzyme B signaling. This pathway is involved
in the induction of apoptosis in virus-infected cells by
cytotoxic T lymphocytes (CTLs) [18]. Impaired T helper
cell differentiation, CD28 and granzyme B signalling,
along with the poor expression of T cell receptor asso-
ciated genes (CD4, CD8A, CD8B1), supports a defective
T cell response during the phase of adaptive immunity
in the MV group. Moreover, the poor expression of
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genes related to B cell development and B cell receptor
signaling (CD79A, CD79B, IL7R, MHC class II mole-
cules, ABL1, CAMK2 D, MALT1, INPP5 D, HRAS,
GRB2) points to an altered B cell function during this
key period of the host response to the virus.

Additional clues on the existence of a defective adap-
tive response in severe pandemic influenza come from
the impaired expression of a group of genes participat-
ing in the apoptosis signaling pathway (AIFM1, BIRC3,
CAPN1, CAPN7, CAPNS1, CASP6, DFFA, ENDOG,
HRAS, PARP1, PLCG1, TP 53). Since apoptosis is a
recognized antiviral mechanism [19], a defect in apopto-
sis could translate into poor control of the virus. Addi-
tionally, defective expression of several ubiquitin-
conjugating enzymes and ubiquitin-specific peptidases
demonstrates that ubiquitination is also affected in
severe pandemic influenza during the phase of adaptive
response. Ubiquitination regulates the development of
many phases of the immune response, including its
initiation, propagation and termination [20]. The altera-
tion of this pathway in severe pandemic influenza could
affect in consequence all the steps needed for the devel-
opment of an appropriate response to the virus. The
role of steroids or immunosuppressor drugs in the

genesis of the impaired adaptive response should be
very limited, since none of the patients of the most
severe group were under immunosuppressor treatment
by the admission date. In addition, as detailed in Table
1, the proportion of patients under steroid treatment at
the moment of sample collection during the hospitaliza-
tion period was very similar in both groups of patients
(41.6% for MV and 57.1% in NMV); in consequence,
steroid treatment should affect similarly both groups in
terms of modulation of the immune response. The abil-
ity showed by the vast majority of the patients in the
MV group to produce specific antibodies indicates that
antibody generation was insufficient to overcome the
infection. Our results on gene expression support a
defect in cellular immunity on the basis of the poor
control of the virus in this group. It is well known that
T helper and CTL responses play a determinant role in
the containment of influenza once infection has
occurred [21-23]. Our group is now designing further
studies aimed at clarifying the participation of cellular
responses in the severe disease caused by p2009A
(HIN1).

On the other hand, patients of the MV group showed
higher expression levels of those genes participating of
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the IL-6 and IL-10 canonical pathways during the phase
of adaptive immunity. These pathways play opposite
roles: proinflammatory and anti-inflammatory, respec-
tively. In addition, serum levels of both IL-6 and IL-10
proteins are the highest in the MV group in this phase
group which showed also elevated levels of chemokines,
Thl cytokines and growth factors. The presence of
hypercytokinemia has been recently reported during
infection by p2009A(H1N1) [8]. It has been described
also during fatal H5N1 disease, severe SARS [6,7], acute
RSV bronchiolitis [24] and sepsis [25]. Positive associa-
tion between chemokines, cytokines and viral load in
our study evidences that they are markers of ongoing
viral replication as previously observed in SARS and
H5N1 infection [6,12]. The high levels of the immuno-
modulatory molecules IL-1ra and IL-10 could represent
an attempt to prevent cytokine-driven inflammatory
damage or alternatively a virus-induced evasion mechan-
ism [26-29]. The positive correlation observed between
IL-10, viral load and SOFA, and the negative correla-
tions between this cytokine and the expression levels of
the genes participating in the antigen presentation path-
way, supports the role of this mediator in favoring viral
replication. As detailed in Table 1, bacterial superinfec-
tions took place not in the early but in the late course
of the disease. This supports the role of the impaired
adaptive response and the release of immunosuppres-
sory cytokines in the increased incidence of bacterial
superinfection observed in severe disease following
infection by p2009A(H1N1) [2].
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Conclusions

Our findings suggest a state of host adaptive immunity
deficiency (HAID) in the patients with severe pandemic
influenza, leading to an unremitting cycle of viral repli-
cation and innate cytokine-chemokine release (Figure 5).
This scenario of HAID resembles to the concept of
immunoparalysis described for sepsis [30]. Interruption
of this deleterious cycle may lead to improved disease
outcome.

