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Abstract

Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI),
caused mainly by sepsis, than in pulmonary ALl Nevertheless, the maintenance of adequate volemic status is
particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we
investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and
hypervolemia in a model of extrapulmonary lung injury induced by sepsis.

Methods: ALl was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were
anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia
induced by blood drainage at mean arterial pressure (MAP)=70 mmHg; 2) normovolemia (MAP=100 mmHq), and 3)
hypervolemia with colloid administration to achieve a MAP=130 mmHg. In each group, animals were further
randomized to be recruited (CPAP = 40 cm H,O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective
mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est,L), histology (light and
electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-13, caspase-3, type Il procollagen (PCIll),
intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung
tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed.

Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est,L, and
was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions;
and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved
oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung
injury and led to higher inflammatory and fibrogenetic responses.

Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALl model
hypervolemia promoted and potentiated lung injury compared to hypo- and normovolemia.

Introduction

Recent studies have demonstrated that low tidal volume
(V1 = 6 ml/kg) significantly reduces morbidity and mor-
tality in patients with acute lung injury/acute respiratory
distress syndrome (ALI/ARDS) [1]. Such strategy
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requires the use of moderate-to-high positive end-expira-
tory pressure (PEEP) and may be combined with recruit-
ment maneuvers (RMs) [2,3]. Although the use of RMs
and high PEEP is not routinely recommended, they seem
effective at improving oxygenation with minor adverse
effects and should be considered for use on an individual-
ized basis in patients with ALI/ARDS who have life-
threatening hypoxemia [4]. Additionally, RMs associated
with higher PEEP have been shown to reduce hypoxemia-
related deaths and can be used as rescue therapies in ALI/
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ARDS patients [3]. However, RMs may also exacerbate
epithelial [5-9] and endothelial [10] damage, increasing
alveolar capillary permeability [8]. Furthermore, transient
increase in intrathoracic pressure during RMs may lead
to hemodynamic instability [11] and distal organ injury
[12]. Despite these potential deleterious effects, RMs
have been recognized as effective for improving oxygen-
ation, at least transiently [4] and even reducing the need
for rescue therapies in severe hypoxemia [3]. To minimize
hemodynamic instability associated with RMs, the use of
fluids has been described [13]. However, fluid manage-
ment itself may have an impact on lung and distal organ
injury in ALI/ARDS [14,15]. Although fluid restriction
may cause distal organ damage [14], hypervolemia has
been associated with increased lung injury [16,17].

RMs seem to be more effective in extrapulmonary ALI/
ARDS [9], caused mainly by sepsis [18], than in pulmo-
nary ALI/ARDS. Nevertheless, the maintenance of ade-
quate volemic status is particularly challenging in sepsis.
As the interaction between volemic status and RMs is not
well established, we hypothesized that volemic status
would potentiate possible deleterious effects of RMs on
lung and distal organs in a model of extrapulmonary lung
injury induced by sepsis. Therefore, we compared the
effects of RMs in the presence of hypovolemia, normov-
olemia, and hypervolemia on arterial blood gases, static
lung elastance (Est,L), histology (light and electron
microscopy), lung wet-to-dry (W/D) ratio, IL-6, IL-1,
caspase-3, type III procollagen (PCIII), intercellular adhe-
sion molecule 1 (ICAM-1), and vascular cell adhesion
molecule 1 (VCAM-1) mRNA expressions in lung tissue,
as well as lung and distal organ epithelial cell apoptosis in
an experimental model of sepsis-induced ALIL.

Materials and methods
Animal preparation and experimental protocol
This study was approved by the Ethics Committee of the
Health Sciences Center, Federal University of Rio de
Janeiro. All animals received humane care in compliance
with the Principles of Laboratory Animal Care formu-
lated by the National Society for Medical Research and
the Guide for the Care and Use of Laboratory Animals
prepared by the National Academy of Sciences, USA.
Sixty-six adult male Wistar rats (270 to 300 g) were kept
under specific pathogen-free conditions in the animal
care facility at the Laboratory of Pulmonary Investiga-
tion, Federal University of Rio de Janeiro. In 36 rats, Est,L,
histology, and molecular biology were analyzed. The
remaining 30 rats were used to evaluate lung W/D ratio.
Animals were fasted for 16 hours before the surgical pro-
cedure. Following that, sepsis was induced by cecal liga-
tion and puncture (CLP) as described in previous studies
[19]. Briefly, animals were anesthetized with sevoflurane
and a midline laparotomy (2 c¢m incision) was performed.
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The cecum was carefully isolated to avoid damage to
blood vessels, and a 3.0 cotton ligature was placed below
the ileocecal valve to prevent bowel obstruction. Finally,
the cecum was punctured twice with an 18 gauge needle
[20] and animals recovered from anesthesia. Soon after
surgery, each rat received a subcutaneous injection of 1
ml of warm (37°C) normal saline with tramadol hydro-
chloride (20 pg/g body weight).

