
Introduction

Much has been publicized recently about the expansion 

of hospital- and community-based infections caused by 

Gram-positive bacteria, especially those caused by 

vancomycin-resistant enterococci (VRE) and methicillin-

resistant Staphylococcus aureus (MRSA) [1]. However, a 

second, but potentially more important, threat to critical 

care is that caused by the multidrug-resistant Gram-

negative bacteria. Th e response of the pharmaceutical 

companies over the past decade has been to design new 

drugs that can treat VRE and both hospital- and 

community-acquired MRSA infections [2]. However, 

what is lacking from the current pharmaceutical arsenal 

are drugs to treat multidrug-resistant Gram-negative 

infections in the hospital setting [3]. Because β-lactam 

antibiotics have long been a component in the treatment 

regimen for serious nosocomial infections, any threat to 

their effi  cacy must be examined closely.

Among the β-lactam antibiotics of clinical utility for 

the treatment of infections caused by susceptible Gram-

negative bacteria are penicillins such as amoxicillin, oral 

cephalosporins such as cefpodoxime and cefuroxime 

axetil, parenteral cephalosporins such as cefepime and 

ceftri axone, and the carbapenems such as doripenem, 

erta penem, imipenem, and meropenem. Combinations of 

penicillins with β-lactamase inhibitors also play promi nent 

therapeutic roles, with amoxicillin-clavulanic acid being a 

major factor in the treatment of community infections and 

piperacillin-tazobactam being important for serious 

hospital-acquired infections. In this review, the role of β-

lactamases will be discussed as a major cause of resistance 

to these safe and widely prescribed drugs.

Infections associated with Gram-negative bacteria

Infections caused by Gram-positive bacteria represented 

the majority of serious infections prior to the late 1950s. 

Th us, it is not surprising that the increased use of 

penicillins to treat the associated diseases caused β-

lactam resistance to arise in the clinical setting, fi rst in 

the staphylococci and then in Gram-negative bacteria. 

When penicillins lost their utility as monotherapy for 

most disease states, penicillins and cephalosporins that 

were more potent were developed in an eff ort to retain 

the favorable clinical properties of the β-lactam anti-

biotics. In addition to predictable effi  cacy in a number of 

clinical indications, these agents have continued to 
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demonstrate a pharmacodynamic and safety profi le that 

makes them attractive therapeutic agents.

As shown in Table 1, the most common families of β-

lactams that are used to treat infections caused by Gram-

negative pathogens include extended-spectrum cephalo-

sporins such as ceftriaxone and cefepime, penicillin-β-

lactamase inhibitor combinations such as amoxicillin-

clavulanic acid and piperacillin-tazobactam, and the 

carba penems [4]. Infection types range from uncom pli-

cated community-acquired infections such as otitis media 

to serious nosocomial infections, including ventilator-

associated pneumonia. Orally administered β-lactams 

such as amoxicillin-clavulanic acid and the oral cephalo-

sporins cefi xime, cefpodoxime, and cefuroxime axetil are 

recommended for community infections. For nosocomial 

infections that are not resistant to cephalosporins, 

parenteral drugs that may be eff ective include the 

injectable penicillin-β-lactamase inhibitor combinations 

and cephalosporins. Carbapenems are often reserved to 

treat the most serious infections caused by many 

multidrug-resistant pathogens as they are most able to 

escape at least some of the common β-lactam resistance 

mechanisms that aff ect the other β-lactam families. 

However, the continued use of these antibiotics for 

important disease states has maintained the pressure on 

many pathogenic and commensal bacteria to retain 

enzymatic inactivation mechanisms that render 

penicillins ineff ective in many disease states. Th is 

pressure has resulted in a surge in β-lactam resistance 

due to inactivating enzymes, particularly in Gram-

negative pathogens.

