
Introduction

Acute life-threatening situations cause an intense stress 

response. Th ese situations promote immuno-infl amma-

tory and metabolic responses that are entangled in an 

intricate way, as the cells involved in these key events 

onto genetically originate from a unique primordial organ 

combining both immune and metabolic functions, 

namely the ‘fat body’ [1]. Acute stress-induced hypergly-

caemia [2] is observed in many conditions, such as 

myocardial infarct [3], and shock states, especially septic 

[4], but also traumatic [5], as well as stroke [6]. Th e 

observed concordance between elevated blood glucose 

and mortality raised the question of a causative relation-

ship between hyperglycaemia and prognosis [7].

A landmark monocenter study published in 2001 

suggested that hyperglycaemia has a deleterious impact 

on prognosis in mostly surgical ICU patients, since tight 

glucose control by intravenous insulin dramatically 

improved mortality [8]. Th e large debate following this 

publication questioned the population studied (mainly 

cardiovascular surgical patients), the respective roles of 

glycaemia control versus additional insulin, and the 

impact of the amount of exogenous carbohydrate [9]. In 

2006, the same group published another study performed 

on medical ICU patients testing the same protocol used 

in the fi rst study [10]. In this new study, global mortality 

did not improve with tight control of glycaemia and a 

worsening of the death rate in a subgroup of patients 

staying less than 3 days in the ICU was observed. Th e 

group treated with tight control of glycaemia for more 

than 3 days had a reduction in severity and number of 

organ failures, which surprisingly did not translate to 

outcome benefi t. Subsequent ICU trials published 

recently [11-15] have failed to confi rm a benefi t of tight 

control of glycaemia on prognosis in critically ill patients 

while emphasizing the potential role of hypoglycaemia in 

explaining the divergent results.

Th e recently published meta-analysis by Marik and 

Preiser [9] showed that, overall, tight glycaemic control 
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did not reduce 28-day mortality (odds ratio (OR) 0.95; 

95% confi dence interval (CI), 0.87 to 1.05), the incidence 

of blood stream infections (OR 1.04; 95% CI, 0.93 to 

1.17), or the requirement for renal replacement therapy 

(OR 1.01; 95% CI, 0.89 to 1.13). Th e incidence of hypo-

glycaemia was signifi cantly higher in patients randomized 

to tight glycaemic control (OR 7.7; 95% CI, 6.0 to 9.9; 

P  <  0.001). Metaregression demonstrated a signifi cant 

relationship between the 28-day mortality and the 

proportion of calories provided parenterally (P = 0.005), 

suggesting that the diff erence in outcome between the 

two Leuven Intensive Insulin Th erapy Trials and the 

subsequent trials could be related to the use of 

parenteral nutrition. More importantly, when the two 

Leuven Intensive Insulin Th erapy Trials were excluded 

from the meta-analysis, mortality was lower in the 

control patients (OR 0.90; 95% CI, 0.81 to 0.99; P = 0.04; 

I(2) = 0%).

Th e focus of this review is an integrative description of 

the main pathways and mechanisms involved in the acute 

stress conditions responsible for hyperglycaemia, and the 

description of complex situations involving both the 

stimulation of systemic infl ammation and changes in 

metabolic requirements [16] in an attempt to clarify 

apparent contradictory results.

Metabolic pathways using glucose during acute 

critical conditions

Th e normal response to a stress situation associates the 

activation of central nervous system and neuroendocrine 

axes with increased release of hormones such as cortisol, 

macrophage inhibiting factor (MIF) [17,18], epinephrine 

and norepinephrine, growth hormone, and glucagon. 

Th ese hormones profoundly modify the infl ammatory 

response, especially cytokine release. Stress hormones 

generate globally a systemic pro-infl ammatory profi le 

while anti-infl am mation is predominant at the tissue 

level (for a review, see [19]). Th ese hormones, except for 

MIF, also stimu late, among other mechanisms, gluco neo-

genesis and hepatic glucose production, thus aggravating 

hypergly caemia [20].