Figure 1 depicts the time-course of interventions.
Forty-eight hours after surgery, rats were sedated (diaze-
pam 5 mg intraperitoneally), anesthetized (thiopental
sodium 20 mg/kg intraperitoneally), tracheotomized, and
a polyethylene catheter (PE-10; SCIREQ, Montreal, Can-
ada) was introduced into the carotid artery for blood
sampling and monitoring of mean arterial pressure
(MAP). The animals were then paralyzed (vecuronium
bromide 2 mg/kg, intravenously) and mechanically venti-
lated (Servo i, MAQUET, Switzerland) with the following
parameters: V. = 6 ml/kg, respiratory rate (RR) = 80
breaths/min, inspiratory to expiratory ratio = 1:2, fraction
of inspired oxygen (FiO,) = 1.0, and PEEP equal to 0
c¢cmH,O (zero end-expiratory pressure (ZEEP)). Blood
(300 pl) was drawn into a heparinized syringe for mea-
surement of arterial oxygen partial pressure (PaO,), arte-
rial carbon dioxide partial pressure (PaCO,) and arterial
pH (pHa) (i-STAT, Abbott Laboratories, North Chicago,
IL, USA) (BASELINE-ZEEP). Afterwards, mechanical
ventilation was set according to the following parameters:
V1 =6 ml/kg, RR = 80 bpm, PEEP = 5 cmH,0, and FiO, =
0.3 (Figure 1). Est,L was then measured (BASELINE) and
the animals were randomly assigned to one of the follow-
ing groups: 1) hypovolemia (HYPO); 2) normovolemia
(NORMO), and 3) hypervolemia (HYPER). Hypovolemia
was induced by blood drainage in order to achieve a MAP
of about 70 mmHg. Normovolemia was maintained at a
MAP of about 100 mmHg. Hypervolemia was obtained
with colloid administration (Gelafundin’; B. Braun, Mel-
sungen, Germany) at an infusion rate of 2 ml/kg/min to
achieve a MAP of about 130 mmHg. Following that, the
colloid infusion rate was reduced to 1 ml/kg/min in order
to maintain a constant MAP. Depth of anesthesia was
similar in all animals and a comparable amount of seda-
tive and anesthetic drugs were given in all groups. After
achieving volemic status, animals were further random-
ized to be recruited, with a single RM consisting of con-
tinuous positive airway pressure (CPAP) of 40 cmH,O for
40 seconds (RM-CPAP), or not (NR) (n = 6 per group;
Figure 1). After one hour of mechanical ventilation
(END), Est,L was measured. FiO, was then increased to
1.0, and after five minutes arterial blood gases were ana-
lyzed (END). Finally, the animals were euthanized and
lungs, kidney, liver and small intestine were prepared for
histology. IL-6, IL-1B, caspase-3, and PCIII mRNA
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Figure 1 Timeline representation of the experimental protocol. CLP, cecal ligation and puncture; I:E, inspiratory-to-expiratory ratio; PEEP, positive
end-expiratory pressure; RR, respiratory rate; RT-PCR, real time-polymerase chain reaction; Vy, tidal volume; W/D ratio, lung wet-to-dry ratio; ZEEP, zero

expressions were measured in lung tissue. The experi-
ments took no longer than 80 minutes.

Respiratory parameters

Airflow, airway and esophageal pressures were measured
[9,21]. Changes in esophageal pressure, which reflect
chest wall pressure, were measured with a water-filled
catheter (PE205) with side holes at the tip connected to a
SCIREQ differential pressure transducer (SC-24, Mon-
treal, Canada). Before animals were paralyzed, the cathe-
ter was passed into the stomach, slowly returned into the
esophagus, and its proper positioning was assessed using
the 'occlusion test' [22,23]. Transpulmonary pressure was
calculated by the difference between airway and esopha-
geal pressures [9]. All signals were filtered (100 Hz),
amplified in a four-channel conditioner (SC-24, SCIREQ,
Montreal, Quebec, Canada), sampled at 200 Hz with a
12-bit analogue-to-digital converter (DT2801A, Data
Translation, Marlboro, MA, USA) and continuously
recorded throughout the experiment by a personal com-
puter. To calculate Est,L, airways were occluded at end-
inspiration until a transpulmonary plateau pressure was
reached (at the end of five seconds), after which this value

was divided by V1 [9,21]. All data were analyzed using
ANADAT data analysis software (RHT-InfoData, Inc.,
Montreal, Quebec, Canada).

Echocardiography

Volemic status and cardiac function were assessed by an
echocardiograph equipped with a 10 MHz mechanical
transducer (Esaote model, CarisPlus, Firenze, Italy).
Images were obtained from the subcostal and parasternal
views. Short-axis B-dimensional views of the left ventricle
were acquired at the level of the papillary muscles to
obtain the M-mode image. The inferior vena cava (IVC)
and right atrium (RA) diameters were measured from the
subcostal approach. Cardiac output, stroke volume, and
ejection fraction were obtained from the B-mode accord-
ing to Simpson's method [24].

Light microscopy

A laparotomy was performed immediately after determi-
nation of lung mechanics and heparin (1,000 IU) was
intravenously injected in the vena cava. The trachea was
clamped at end-expiration (PEEP = 5 ¢mH,0), and the
abdominal aorta and vena cava were sectioned, yielding a
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massive hemorrhage that quickly killed the animals. Right
lung, kidney, liver, and small intestine were then
removed, fixed in 3% buffered formaldehyde and paraf-
fin-embedded. Four-pum-thick slices were cut and stained
with H&E.

Lung morphometric analysis was performed using an
integrating eyepiece with a coherent system consisting of
a grid with 100 points and 50 lines (known length) cou-
pled to a conventional light microscope (Olympus BX51,
Olympus Latin America-Inc., Sdo Paulo, Brazil). The vol-
ume fraction of the lung occupied by collapsed alveoli or
normal pulmonary areas or hyperinflated structures
(alveolar ducts, alveolar sacs, or alveoli, all wider than 120
um) was determined by the point-counting technique
[25] at a magnification of x 200 across 10 random, non-
coincident microscopic fields [26].

Transmission electron microscopy

Three slices measuring 2 x 2 x 2 mm were cut from three
different segments of the left lung and fixed (2.5% glutar-
aldehyde and phosphate buffer 0.1 M (pH = 7.4)) for elec-
tron microscopy (JEOL 1010 Transmission Electron
Microscope, Tokyo, Japan) analysis. For each electron
microscopy image (15 per animal), the following struc-
tural damages were analyzed: a) alveolar capillary mem-
brane, b) type II epithelial cells, and c) endothelial cells.
Pathologic findings were graded according to a five-point
semi-quantitative severity-based scoring system as: 0 =
normal lung parenchyma, 1 = changes in 1 to 25%, 2 =
changes in 26 to 50%, 3 = changes in 51 to 75%, and 4 =
changes in 76 to 100% of examined tissue [9,21].