Background of β-lactamase resistance

In 1940, an enzyme produced by a strain of Bacillus coli, 

now known as Escherichia coli, was shown to destroy the 

ability of penicillin to kill bacterial cells [5]. Th is fi rst 

report of β-lactamase activity occurred before wide-

spread use of penicillin, demonstrating the presence of β-

lactam-inactivating enzymes in the natural environment. 

Th ese enzymes have the ability to hydrolyze the β-lactam 

chemical bond that distinguishes β-lactam antibiotics 

from other antibacterial agents, thereby rendering the 

molecules incapable of killing bacteria.

Today, over 890 unique β-lactamases have been 

identi fied in naturally occurring bacterial isolates [6,7]. 

These enzymes have been separated into groups, 

either accord ing to the amino acid sequences of the 

enzymes or according to their inactivating properties 

for different classes of β-lactams. The molecular 

classification scheme divides β-lactamases into four 

classes based on the amino acid sequences of the 

proteins [8-10], whereas numeri cally more functional 

groups have been assigned based on the hydrolysis and 

inhibition profiles of the enzymes [7,10,11]. The major 

functional groups of current clinical importance are 

shown in Table 2, where enzyme groups are commonly 

named according to the most important class of β-

lactam that is inactivated. Correlations between the 

Table 1. Common β-lactam antibiotics that may be used as monotherapy to treat infections caused by Gram-negative 

bacteria

Infection type Phenotype Possible β-lactam antibioticsa,b

Bacterial meningitis Wild-type Cefotaxime or ceftriaxone, cefepime, meropenem

Intra-abdominal Wild-type Amoxicillin-clavulanic acidc, piperacillin-tazobactam, ticarcillin-clavulanic acid, 

  cefoxitin, cefotetan

 ESBL-producing Carbapenemsd

Osteomyelitis Wild-type Ceftazidime, cefepime

Otitis media Wild-type Amoxicillin ± clavulanic acidc, cefdinirc, cefpodoximec, cefprozilc, cefuroxime axetilc, 

  ceftriaxone 

Lower respiratory infections  Wild-type Amoxicillin-clavulanic acidc, piperacillin-tazobactam, ticarcillin-clavulanic acid, 

and pneumonia  aztreonam, cefdinirc, cefpodoximec, cefprozilc, cefuroxime axetilc, cefepime, 

  cefotaxime, ceftriaxone, ceftazidime

 ESBL-producing Carbapenems

Gonorrhea Non-β-lactamase-producing Penicillin G

 β-lactamase-producing Cefi ximec, cefpodoximec, ceftriaxone, cefotaxime, cefuroxime

Skin and skin structure Wild-type Carbapenems

  Ampicillin-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid

Urinary tract (complicated) Wild-type Ampicillin-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid, ceftriaxone

 ESBL-producing Carbapenems

aAntibiotics listed are based on those recommended in the 2009 Sanford Guide [4], assuming that the causative Gram-negative bacteria are susceptible to these 
agents. bAgents are dosed intravenously unless otherwise noted. cOral dosing. dCarbapenems for infections caused by Enterobacteriaceae include doripenem, 
ertapenem, imipenem, and meropenem. For infections caused by Pseudomonas aeruginosa, ertapenem should not be used. ESBL, extended-spectrum β-lactamase.
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molecular and functional categories are also provided 

in this compilation.

Descriptions of β-lactamase groups

Cephalosporinases

Group 1/Class C cephalosporinases are among the most 

abundant β-lactamases on the basis of the number of 

organisms that produce these enzymes. Th ese cephalo-

sporinases, frequently named as species-specifi c AmpC 

enzymes, are often found in most Enterobacteriaceae as 

chromosomal enzymes. At low production levels, they 

can abolish the antibacterial activity of cephalosporins 

and can also demonstrate inactivating capabilities toward 

other β-lactams, especially when produced at high levels. 