Th e pancreatic insulin release in response to blood 

glucose elevation leads to the blocking of hepatic glucose 

production and the stimulation of glucose uptake and 

storage by the liver, muscle and adipose tissue. If this fi rst 

line of regulation fails to control glucose levels, the 

micro environment of cells will contain high levels of 

glucose. To enter the cell, glucose uses transporters that 

allow facilitated diff usion (via concentration gradients) 

through the cytoplasmic membrane. Th ese transporters 

are part of the superfamily of  glucose transporters 

encoded by the GLUT genes; there are several isoforms, 

such as GLUT4, and their expression on the cell surface 

is amplifi ed by insulin [21].

After entering the cell, glucose may go through diff er-

ent metabolic pathways in addition to glycolysis, as 

summarized in Figure 1. During the early hours of stress, 

the metabolic stimulation of the cell corresponds to 

increased mitochondrial energy production (ATP) with 

increased O
2
 and glucose consumption [22]. Similarly, 

during cell proliferation, glucose availability is necessary 

for the induction of glycolytic enzymes, such as hexo-

kinase, pyruvate kinase or lactate dehydrogenase. Th is 

glycolysis favours lactate production despite O
2 

availability [23], and regeneration of NAD+, which is 

required for additional cycles of glycolysis [24].

Recognition and cellular mechanisms of acute conditions

Acute critical conditions cause cellular injuries that are 

known to initiate repair or cell death pathways (Figure 2). 

Th ese integrative mechanisms tend to either contain the 

response at the local level or, on the contrary, spread it by 

recruiting circulating cells and factors for repair.

Damaged cells communicate with innate immune cells 

by releasing intracellular factors named damage-asso-

ciated molecular pattern molecules (DAMPs), such as 

calgranulines [25] and alarmines [26,27] (Figure 2). Together 

with pathogen-associated molecular pattern molecules 

(PAMPs), they activate the cellular expression of Toll-like 

receptors (TLRs) [28]. Accumulation of abnormal 

proteins, which are processed by the proteasome S26 

system in the endoplasmic reticulum [29], as well as 

fl uctuations of nutrients or energy availability, hypoxia, 

viruses and toxins activate a complex transcriptional 

response called the endoplasmic reticulum stress response 

(Figure 2), or the unfolded protein response [30].

Receptors for recognition of infl ammation appear on 

both target cells and infl ammatory cells. Th e alteration of 

the extracellular milieu is transmitted into the cell, 

modifying its functions. In peripheral blood mononuclear 

cells, for instance [31], an increased energy demand 

associated with a simultaneous metabolic failure can 

occur [32,33]. Th e increased permeability of the injured 

mitochondria leads to energy loss and cell death, which 

by itself fuels the infl ammatory process through the 

release of the cell contents.

Injuries due to cellular environment

Hypoxia
Hypoxia induces hypoxia-inducible factors (HIFs), O

2
-

sensing transcription factors that regulate the transcrip-

tion of genes [34] encoding numerous molecules involved 

in vascular reactivity, recruitment of endothelial pro-

genitors, and cytoprotection [35,36]. During hypoxia 

(Figure 3), liver and skeletal muscle glycogenolysis is 

stimulated, increasing glucose availability [37]. Increased 

expression of GLUTs on any cell type [38-40] is mediated 

by the activation of AMP kinase and p38 
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mitogen-activated protein kinase [41,42], with an altered 

cellular redox status [41,43].

While glycolysis is activated by hypoxia, phospho-

fructokinase-1 and lactate dehydrogenase activity is 

stimu lated by increased lactate production [44] 

associated with decreased mitochondrial oxygen con-

sump tion. Th is mechanism, described since 1910 in 

tumour cells as the ‘Warburg  eff ect’ [45], seems to be 

adaptive to the lack of oxygen while maintaining cell 

redox status. A suffi  cient amount of energy is then 

produced but without an increase in reactive oxygen 

species (ROS) production by the mitochondria [46].