Apoptosis assay of lung, kidney, liver and small intestine
villi

Terminal deoxynucleotidyl transferase biotin-dUTP nick
end labeling (TUNEL) staining was used in a blinded
fashion by two pathologists to assay cellular apoptosis.
Apoptotic cells were detected using In Situ Cell Death
Detection Kit, Fluorescin (Boehringer, Mannheim,
Frankfurt, Germany). The nuclei without DNA fragmen-
tation stained blue as a result of counterstaining with
hematoxylin [20]. Ten fields per section from the regions
with apoptotic cells were examined at a magnification of
x 400. A five-point semi-quantitative severity-based scor-
ing system was used to assess the degree of apoptosis,
graded as: 0 = normal lung parenchyma; 1 = 1-25%; 2 = 26
to 50%; 3 = 51 to 75%; and 4 = 76 to 100% of examined tis-
sue.

IL-6, IL-1B, caspase-3, PCIll, VCAM-1, and ICAM-1 mRNA
expressions

Quantitative real-time RT-PCR was performed to mea-
sure the expression of IL-6, IL-1PB, caspase-3, PCIII,
VCAM, and ICAM genes. Central slices of left lung were
cut, collected in cryotubes, quick-frozen by immersion in
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liquid nitrogen and stored at -80°C. Total RNA was
extracted from the frozen tissues using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to manufac-
turer's recommendations. RNA concentration was mea-
sured by spectrophotometry in Nanodrop™ ND-1000
(Thermo Fisher Scientific, Wilmington, DE, USA). First-
strand cDNA was synthesized from total RNA using M-
MLV Reverse Transcriptase Kit (Invitrogen, Carlsbad,
CA, USA). PCR primers for target gene were purchased
(Invitrogen, Carlsbad, CA, USA). The following primers
were used: IL-1p (sense 5-CTA TGT CTT GCC CGT
GGA G-3, and antisense 5'-CAT CAT CCC ACG AGT
CAC A-3"); IL- 6 (sense 5'-CTC CGC AAG AGA CTT
CCA G-3' and antisense 5'-CTC CTC TCC GGA CTT
GTG A-3"); PCIII (sense 5-ACC TGG ACC ACA AGG
ACA C-3' and antisense 5-TGG ACC CAT TTC ACC
TTT C-3'); caspase-3 (sense 5-GGC CGA CTT CCT
GTA TGC-3' and antisense 5-GCG CAA AGT GAC
TGG ATG-3"); VCAM-1 (sense 5-TGC ACG GTC CCT
AAT GTG TA-3' and antisense 5-TGC CAA TTT CCT
CCC TTA AA-3); ICAM-1 (sense 5-CTT CCG ACT
AGG GTC CTG AA-3'and antisense 5'-CTT CAG AGG
CAG GAA ACA GG-3); and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH; sense 5'-GGT GAA GGT
CGG TGTG AAC- 3' and antisense 5-CGT TGA TGG
CAA CAA TGT C-3'). Relative mRNA levels were mea-
sured with a SYBR green detection system using ABI
7500 Real-Time PCR (Applied Biosystems, Foster City,
CA, USA). All samples were measured in triplicate. The
relative expression of each gene was calculated as a ratio
compared with the reference gene, GAPDH and
expressed as fold change relative to NORMO-NR.

Lung wet-to-dry ratio

W/D ratio was determined in the right lung as previously
described [27]. Briefly, the right lung was separated,
weighed (wet weight) and then dried in a microwave at
low power (200 W) for five minutes. The drying process
was repeated until the difference between the two con-
secutive lung weight measurements was less than 0.002 g.
The last weight measurement represented the dry weight.

Statistical analysis

Normality of data was tested using the Kolmogorov-
Smirnov test with Lilliefors' correction, while the Levene
median test was used to evaluate the homogeneity of
variances. If both conditions were satisfied, one-way anal-
ysis of variance (ANOVA) for repeated measures was
used to compare the time course of MAP, IVC and RA
dimensions. To compare arterial blood gases, Est,L, and
echocardiographic data at BASELINE and after one hour
of mechanical ventilation (END), the paired ¢-test was
used. Lung mechanics (END) and morphometry,
echocardiographic data (END), arterial blood gases
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(END), W/D ratio, and inflammatory and fibrogenic
mediators were analyzed using two-way ANOVA fol-
lowed by Tukey's test. To compare non-parametric data,
two-way ANOVA on ranks followed by Dunn's post-hoc
test was selected. The relations between functional and
morphological data were investigated with the Spearman
correlation test. Parametric data were expressed as mean
+ standard error of the mean, while non-parametric data
were expressed as median (interquartile range). All tests
were performed using the SigmaStat 3.1 statistical soft-
ware package (Jandel Corporation, San Raphael, CA,
USA), and statistical significance was established as P <
0.05.

Results

The present CLP model of sepsis resulted in a survival
rate of approximately 60% at 48 hours. No animals died
during the investigation period.

In the HYPO, NORMO and HYPER groups, MAP was
stabilized at 70 + 10, 100 + 10, and 130 + 10 mmHg,
respectively (Table 1). The smallest RA and IVC diame-
ters were observed in the HYPO and the largest in the
HYPER groups (Table 1). Stroke volume and cardiac out-
put, as well as ejection fraction were similar at BASELINE
in all groups (Table 2). In the HYPER group, stroke vol-
ume, cardiac output, and ejection fraction were increased
compared with the NORMO and HYPO groups, with no
significant changes after RM (Table 2).

Table 3 shows arterial blood gases and lung mechanics
in the three groups. PaO,, PaCO,, and pHa were compa-
rable at BASELINE ZEEP in all groups. At END, PaO,
was lower in HYPER compared with the HYPO and
NORMO groups when RMs were not applied. When
RMs were applied, PaO, was higher in NORMO com-
pared with the HYPER group. In HYPER group, PaO, was
higher in RM-CPAP compared with the NR subgroup,
while no differences in PaO, were found between RM-
CPAP and NR in HYPO and NORMO groups. PaCO,
and pHa did not change significantly in either NR or RM-
CPAP regardless of volemic status. Est,L was similar at
BASELINE in all groups. At END, Est,L was significantly
increased in HYPER compared with HYPO and NORMO
groups when RMs were not applied. Est,L was reduced in
both HYPO and HYPER groups when lungs were
recruited. However, Est,L. did not change in NORMO
group after RMs.