Key messages

+ The association between host immune responses
and clinical outcome in severe pandemic 2009 influ-
enza is poorly known. The potential for the use of
gene signatures to better assess the immunopathol-
ogy and clinical management of severe viral infec-
tions has been widely demonstrated in the past.

« Previous studies examining host gene expression
profiles in other emerging viruses such as SARS-
associated coronavirus, suggest severe disease is
characterized by a malfunction of the switch from
innate to adaptive immunity in response to the
virus. Similar to severe infections caused by H5N1
influenza virus, dysregulated cytokine secretion has
been described in severe cases of p2009A(HIN1).

+ Pandemic HIN1 patients with severe respiratory
disease and poor outcomes are characterized by an
impaired activation of those genes participating in
the development of the antiviral adaptive response
and by persistence of the virus in the respiratory

Unvirtuous circle of the adaptive immunity

2009 pandemic
influenza virus
infection

\_—7

Viral
replication

Impaired adaptive

Hypercytokinemia
Immunosuppresor Pro-inflammatory
(IL-10, IL-1ra) (IL-12p70,IFN-y,
IL6, VEGF, GM-
CSF)
? )
Tissular
damage

N

response to the virus.

response
Bacterial Antigen presentation
superinfection B cell development

CD28 signaling
Granzyme B signaling
T helper cell differentiation
Protein ubiquitination,
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Figure 5 Host adaptive immunity deficiency (HAID) model in severe pandemic influenza. The picture shows the unvirtuous circle of the
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tract. These findings suggest a state of HAID that
resembles the concept of immunoparalysis described
for sepsis.

« HAID coexists with a persistent release of cyto-
kines in those patients with the poorest outcomes.

+ These results support the idea that HAID would
lead to an unremitting cycle of viral replication and
innate cytokine-chemokine release. Interruption of
this deleterious cycle with antiviral and/or immuno-
modulatory therapies may lead to improved disease
outcome.
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Additional file 12: Table S5: Gene expression levels by intracellular
signaling pathway (T helper cell differentiation). Difference between
MV-NMV gene expression means is shown for each gene in the late
period (from day 9 in the course of the disease).

Additional file 13: Table S6: Gene expression levels by intracellular
signaling pathway (protein ubiquitination pathway). Difference
between MV-NMV gene expression means is shown for each gene in the
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Additional file 14: Table S7: Gene expression levels by intracellular
signaling pathway (apoptosis signaling). Difference between MV-NMV
gene expression means is shown for each gene in the late period (from
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Additional file 15: Table S8: Gene expression levels by intracellular
signaling pathway (B cell receptor signaling). Difference between MV-
NMV gene expression means is shown for each gene in the late period
(from day 9 in the course of the disease).

Additional file 16: Table S9: Gene expression levels by intracellular
signaling pathway (IL-6, IL-10 signaling). Difference between MV-NMV
gene expression means is shown for each gene in the late period (from
day 9 in the course of the disease).

Additional file 17: Table S10: Comparison of immune mediator
levels, early period (before day 9 in the course of the disease). Data
are represented as median (interquartile range) of the ratios MV/(control
median) and NMV/(control median). *Significant differences at the level P
< 0.05. (n.s.), nonsignificant differences. IFN-a, IFN-A (IL-28) and IL-23
were undetectable in the vast majority of the patients in both groups
along the course of the disease.

Additional file 18: Table S11: Comparison of immune mediator
levels, late period (from day 9 in the course of the disease). Data are
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differences. IFN-o., IFN-A(IL-28) and IL-23 were undetectable in the vast
majority of the patients in both groups along the course of the disease.
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