Adenosine
Adenosine production mainly results from ATP degrada-

tion during stress when it is released into the extracellular 

space. Adenosine regulates innate and adaptive immune 

functions by interacting with almost every immune cell 

Figure 1. Overview of glucose metabolism in mammalian cells. Glucose is known to be oxidized through cytoplasmic glycolysis to produce 

pyruvate. Pyruvate may be reduced into lactate by lactate dehydrogenase or it may enter the mitochondria to participate in the citric acid cycle and 

the production of ATP by the mitochondrial respiratory chain and ATPase. However, glucose can be involved in other pathways. Glycogen synthesis 

is a major way to store glucose in muscle and liver. In the polyol pathway, aldose reductase reduces toxic aldehyde to inactive alcohol and glucose 

to sorbitol and fructose. In reducing NADPH to NADP+, this enzyme may be deleterious by consuming the essential cofactor needed to regenerate 

reduced glutathione, an essential antioxidant factor in cells. The hexosamine pathway originates from glycolysis at the fructose-6-phosphate level. 

In this pathway, glutamine fructose-6-phosphate amidotransferase is involved in the synthesis of glucosamine-6-phosphate, which is ultimately 

converted to uridine diphosphate (UDP)-N-acetyl-glucosamine. This glucosamine is able to activate transcription factors such as Sp-1 and to 

induce the production of pro-infl ammatory cytokines. Diacylglycerol, which activates isoforms of protein kinase C (PKC), may be produced from 

dihydroxyacetone phosphate. The PKC activation can induce several pro-infl ammatory patterns, such as activation of the transcription factor NF-κB, 

and the production of NADPH oxidase or pro-infl ammatory cytokines. The pentose phosphate pathway may use glucose-6-phosphate to produce 

pentoses for nucleic acid production. This pathway is also able to produce NADPH for use in lipid, nitric oxide and reduced glutathione production, 

and also the synthesis of reactive oxygen species by NADPH oxidase. Advanced glycation end product (AGE) synthesis is linked to high intracellular 

glucose concentrations. AGEs can induce cell dysfunction by modifying cell proteins, and extracellular matrix proteins, which changes signalling 

between the matrix and the cell, or by activating receptors for advanced glycation end products (RAGEs), which induce the production of the 

transcription factors NF-κB and TNF-α or other pro-infl ammatory molecules. GLUT, glucose transporter.
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[47]. It inhibits antigen presentation, pro-infl ammatory 

cytokine production and immune cell proliferation, and 

participates in tissue repair and remodelling. Adenosine 

induces increased intracellular cAMP, which stimulates 

protein kinase (PK)A, which in turn activates the trans-

cription factor CREB (cAMP response element-binding), 

thus linking the infl ammatory response to alterations of 

glucose metabolism [48].

Oxidative stress
Oxidative stress produces ROS, which alter normal cell 

function. ROS are permanently released at a low rate at 

the cytoplasmic membrane (NADPH oxidase, myelo-

peroxidase, cyclooxygenase) and in the cytoplasm (heme 

oxygenase, xanthine oxidase), and also within the mito-

chondria. When activated, phagocytic cells display a 

specifi c response called the ‘respiratory burst’, which is an 

acute overproduction of ROS by the activation of the 

NADPH oxidase Nox 2. Oxidative stress may indirectly 

modify glucose metabolism since it induces DNA altera-

tions that activate the nuclear enzyme poly-ADP-ribose 

polymerase 1 (PARP-1). Th is activation consumes NAD+ 

and depletes its intracellular stores, which in turn 

hampers glycolysis and ATP production, in parallel with 

altered cell functions [49]. A transient low level of 

oxidative stress with redox alterations stimulates glucose 

uptake via insulin-independent GLUT transporters 

mediated by the AMP kinase pathway [50,51].