The fraction of alveolar collapse was higher in HYPER
(42%) compared with HYPO (27%) and NORMO (28%)
groups. RMs decreased alveolar collapse independently
of volemic status; nevertheless, alveolar collapse was
more frequent in HYPER (26%) than NORMO (17%) and
HYPO (12%) groups. Hyperinflated areas were not
detected in any group (Figure 2).
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Lung W/D ratio was higher in HYPER than in HYPO
and NORMO groups. Furthermore, lung W/D ratio was
increased in NORMO and HYPER groups after RMs (Fig-
ure 3).

In the NR groups, lung W/D ratio was positively corre-
lated with the fraction area of alveolar collapse (r = 0.906,
P < 0.001) and Est,L (r = 0.695, P < 0.001), and negatively
correlated with PaO, (r = -0.752, P < 0.001). Furthermore,
the fraction area of alveolar collapse was positively corre-
lated with Est,L (r = 0.681, P < 0.001) and negatively cor-
related with PaO, (» = -0.798, P < 0.001). In the RM-CPAP
groups, lung W/D ratio was positively correlated with the
fraction area of alveolar collapse (r = 0.862, P < 0.001) and
Est,L (r = 0.704, P < 0.001), while there was no correlation
with PaO,. In addition, the fraction area of alveolar col-
lapse was positively correlated with Est,L (r = 0.803, P <
0.001), but not with PaO,,.

Figure 4 depicts typical electron microscopy findings in
each group. ALI animals showed injury of cytoplasmic
organelles in type II pneumocytes (PII) and aberrant
lamellar bodies, as well as endothelial cell and neutrophil
apoptosis. Detachment of the alveolar-capillary mem-
brane and endothelial cell injury were more pronounced
in HYPER compared with HYPO and NORMO groups
(Table 4). When RMs were applied, hypervolemia
resulted in increased detachment of the alveolar capillary
membrane, as well as injury of PII and endothelium, com-
pared with normovolemia.

Hypervolemia did not increase apoptosis of lung, kid-
ney, liver, and small intestine villous cells (Table 5). In the
HYPER group, RMs led to increased TUNEL positive
cells (Table 5 and Figure 5), but not of kidney, liver, and
small intestine villous cells.

In NR groups, IL-6, VCAM-1, and ICAM-1 mRNA
expressions were higher in HYPER compared with the
HYPO and NORMO groups. VCAM-1 and ICAM-1
expressions were also higher in HYPO compared with
NORMO, reduced after RMs in HYPO, but augmented in
NORMO group. In HYPER group, VCAM-1 expression
rose after RMs but ICAM-1 remained unaltered. IL-6, IL-
1B, PCIIL, and caspase-3 mRNA expressions increased
after RMs in HYPER group, but not in NORMO and
HYPO groups (Figure 6).

Discussion

In the present study, we examined the effects of RMs in
an experimental sepsis-induced ALI model at different
levels of MAP and volemia. We found that: 1) hyperv-
olemia increased lung W/D ratio and alveolar collapse
leading to an impairment in oxygenation and Est,L. Fur-
thermore, hypervolemia was associated with alveolar and
endothelium damage as well as increased IL-6, VCAM-1
and ICAM-1 mRNA expressions in lung tissue; 2) RMs
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Table 1: Mean arterial pressure and inferior vena cava and right atrium dimensions

BASELINE 5 min 10 min 15 min 20 min 80 min
MAP (mmHg) HYPO NR 1106 1075 77 £ 4* 70 £ 3* 67 £ 3* 62 + 3*
RM-CPAP 1102 97+2 76 + 2% 71 +£1* 65 + 2% 63+ 1%
NORMO NR 104+8 1016 100 + 6** 103 + 6** 100 + 4** 97 + 4**
RM-CPAP 103+2 103+2 100 + 2% 105 + 3% 96 + 3% 95 + 2%
HYPER NR 106 +3 128 + 2% **# 130 £ 2% **# 137 £ 3% **# 131 £ 2% **¢ 126 £ 2% **#
RM-CPAP 103+2 126 + 5*$§ 129 + 4*4§ 128 + 4*$§ 124 + 2*%4§ 117 £ 5%$§
IVC HYPO NR 1.6+0.2 1.5+0.1 1.2+£0.1* 1.0+£0.1* 1.0+0.1* 0.9 £0.0*
(mm)
RM-CPAP 1.6+0.2 1.4+0.1 1.1+£0.1* 09+0.1* 0.8 £ 0.0* 0.7 £0.0*
NORMO NR 1.6 £0.1 1.7+£0.1 1.6+0.1 1.7 £0.0%* 1.7 £0.0%* 1.5+ 0.0%*
RM-CPAP 1.5+0.0 1.5+0.0 14+00 1.6 + 0.0 1.6 £ 0.0 1.4+0.0%
HYPER NR 14+0.0 2.3+ 0.2% **4 2.6 £ 0.1% **4 2.5+ 0.3* **# 2.6 +0.3% **# 2.6 £ 0.1% **¢
RM-CPAP 14+0.0 2.1+0.2* +§ 25+0.1%%8§ 26+0.1%%§ 2.6+0.2*%§ 24 +0.2%%§
RA HYPO NR 40+04 39+0.6 38+04 2.8+0.2* 23+0.3* 2.7 £0.2*
(mm)
RM-CPAP 42+0.1 34+0.1 3.1+0.0% 2.9+0.0% 2.5+0.2% 3.0+ 0.0*
NORMO NR 35+0.0 3.5+0.0 3.7+0.0 3.5+ 0.0%* 3.6+ 0.0** 3.3+ 0.0%*
RM-CPAP 3.6+0.1 35+0.1 3.6+0.0 35+0.0% 3.6+ 0.0 35+0.1%
HYPER NR 39+0.1 48+05 6.1 £ 0.4% **# 6.5 + 0.4% **# 7.1 £0.4% **4 7.4+ 0.0% **#
RM-CPAP 41 +0.1 6.5+ 0.5%+§ 7.2+£0.3*$§ 7.2 £0.3*$§ 7.3+0.3*#§ 7.1 £0.2*4§

Mean arterial pressure (MAP), and inferior vena cava (IVC) and right atrium (RA) dimensions at BASELINE, during the induction of hyper or
hypovolemia (BASELINE until 20 min), and at the end of the experiment (80 min). Animals were randomly assigned to hypovolemia (HYPO),
normovolemia (NORMO) or hypervolemia (HYPER) with recruitment maneuver (RM-CPAP) or not (NR). Values are shown as mean * standard error
of the mean of six rats in each group. *Significantly different from BASELINE (P < 0.05). 1Significantly different from NR (P <0.05). **Significantly
different from HYPO-NR (P < 0.05). £ Significantly different from HYPO-RM-CPAP (P < 0.05). #Significantly different from NORMO-NR (P < 0.05).