Figure 2. Integration of stress-signalling mechanisms. Damaged or dysfunctioning cells communicate with innate immune cells by releasing 

intracellular factors named damage-associated molecular pattern molecules (DAMPs). During cell death, these molecules, such as calgranulines 

from the protein S100 A superfamily or alarmines such as the nuclear protein high-mobility group box 1 (HMGB1), are released into the extracellular 

space to activate the immune system. These molecules associate with pathogen-associated molecular pattern molecules (PAMPs) from destroyed 

pathogens to activate cellular expression of Toll-like receptors (TLRs) of the pattern recognition receptor (PRR) superfamily. Some of these 

receptors, specifi cally TLR2, 4 and 9, recognize multiple DAMPS released during stress and cell death. Proteins with abnormal conformation are 

processed by the proteasome S26 system in the endoplasmic reticulum, where protein kinase R-like endoplasmic reticulum kinase (PERK)-type 

kinases are activated; these pathways depend on Ire1 (which requires inositol) and nuclear factors, such as NF-κB and Nrf2 (NF-E2 related factor). 

Nrf2 controls the expression of genes encoding enzymes that remove reactive oxygen species (ROS), including heme oxygenase 1 (HO-1) and 

glutathione S-transferase (GST). PERK-dependent phosphorylation of Nrf2 thus coordinates a transcriptional program connecting oxidative stress 

and endoplasmic reticulum stress. Activation of the transcription factor CREB-H can be achieved through this endoplasmic reticulum stress; CREB-H 

is responsible for the acute infl ammatory response in the liver with acute phase protein synthesis. Adapted from [1]. GLUT, glucose transporter; HIF, 

hypoxia-inducible factor; HO, heme oxygenase; IKK, IκB kinase; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; NOS, nitric oxide synthase; PKC, 

protein kinase C; RAGE, receptors for advanced glycation end products; ssRNA, single-stranded RNA.
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Sepsis, an integrative condition

Sepsis corresponds to a systemic infl ammation related to 

the abnormal presence of bacterial antigens and involves 

diff erent mechanisms such as hypoxia and oxidative 

stress. At the early phase, inhibition of glycogen synthesis 

results in increased global glucose availability and 

increased cellular uptake [52-54]. Glucose uptake appears 

to be most increased in organs containing a vast 

population of phagocytic cells (liver, spleen, gut, lung) 

[55-57]. In rats injected with endotoxin or TNF-α, 

insulin-independent glucose uptake is increased in liver 

non-parenchymal cells (Küpff er cells, endothelial cells) 

[58], as observed in circulating immune cells, including 

polymorphonuclear leukocytes [59,60], lymphocytes, 

monocytes and macrophages [61-63]. Skeletal muscle 

displays only a limited increase in glucose uptake, probably 

because of the development of insulin resistance.

Sepsis also modifi es cytoplasmic glycolysis at the trans-

criptional level. In healthy volunteers receiving intra-

venous endotoxin, there was an early under-expression of 

genes encoding metabolic enzymes [64]. In particular, 

the key enzymes of glycolysis and those of the 

Figure 3. Role of hypoxia in cell metabolic reprogramming. Hypoxia-inducible factors (HIFs), O
2
-sensing transcription factors, regulate the 

transcription of genes encoding Heme-oxygenase-1 (HO-1), erythropoietin (EPO), and numerous molecules involved in vascular reactivity (such 

as nitric oxide synthase (NOS)), recruitment of endothelial progenitors, and cytoprotection through angiogenic growth factors such as vascular 

endothelial growth factor (VEGF). During hypoxia, glycogenolysis is stimulated, increasing glucose availability. An increase in glucose transporter 

(GLUT) expression enables augmented glucose uptake. This overexpression of GLUTs is mediated by the activation of AMP kinase (AMPK) and p38 

mitogen-activated kinase. Stimulation of AMPK results from a decreased cytoplasmic ATP/AMP ratio together with altered cellular redox status. 

Phosphofructokinase-1 and lactate dehydrogenase activity is stimulated by increased lactate production. HIF decreases mitochondrial oxygen 

consumption and induces the expression of pyruvate dehydrogenase kinase, the main inhibitor of pyruvate dehydrogenase and of the entry of 

acetylCoA into mitochondria. Adapted from [36]. OXPHOS, oxidative phosphorylation; TGF, transforming growth factor.
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mito chon drial respiratory chain (MRC) were transiently 

under-expressed. In the diaphragm of septic rats, 

transcription, synthesis and activity of the constituents of 

the MRC, as well as of phosphofructokinase-1, a key-

enzyme of glycolysis, are reduced [65]. In muscle of 

septic rats, the activity of pyruvate dehydrogenase is 

reduced, with a simultaneous increase in the activity of 

its inhibitor, pyruvate dehydrogenase kinase. Th e net 

result of these modifi cations is a reduction in pyruvate 

entering the mitochondria while the conversion of 

pyruvate to lactate is promoted [66].

In septic shock patients, increased use of glucose and 

increased lactate production was observed under aerobic 

conditions [67]. A microdialysis study of quadriceps 

muscles showed lactate overproduction during septic 

shock resulting form exaggerated aerobic glycolysis 

through Na/K-ATPase stimulation. To maintain cell 

func tions, stimulation of glycolysis was shown to adap-

tively compensate for the metabolic rate increase [68]. 

Elevated circulating epinephrine stimulates Na/K-ATPase, 

which promotes lactate hyperproduction without any 

oxygen debt [69].

Mitochondrial dysfunction during sepsis [70] involves 

alterations in the structure [71] and function of the MRC, 

including impairment of key enzymes of electron 

transport and ATP synthesis [72,73] and mitochondrial 

biogenesis [74]. Th ese results were also found with 

monocytes [75] and skeletal muscle [76] harvested from 

septic shock patients. ATP levels in skeletal muscle cells 

were main tained despite mitochondrial ultrastructural 

alterations [76]. Th is mitochondrial dysfunction results 

from plasmatic factors that promote uncoupled MRC 

oxygen consumption [77] that correlates with sepsis-

induced modifi cations of the immune phenotype and is 

associated with increased mitochondrial permeability [78].

In summary, glucose metabolism alterations in acute 

critical conditions can be viewed as a ‘redistribution of 

glucose consumption away from mitochondrial oxidative 

phosphorylation’ towards other metabolic pathways, 

such as lactate production. Th is re-channelling does not 

seem to aff ect energy supply to the cells. Th is may result 

from decreased ATP consumption by the cells, which in 

turn lose some of their characteristics, indicating 

metabolic failure [79].

Why does glycaemia fi nally increase during acute 

injury?

Stress-induced hyperglycaemia results from the com-

bined eff ects of increased counter-regulatory hormones 

that stimulate glucose production and reduced uptake 

associated with insulin resistance, that is, decreased 

insulin activity. Th ere is also inadequate pancreatic 

insulin release with regard to glycaemia (or adaptive 

‘pancreas tolerance’). Insulin release during stress is 

decreased mainly through the stimulation of α-adrenergic 

pancreatic receptors [20]. Pro-infl ammatory cytokines 

may directly inhibit insulin release by β pancreatic cells 

[80]. A new glucose balance results, allowing a higher 

blood ‘glucose pressure’, which aff ects tissues diff erently 

depending on whether they are insulin-dependent or not.

Glucose availability also relies on delivery to cells, 

analogous to oxygen diff usion. For glucose to arrive at a 

cell with reduced blood fl ow (ischemia, sepsis), it must 

move from the blood stream across the interstitial space. 

Glucose movement is dependent entirely on a concen-

tration gradient, and for adequate delivery to occur 

across an increased distance, the concentration at the 

origin (blood) must be greater. Th erefore, in the face of 

reduced or redistributed blood fl ow, hyperglycaemia is 

adaptive.

Development of insulin resistance

Insulin resistance (IR) is a reduction in the direct eff ect of 

insulin on its signalling process leading to metabolic 

consequences [81], very similar to type 2 diabetes, and is 

commonly observed during sepsis [82].

Insulin acts mainly on the liver, muscle and fat (meta-

bolic eff ects), but it also targets many cellular subtypes to 

stimulate essentially protein and DNA synthesis as well 

as apoptosis (mitogenic eff ects). Hepatic IR involves 

increased hepatic glucose production (gluconeogenesis) 

together with decreased glycogen synthesis. During 

sepsis, however, gluconeogenesis can be limited by inhi-

bi tion of important enzymes [83,84]. Muscle IR corres-

ponds to decreased glycogen deposition and glucose 

uptake linked to decreased expression of GLUT4, while a 

transient defect in insulin signalling has also been 

described [85]. IR in adipocytes leads to inhibition of 

lipogenesis and activation of lipolysis.