§Significantly different from NORMO-RM-CPAP (P < 0.05).

reduced alveolar collapse regardless of volemic status. In
hypervolemic animals, RMs improved oxygenation above
the levels observed with the use of PEEP, but were associ-
ated with increased lung injury and higher inflammatory
and fibrogenic responses; and 3) volemic status associ-
ated or not with RMs had no effects on distal organ
injury.

Methodological aspects

To our knowledge, this is the first study investigating the
combined effects of RMs and volemic status in sepsis-
induced ALIL We used a CLP model of sepsis because it is

reproducible and leads to organ injury that is comparable
with that observed in human surgical sepsis [28,29].
Volemic status was assessed by echocardiography. It
has been shown that echocardiography provides valuable
information on preload and cardiac output [30,31]. An
inspired oxygen fraction of 0.3 was used throughout the
study to minimize possible iatrogenic effects of high
inspiratory oxygen concentration on the lung paren-
chyma [32]. To avoid possible confounding effects of ven-
tilation/perfusion mismatch on the interpretation of the
gas-exchange data, inspiratory oxygen fraction was
increased to 1.0 just before arterial blood sampling [33].
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Table 2: Echocardiographic data
HYPO NORMO HYPER
NR RM-CPAP NR RM-CPAP NR RM-CPAP
Cardiac BASELINE 20+£10 20+£10 20£10 20£10 20+ 10 40 £ 101§
Output (ml.min-1)
END 10+£10 10£10 10+10 20£10 60 £ 10* **# 60 £+ 104§
Stroke volume (ml) BASELINE 0.17 £0.01 0.13+0.01t 0.13£0.01** 0.13 £ 0.01 0.10 £ 0.05** 0.13+£0.01
END 0.10£0.01* 0.10 £ 0.01 0.10 £ 0.01 0.13+£0.01 0.33 £ 0.01**# 0.26 £ 0.01*t48§
Ejection BASELINE 74 £1 733 78+4 74 £4 741 68+7
fraction (%)
END 63 + 4% 65+ 1* 711 73+ 1% 86 + 3* **# 88 + 3*%§

Echocardiographic data measured at BASELINE and after one hour of mechanical ventilation (END). Animals were randomly assigned to
hypovolemia (HYPO), normovolemia (NORMO) or hypervolemia (HYPER) with recruitment maneuver (RM-CPAP) or not (NR). Values are mean +
standard error of the mean of six rats in each group. *Significantly different from BASELINE (P < 0.05). tSignificantly different from NR (P < 0.05).
**Significantly different from HYPO-NR (P < 0.05). #Significantly different from HYPO-RM-CPAP (P < 0.05). #Significantly different from NORMO-
NR (P < 0.05). §Significantly different from NORMO-RM-CPAP (P < 0.05).

All animals underwent protective mechanical ventilation
to minimize possible interactions between conventional
mechanical ventilation, volemic status, and RMs.

The mRNA expressions of IL-6 and IL-1f in lung tissue

pathogenesis of sepsis and ventilator-induced lung injury
(VILI) [34]. Although IL-6 has been implicated in the
triggering process of sepsis and correlates with its sever-
ity [35], IL-1p has been associated with the degree of VILI

were determined due to the role of these markers in the  [32]. On the other hand, mRNA expression of PCIII was

Table 3: Arterial blood gases and static lung elastance

HYPO NORMO HYPER
NR RM-CPAP NR RM-CPAP NR RM-CPAP
PaOo, BASELINE ZEEP 225+ 96 190 £ 38 164 + 40 228+ 114 147 £ 64 212+ 88
(mmHg)
END 466 + 32* 430 £ 69* 485 + 45* 537 £ 40* 231+ 20%*4 380 + 421§
PaCO, (mmHg) BASELINE ZEEP 31+2 30+7 34+4 37+5 35+3 37+7
END 34+6 32+5 28+9 37+3 39+12 35+ 11
pHa BASELINE ZEEP 7.30+0.10 7.23 £0.01 7.27 £0.10 7.25+£0.10 7.24+£0.10 7.22+£0.01
END 7.11+£0.10 7.13+£0.01 7.19+£0.10 7.21+£0.10 7.23+£0.10 7.22+£0.01
Est,L (cmH,0.ml") BASELINE 34+03 3.2+05 3.0+03 3.1+£0.3 33+0.5 33+05
END 3.1+04 1.2 +0.1%*t 26+0.1 25+04% 4.1+ 0.7#% 28+ 0.6t