The main mediators
Pro-infl ammatory cytokines (IL-6, TNF-α), as well as 

endotoxins via TLR4, participate in the development of 

IR by stimulating hepatic glucose production [86] and 

altering insulin signalling [87]. Th ese cytokines activate 

numerous kinases that inhibit insulin signal transduction 

[88-91]. TNF-α has been shown to induce the expression 

of SOCS-3 (Suppressor of cytokine signalling-3), which 

specifi cally inhibits insulin receptor phosphorylation [92].

MIF is not only produced by various immune cells [93] 

and the anterior pituitary gland, but also by islet β cells, 

where it positively regulates insulin secretion [94]. 

During infl ammation in skeletal muscle, locally produced 

MIF stimulates glucose use and lactate production [95]. 

In endotoxemic mice genetically defi cient in MIF, glucose 

metabolism is almost normalized when compared to 

wild-type mice [96]. Increased circulating cortisol parti-

ci pates in the maintenance of blood glucose not only by 
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increasing its production or decreasing its utilization, but 

also by directly inhibiting insulin secretion by ß cells [97].

Endogenous catecholamines are also involved in the 

alteration of glucose metabolism during endotoxaemia 

[98], especially in the liver [99]. Exogenous epinephrine 

metabolic eff ects on glucose turnover were, however, 

attenuated in endotoxic rats when compared to controls 

[100].

Role of exogenous glucose supply and induced 
hyperglycaemia
Glucose acts not only as an energetic substrate but also as 

a signalling molecule of the cellular environment, as 

shown in diabetes with chronic hyperglycaemia. Stress-

induced acute hyperglycaemia has been less studied up to 

now as it has been considered an adaptive response. 

Some concepts from chronic hyperglycaemia may, how-

ever, be used in acute conditions. Intravenous adminis-

tration of exogenous glucose yielded similar glycaemia in 

control and septic animals despite higher insulin levels in 

the septic group [101]. Hepatic glycogen deposition was 

observed only when glucose was infused via the portal 

vein [31,102].

Glucose-controlled genomic modifi cations

In fasted animals, increased circulating glucagon induces 

a gluconeogenic program by activating the nuclear trans-

ription factor CREB through a molecule named Crtc2 

(CREB regulated transcription coactivator 2) or TORC 2 

(Transducer of regulated CREB activity 2) [103,104]. Th e 

expression rate of gluconeogenic enzymes is thus 

increased, especially for glucose-6-phosphatase.

Re-feeding in turn increases insulin levels, which 

inhibits hepatic glucose production partly by ubiquitin-

dependent destruction of Crtc2 [105]. During sustained 

hyperglycaemia, the hexosamine pathway can be acti-

vated [106]. In hepatocytes, Crtc2 is then O-glycosylated 

on a serine residue instead of being phosphorylated. It 

can thus migrate into the nucleus to activate CREB and 

the gluconeogenic program, contributing to maintain 

hyperglycaemia [107]. Th is has been described as the 

‘sweet conundrum’ [105]. Regulation of this pathway 

during acute injury remains to be proven.

Hyperglycaemia and the infl ammatory response

In diabetics, glucose channelling through alternative 

glycolytic pathways seems to depend on MRC activity 

[106,108]. Th e accumulation of energy substrates induced 

by isolated hyperglycaemia without a concomitant 

increase in energy demand may enhance the fl ux of 

carbon hydrates to the mitochondria with increased 

activity of the MRC and proton driving force. Once the 

activity of ATPase is saturated, intermediate radicals 

from the MRC will accumulate and may react with the 

surrounding available O
2
 to produce ROS [109], as shown 

in bovine endothelial cells. When inhibiting this radical 

production, the activity of alternative glycolytic pathways 

is decreased as well as the expression of transcription 

factor NF-κB [110]. Inhibition of glyceraldehyde-3-phos-

phate dehydrogenase, an enzyme involved in cytoplasmic 

glycolysis, has also been observed. Metabolites accumu-

late upstream of this enzyme and are funnelled towards 

alternative pathways (Figure 1). Polymers of ADP-ribose, 

produced by nuclear PARP to repair DNA altered by 

mitochondrial ROS, may be involved in this inhibition. 

PARP, by migrating into the cytosol, may be a key to 

glucose toxicity [111]. Th ere is still a lack of evidence to 

fully extrapolate these theories to explain mitochondrial 

dysfunction and organ failure observed during stress-

induced hyperglycaemia.

Glucose also acts as a pro-infl ammatory molecule 

[81,112]. Glucose ingestion in healthy volunteers rapidly 

increases the activity of NF-κB [113] and the production 

of mRNA for TNF-α [114]. Under the same conditions, 

acute hyperglycaemia increased the activity of the trans-

cription factors AP-1 (Activator protein-1) and EGR-1 

(Early growth response-1), which in turn activate the 

production of matrix metalloproteinase-2 (MMP-2) by 

monocytes, an enzyme that facilitates the diff usion of 

infl am mation by hydrolysing extracellular matrix. Pro-

duc tion of tissue factor, a prothrombotic and proaggre-

gant molecule [115], is increased, as is production of 

cellular adhesion molecules [116]. Acute hyperglycaemia 

induced in healthy volunteers by octreotid, an inhibitor 

of insulin release, leads to a rapid and transient secretion 

of pro infl ammatory cytokines (IL-6, TNFα, IL-8). Th is 

eff ect is amplifi ed in insulin-resistant subjects and 

blunted with antiradical treatment [117].

Glucose-cytokine interactions
In vitro, an increased release of IL-1ß has been measured 

in the culture medium of human monocytes exposed to 

hyperglycaemic conditions after endotoxin stimulation 

[118]. In our model of endotoxaemia [102], glucose 

supply interfered with haemodynamic, metabolic and 

infl am matory responses, with a dramatic increase in 

circulating TNF-α when intraportal glucose was adminis-

tered. Fasting on the other hand seemed to attenuate the 

response to endotoxin.

In liver transplant patients, glucose feeding during the 

early postoperative period induced major haemodynamic 

modifi cations within the graft, where the immuno-

infl ammatory insult occurs [119], including almost halted 

arterial hepatic infl ow. Th is vasoconstriction was speci-

fi cally related to glucose since fructose, amino acids and 

fatty acids did not provoke this eff ect. One tempting 

hypothesis for this eff ect involves increased production 

of ROS, which are well known to vasoconstrict arteries.
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Glucose and ROS production
Nutrients, and especially glucose, are able to stimulate 

oxidative stress and infl ammatory responses [106]. Th e 

body thus needs to regulate nutrient excesses in order to 

maintain metabolic homeostasis. STAMP2 (Six-trans-

membrane protein of prostate 2) has recently been 

detected in adipose tissue, a key organ in the management 

of nutrient excesses, and is also expressed  in the heart, 

liver, lung and platelets [120]. In STAMP2 genetically 

defi cient mice, the eff ects of insulin on liver, muscle and 

adipose tissue are altered, all three being essential organs 

for glucose homeostasis. STAMP2 is a metalloreductase 

involved in iron handling, which may infl uence ROS 

production [121]. Ingestion of glucose in healthy volun-

teers led to increased production of ROS in circulating 

monocytes and polymorphonuclear leukocytes. Th is was 

associated with the rapidly increased synthesis of 

NADPH oxidase subunits [122].

Th ese data suggest that glucose induces profound 

modi fi  cations of the monocyte pro-infl ammatory res-

ponse. In peripheral blood mononuclear cells harvested 

from healthy volunteers and septic patients [77,123], 

increasing extracellular glucose increased glucose uptake. 