Arterial oxygen partial pressure (PaO,, mmHg), arterial carbon dioxide partial pressure (PaCO,), and arterial pH (pHa) measured at BASELINE-ZEEP
and after one hour of mechanical ventilation (END). Static lung elastance (Est,L) measured at BASELINE (positive end-expiratory pressure =5
c¢mH,0) and at END. Animals were randomly assigned to hypovolemia (HYPO), normovolemia (NORMO) or hypervolemia (HYPER) with
recruitment maneuver (RM-CPAP) or not (NR). Values are mean + standard error of the mean of six rats in each group. *Significantly different from
BASELINE (P < 0.05). tSignificantly different from NR (P < 0.05). **Significantly different from HYPO-NR (P < 0.05). #Significantly different from
HYPO-RM-CPAP (P < 0.05). #Significantly different from NORMO-NR (P < 0.05). §Significantly different from NORMO-RM-CPAP (P < 0.05).
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Figure 2 Volume fraction of the lung occupied by collapsed alve-
oli (gray) or normal pulmonary areas (white). Animals were ran-
domly assigned to hypovolemia (HYPO), normovolemia (NORMO) or
hypervolemia (HYPER) with recruitment maneuver (RM-CPAP) or not
(NR). All values were computed in 10 random, noncoincident fields per
rat. Values are mean =+ standard error of the mean of six animals in each
group. tSignificantly different from NR (P < 0.05). **Significantly differ-
ent from HYPO-NR (P < 0.05). $Significantly different from HYPO-RM-
CPAP (P < 0.05). #Significantly different from NORMO-NR (P < 0.05).
§Significantly different from NORMO-RM-CPAP (P < 0.05).

determined because it is the first collagen to be remod-
eled in the development/course of lung fibrogenesis [36],
as well as being an early marker of lung parenchyma
remodeling [32,37]. We also measured the levels of
mRNA expression of caspase-3, because it represents a
surrogate parameter for the final step of apoptosis [38].
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Figure 3 Wet-to-dry ratio measured after one hour of mechanical
ventilation. Animals were randomly assigned to hypovolemia (HYPO),
normovolemia (NORMO) or hypervolemia (HYPER) with recruitment
maneuver (RM-CPAP) or not (NR). Values are mean + standard error of
the mean of six rats in each group. tSignificantly different from NR (P <
0.05). **Significantly different from HYPO-NR (P < 0.05). #Significantly
different from HYPO-RM-CPAP (P < 0.05). #Significantly different from
NORMO-NR (P < 0.05). §Significantly different from NORMO-RM-CPAP
(P < 0.05).
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Finally, the effects of volemic status and RM on mRNA
expressions of ICAM-1 and VCAM-1 were determined
because these adhesion molecules are involved in the
accumulation of neutrophils in the lung tissue, playing a
crucial role in the pathogenesis of VILI [39].

Effects of volemia on lung and distal organ injury

In severe sepsis aggressive fluid resuscitation is recom-
mended [40]. However, in ALI/ARDS the optimal fluid
management protocol is yet to be established. Conserva-
tive management of ALI/ARDS prescribes that fluid
intake be restricted in an attempt to decrease pulmonary
edema, shorten the duration of mechanical ventilation,
and improve survival. A possible risk of this approach is a
decrease in cardiac output and worsening of distal organ
function, both of which are reversed with the liberal
approach.

Our data show that a hypervolemic status led to
increased lung, but not distal organ injury. In fact, hyper-
volemia was associated with a more pronounced detach-
ment of the alveolar-capillary membrane as well as injury
of endothelial cells. On the other hand, fluid restriction
did not increase distal organ injury. Different mecha-
nisms could explain the adverse effects of hypervolemia
on lung injury: 1) increased hydrostatic pressures; and 2)
augmented capillary blood flow and volume.

During hypervolemia, increased pulmonary edema was
induced by altered permeability of the alveolar capillary
membrane, which is a common finding in sepsis [41],
combined with higher hydrostatic pressure. In the pres-
ence of pulmonary edema, the increase in hydrostatic
pressures along the ventral-dorsal gradient promoted a
reduction in normally aerated tissue, contributing to
increased stress/strain and cyclic collapse/reopening [42].

Hypervolemic groups were characterized by impaired
oxygenation and higher Est,L. The reduction in oxygen-
ation can be attributed to increased edema and atelecta-
sis. The increase in Est,L suggested higher lung stress in
aerated lung areas during inflation. In addition, as the
same Vi was applied in all groups and hypervolemia
decreased the normally aerated tissue, the strain in the
hypervolemic group may be increased. However, even if
stress/strain were higher, we did not observe hyperinfla-
tion probably because low Vand moderate PEEP levels
were applied. In this line, cyclic collapse/reopening has
also been recognized as a determinant of VILI [43].

Cardiac output, stroke volume, and ejection fraction
were increased during hypervolemia. Increased pulmo-
nary perfusion may also directly damage the lungs. In a
model of VILI, Lopez-Aguilar and colleagues [44] have
shown that the intensity of pulmonary perfusion contrib-
utes to the formation of pulmonary edema, adverse dis-
tribution of ventilation, and histological damage.
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Table 4: Semiquantitative analysis of electron microscopy
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HYPO NORMO HYPER
NR RM-CPAP NR RM-CPAP NR RM-CPAP

Alveolar capillary membrane 2 2 2 3 3%*4 41§
(2-2.5) (2-3) (2-2.25) (2-3) (3-3.25) (3.75-4)

Type Il epithelial cell 2 3 2 3 3 4§
(2-2.25) (2-3) (2-2.25) (2-3) (2.75-4) (3.75-4)

Endothelial cell 2 2 2 3 3%*4 41§
(1.75-2.25) (2-3) (2-2.25) (2.75-3) (3-4) (3.75-4)

Pathologic findings were graded according to a five-point semi-quantitative severity-based scoring system: 0 = normal lung parenchyma, 1
= changesin 1to 25%, 2 = 26 to 50%, 3 =51 to 75%, and 4 = 76 to 100% of the examined tissue. Animals were randomly assigned to
hypovolemia (HYPO), normovolemia (NORMO) or hypervolemia (HYPER) with recruitment maneuver (RM-CPAP) or not (NR). Values are the
median (25th percentile to 75th percentile) of five animals per group. **Significantly different from HYPO-NR (P < 0.05). # Significantly different
from HYPO-RM-CPAP (P < 0.05). #Significantly different from NORMO-NR (P < 0.05). §Significantly different from NORMO-RM-CPAP (P < 0.05).

In hypervolemia, we observed an increase in IL-6
mRNA expression in lung tissue, but PCIII mRNA
expression did not change, which may be explained by the
absence of hyperinflation [12]. Additionally, VCAM-1
and ICAM-1 mRNA expressions were elevated in HYPER
group suggesting endothelial activation due to vascular
mechanical stretch.

Despite increased lung injury and activation of the
inflammatory process, hypervolemia was not associated
with increased distal organ injury. Furthermore, hypov-
olemia and normovolemia did not contribute to distal
organ injury, but rather protected the lungs from further
damage. Our observation supports the claim that the
lungs are particularly sensitive to fluid overload [45].
Lung-borne inflammatory mediators can spill over into
the circulation and promote distal organ injury. However,
when protective mechanical ventilation is used, decom-
partmentalization of the inflammatory process is limited
[46].

Interactions between recruitment maneuvers and volemia

The low V1 and airway pressure concept has been shown
to decrease the mortality in ALI/ARDS patients [1].
Given the uncertain benefit of RMs on clinical outcomes,
the routine use of RMs in ALI/ARDS patients cannot be
recommended at this time. However, RMs have been
shown to improve oxygenation without serious adverse
events [11]. Furthermore, other papers suggested that
RMs may be useful before PEEP setting, after inadvertent
disconnection of the patient from the mechanical ventila-
tor or airways aspiration [47]. Finally, RMs have been
proposed to further improve respiratory function in ALI/
ARDS patients in prone position [48]. Thus, in our opin-

ion, their judicious use in the clinical setting may be justi-
fied.

In our animals, RMs reduced alveolar collapse and
increased normal aerated tissue independent of the
degree of volemia. Along this line, experimental and clin-
ical studies have shown that improvement in lung aera-
tion is associated with better lung mechanics [49-51].
RMs improved oxygenation during hypervolemia, proba-
bly because of the higher amount of collapsed lung tissue,
which may increase the effectiveness of RMs reversing
atelectasis and decreasing intrapulmonary shunt. Gatti-
noni and colleagues [51] have shown that the beneficial
effects of RMs are more pronounced in patients with
higher lung weight and atelectasis. The lack of correlation
between reduction in atelectasis and oxygenation after
RMs in the HYPO and NORMO groups could also be
explained by the redistribution of perfusion [52,53]. After
RM, Est,L was reduced in HYPO but not in NORMO or
HYPER groups. The improvement in Est,L in HYPO
group could be explained by alveolar recruitment,
whereas the lack of improvement in the other groups may
be related to the combination of alveolar recruitment and
the increase in interstitial and/or alveolar edema, with
consequent increase in specific Est,L.

RMs increase alveolar fluid clearance [8] and aerated
tissue, which may lead to reduced lung stretch and
inflammatory mediator release [54]. Our data suggest
that RMs in the HYPO and NORMO groups did not
result in further damage of epithelial and endothelial cells
or increased expression of inflammatory and fibrogenic
mediators. In addition, RMs induced higher mRNA
expression of VCAM-1 in NORMO and HYPER groups,
but not of ICAM-1, which was presented higher in
HYPER group regardless of RM. Conversely, in HYPO



Silva et al. Critical Care 2010, 14:R114 Page 10 0of 16
http://ccforum.com/content/14/3/R114

Figure 4 Electron microscopy of lung parenchyma. Animals were randomly assigned to hypovolemia (HYPO), normovolemia (NORMO) or hyper-
volemia (HYPER) with recruitment maneuver (RM-CPAP) or not (NR). Type Il pneumocyte (PIl) as well as alveolar capillary membrane were damaged

in all acute lung injury groups. Note that the alveolar-capillary membrane is less damaged in the HYPO-RM-CPAP group (ellipse) compared with the
other groups. In NORMO-RM-CPAP, there was a detachment of alveolar capillary membrane (arrow). In HYPER-RM-CPAP, note that alveolar compart-
mentalization is lost with disorganization of the alveolar cellular components. Photomicrographs are representative of data obtained from lung sec-
tions derived from six animals. EN, endothelial cell.
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Table 5: Cell apoptosis

Page 11 0f 16

HYPO NORMO HYPER
NR RM-CPAP RM-CPAP NR RM-CPAP
Lung 2 2 2 3 41§
(2-3) (2-2.25) (1.75-3) (2-3) (2-3.25) (3-4)
Kidney 2 3 3 3 4
(2-3) (2-3.25) (1.75-3) (2-3) (2.75-3.25) (3-4)
Liver 2 2 2 2 3
(2-2.25) (2-3) (2-3) (2-3) (2-3) (2.75-3.25)
Villi 3 3 3 3 4
(2-3) (2.75-3.25) (2-3) (2.75-3) (3-4) (2.75-4)

Semi-quantitative analysis of apoptotic cells in lung, kidney, liver, and small intestine villi. The apoptotic findings were graded as negative =
0, slight = 1, moderate = 2, high = 3 and severe = 4 in 10 non-coincident microscopic fields (x 400 magnification). A mean score was then
calculated (0 = normal lung parenchyma; 1 = 1-25%; 2 = 26 to 50%; 3 = 51 to 75%; 4 = 76 to 100% of structures altered). Animals were
randomly assigned to hypovolemia (HYPO), normovolemia (NORMO) or hypervolemia (HYPER) with recruitment maneuver (RM-CPAP) or not
(NR). Values are the median (25th percentile to 75th percentile) of five animals per group. #Significantly different from HYPO-RM-CPAP (P <

0.05). §Significantly different from NORMO-RM-CPAP (P < 0.05).

group after RM, the mRNA expression of VCAM-1 and
ICAM-1 decreased, probably reflecting reduced shear
stress.

RMs transiently increase lung stress [50], probably
damaging the alveolar capillary membrane triggering
inflammatory and fibrogenic responses [9,12] and
impairing net alveolar fluid clearance [8]. However, the
potential of RMs to damage the lung is still a matter of
debate [11]. In hypervolemia, our results suggest that
despite an improvement in functional parameters, RMs
are associated with increased detachment of the alveolar
capillary membrane, injury of epithelial type II and
endothelial cells, as well as an activation of inflammatory
and fibrogenetic response. As previously discussed,
hypervolemia per se may worsen lung injury, especially at
the level of the alveolar capillary membrane. Our results
suggest that the negative effects of hypervolemia on lung
damage are potentiated by increased stress/strain
induced by RMs.