Subsequent stimulation of these cells by various agonists 

increased ROS production via NADPH oxidase in both 

the healthy volunteers and the septic patients. Th e link 

between ROS and intracellular glucose levels could be 

the increased production of NADPH via the pentose 

phosphate cycle [123] (Figure 4). More studies are needed 

to confi rm these multifaceted eff ects and to confi rm that 

such a coordinated regulation between nutrient availa-

bility and the intensity of the infl ammatory response is 

also at play during acute insults. To cite Leverve, ‘it 

appears that glucose obviously plays a very subtle role in 

oxidant cellular signaling. It can either increase or 

decrease ROS production and can either increase or 

decrease the antioxidant defense […]. Th erefore it is not 

surprising that any change in blood glucose must be 

considered as a complex event, and taking care of gly-

cemia and redox homeostasis will be probably central in 

the management of ICU patients in the next years’ [124].

Recent in vitro data suggest that giving glucose boluses 

after hypoglycaemia may trigger neuronal death due to 

ROS overproduction [125]. In healthy volunteers, hyper-

glycaemic spikes induced increased pro-infl ammatory 

cytokine levels that were blunted by antioxidant pre-

treatment [117]. Th is introduces the concept of glucose 

variability, which by itself seems to be deleterious with 

regard to outcome in critically ill patients [126,127].

Future prospects

Many questions regarding glycaemia remain to be solved 

for daily critical care practice. How should we achieve 

gly caemic control: should we take into account 

nutritional support, especially parenteral nutrition [9]? 

Should we control the physiological response to an 

induced hyper glycaemia or should we control the 

endogenous stress-induced hyperglycaemia that may be 

adaptive in the absence of exogenous glucose intake? Is 

there a place for new therapeutics such as incretins [128]? 

Does endogenous hyperglycaemia have a similar impact 

as hyperglycaemia induced by nutritional support? Th ese 

questions in turn prompt investigation of the role of 

glucose deprivation induced by fasting with regard to 

normoglycemia achieved by insulin therapy. Similarly, 

the consequences of spontaneous versus insulin-induced 

hypoglycaemia remain to be investigated. Answers to 

these questions will probably help to solve the confl ict 

between supporters and opponents of tight glycaemia 

control in the ICU. Th is discussion is in accordance with 

the concerns raised by several authors about early 

initiation of parenteral nutrition in acute critical patients 

[129,130], as supported by the results of two large 

multicentre studies, Nice-Sugar [14] and Glucontrol [15].

Conclusion

Glucose metabolism is profoundly altered during acute 

conditions, from its uptake to the induction of complex 

programs of gene expression [14]. Th e increased glucose 

availability in cells is not necessarily used to produce ATP 

by mitochondria. Glucose seems able to activate pro-

infl ammatory metabolic pathways. While chronic expo-

sure to these end products seems deleterious (diabetes), 

their actual roles during acute conditions need to be 

further elucidated. Early stress-induced hypergly caemia 

has been described as an adaptive response that could in 

turn sustain an adaptive infl ammatory response (host 

Figure 4. Glucose and reactive oxygen species production 

during sepsis: hypothesis. In peripheral blood mononuclear cells 

harvested from healthy volunteers and septic patients, increasing 

extracellular glucose increased glucose uptake. Subsequent 

stimulation of these cells by various agonists, such as PMA (phorbol 

12-myristate 13-acetate), a protein kinase C (PKC) activator, increased 

reactive oxygen species (ROS) production via NADPH oxidase in both 

the healthy volunteers and septic patients. The link between ROS and 

intracellular glucose levels could be increased production of NADPH 

via the pentose phosphate pathway.
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defence, wound healing, and so on). Glucose intake-

induced hyper glycaemia may, however, lead to 

maladjusted and disproportionate infl ammation that 

should be avoided. How then should this subsequent 

hyper glycaemia be prevented: should we limit glucose 

supply at the early phase of infl ammation?

Si quis febricitanti cibum det, convalescenti quidem, 

robur : ægrotanti verò, morbus fi t

Hippocrates [131]

(Food given to those who are convalescent from fever, 

increases strength; but if there be still disease, increases 

the disease)
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