The increase in different inflammatory mediators after
RMs in hypervolemia cannot be explained by increased
atelectasis and/or cyclic opening and closing of collapsed
units. In fact, atelectasis was reduced after RMs in hyper-
volemia. Thus, the increase in gene expression of inflam-
matory mediators in the lung may have resulted from a
single sustained inflation RM.

There are conflicting data on the potential of RMs to
decompartmentalize lung inflammation [55,56]. Our
results suggest that the combination of RMs with hyperv-
olemia does not result in distal organ injury. Neverthe-

less, we cannot extrapolate these results to longer periods
of ventilation and/or the application of other strategies to
recruit the lungs. Theoretically, the inflammatory process
could spread to distal organs in the long term. On the
other hand, more frequent RMs could accelerate and
exacerbate our findings. Also, RMs with pressure profiles
different from the sustained inflation, for example grad-
ual increase of airway pressure, could lead to reduced
stress and reduce the biological impact of the maneuver.
Certainly, this issue deserves further investigation.

We observed greater injury of type II epithelial cells and
gene expression of PCIII when lungs were recruited in
hypervolemia. Not only are type II cells involved in sur-
factant production, they are also associated with repair-
ing mechanisms of injured lungs [57]. Re-expansion of
collapsed lung units may expose the alveoli to tensile and
shear stresses stimulating fibroblasts and macrophages to
synthesize collagen fibers [58]. Our results are in accor-
dance with previous reports demonstrating increased
procollagen mRNA expression in lungs submitted to high
airway pressures [37].

Limitations

This study has several limitations. Firstly, we used a CLP
model of sepsis. Thus, our results cannot be extended to
other experimental models of sepsis or directly extrapo-
lated to the clinical scenario. Secondly, the mortality of
our sepsis model was relatively high (40%). Thus, we can-
not completely exclude that there was a kind of natural
bias and a 'sepsis-tolerating’ population has been unin-
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Figure 5 Representative photomicrographs of lung stained with H&E (left panels) and TUNEL (right panels). Animals were randomly assigned
to hypovolemia (HYPO), normovolemia (NORMO) or hypervolemia (HYPER) with recruitment maneuver (RM-CPAP) or not (NR). Note that in the HYPER
group, the number of apoptotic lung epithelial cells was higher than in NORMO and HYPO (arrows). Photographs were taken at an original magnifi-

tentionally selected. However, if hypervolemia was able to
produce and potentiate lung damage after RMs in this
subgroup, effects would have been even more pro-
nounced in a less 'sepsis-tolerating’ population. Thirdly,
the observation time was relatively short (one hour), pre-
cluding extrapolation of our findings to longer periods of
ventilation. The one-hour period was chosen based on
our experience with this model and taking the time
needed to detect alterations in the proinflammatory and
fibrogenetic response of the lungs due to mechanical ven-
tilation in rats [21,59]. As we identified that the proin-
flammatory response was activated and the
alveolocapillary membrane was damaged in the short
period, we speculate that the protein levels of the inflam-
matory cytokines would be higher in the lungs with
hypervolemia (specially after RMs) and achieve distal
organs due to decompartmentalization if the observation
period would have been extended. Fourthly, hyperv-
olemia was achieved by infusion of gelatin. Different
results may be observed with other types of colloids or
even crystalloids. Finally, the RM was performed as sus-
tained inflation. Recent studies have reported reduced
lung injury and fewer adverse hemodynamic effects with

other types of RM [12]. However, sustained inflation is
the most commonly used RM in clinical practice [11].

Conclusions

In the present model of sepsis-induced ALI, the use of
RMs during hypervolemia reduced alveolar collapse and
improved oxygenation and lung mechanics at the expense
of alveolar capillary membrane damage, increased
edema, and higher gene expression of inflammatory and
fibrogenic mediators. Our data suggest that hyperv-
olemia, but not normo- or hypovolemia, may induce and
also potentiate lung damage after RMs while not affecting
distal organs. Therefore, volemic status should be con-
trolled during RMs, but this hypothesis must be tested in
further clinical studies.

Key messages
« Hypervolemia increased lung W/D ratio and alveolar
collapse leading to impairment in oxygenation and Est,L.
Furthermore, hypervolemia was associated with alveolar
and endothelium damage as well as increased mRNA
expression of IL-6, VCAM-1 and ICAM-1 in lung tissue.
+ RMs reduced alveolar collapse regardless of volemic
status.
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+ During hypervolemia, RMs improved oxygenation
and lung mechanics at the expense of alveolar capillary
membrane damage, increased edema, and higher gene
expression of inflammatory and fibrogenic mediators.
Therefore, hypervolemia, but not normo or hypovolemia,
may potentiate lung damage after RMs.

+ Volemic status should be controlled and hyperv-
olemia avoided during RMs, but this hypothesis must be
tested in further clinical studies.

Abbreviations

ALl acute lung injury; ANOVA: analysis of variance; ARDS: acute respiratory dis-
tress syndrome; CLP: cecal ligation and puncture; Est,L: static lung elastance;
FiO,: fraction of inspired oxygen; GAPDH: glyceraldehyde-3-phosphate dehy-
drogenase; H&E: hematoxylin and eosin; HYPER: hypervolemia; HYPO: hypov-
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olemia; ICAM: intercellular adhesion molecule; IL: interleukin; IVC: inferior vena
cava; MAP: mean arterial pressure; NORMO: normovolemia; Pll: type Il pneumo-
cytes; PaCO,: arterial carbon dioxide partial pressure; PaO,: arterial oxygen par-
tial pressure; PCIII: type Il procollagen; PEEP: positive-end expiratory pressure;
pHa: arterial pH; RA: right atrium; RMs: recruitment maneuvers; RR: respiratory
rate; RT-PCR: reverse transcription polymerase chain reaction; TUNEL: Terminal
deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling; VCAM: vascular
cell adhesion molecule; VILI: ventilator-induced lung injury; V;: tidal volume; W/
D: wet-to-dry; ZEEP: zero end-expiratory pressure.
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