Th ese enzymes are generally present at a low (basal) level 

but may be induced to high levels in the presence of 

selected inducing agents such as amoxicillin or clavulanic 

acid. Cephalosporinases may also be produced at very 

high levels in the absence of an inducer, in a ‘derepressed’ 

state. Th is has been reported to occur after selection of 

stable mutants during therapy with broad-spectrum 

cephalosporins, but not cefepime [12,13]. Th ese mutants 

often arise as a result of a multistep process, with elevated 

cephalosporin MICs (in the high susceptible or inter-

mediate range) observed in those organisms with im-

paired permeability characteristics prior to selection of 

high-level AmpC mutants that are fully resistant [14].

Treatment of organisms producing an inducible AmpC 

cephalosporinase has created some controversy. Although 

a group of investigators has recommended that any 

AmpC-inducible Enterobacteriaceae be regarded as 

resistant to all third-generation cephalosporins [13], the 

clinical data supporting this recommendation are mixed 

[14]. Studies have indicated that the selection of resistant 

Enterobacter spp. has ranged as high as 19% in a 1991 

study (6/31), with higher rates observed in patients with 

bacteremia [15], but more recent studies have not corro-

borated those observations [12]. For example, in an 

18-month study (2005-2006) of 732 patients infected 

with Enterobacteriaceae capable of producing AmpC β-

lactamases, treatment with broad-spectrum cephalo-

sporins resulted in resistance in 5% (11/218) of the 

patients compared with 0% (0/20) of the patients treated 

with cefepime, with the emergence of resistance being 

more frequent in Enterobacter spp. [12].

Th e suggestion has been made that therapeutic 

decisions be made on the basis of specifi c cephalosporin 

MICs rather than on the presence of an inducible AmpC 

enzyme [14]. Th is year, the Clinical and Laboratory 

Standards Institute (Wayne, PA, USA) lowered suscep-

tibility breakpoints for cefotaxime, ceftriaxone, and 

ceftazidime against the Enterobacteriaceae [16]. Lower 

breakpoints should help to decrease the number of 

‘susceptible’ isolates that may be likely to emerge as 

resistant strains following therapy with broad-spectrum 

cephalosporins but will allow cephalosporins to be used 

against highly susceptible organisms. Th e new cephalo-

sporin breakpoints will also classify as resistant those 

ESBL-producing Enterobacteriaceae that will not respond 

pharmacodynamically to approved therapeutic doses, 

thereby reducing the need for specifi c ESBL testing other 

than for epidemiological purposes [16].

Plasmid-encoded AmpC cephalosporinases closely 

related in sequence to chromosomal AmpC enzymes from 

Enterobacter cloacae, Citrobacter freundii, or Aero monas 

spp. also appear in Enterobacteriaceae in organisms that 

produce at least one other β-lactamase [17]. Although 

some of the plasmid-encoded AmpC enzymes are 

inducible, most of the enzymes are produced at much 

higher levels than seen for basal AmpC cephalo sporinases, 

similar to isolates with derepressed AmpC enzymes [17].

Penicillinases

Common penicillinases (functional group 2b, molecular 

class A) include the SHV-1 enzyme in Klebsiella pneumo-

niae and the TEM-1 β-lactamase found in many strains 

Table 2. Major groups of β-lactamases in Gram-negative bacteria that threaten the role of β-lactam antibiotics

                                                                                             β-Lactams to which resistance is conferred
Functional Molecular
groupa classb Common name Primaryc Secondaryd

1 C Cephalosporinase Penicillins, cephalosporins Carbapenems, monobactams

2b A Penicillinase Penicillins, early cephalosporins β-lactamase inhibitor combinations

2be A Extended-spectrum  Penicillins, cephalosporins, monobactams, 

  β-lactamase β-lactamase inhibitor combinations None

2d D Cloxacillinase Penicillins, including oxacillin and cloxacillin None

2df D Carbapenemase Carbapenems and other β-lactams None

2f A Carbapenemase All current β-lactams None

3 B Metallo-β-lactamase All β-lactams except monobactams None

aClassifi cation based on Bush, Jacoby, and Medeiros [11] and Bush and Jacoby [7]. bClassifi ed according to primary amino acid sequence [8-10]. cβ-lactams that are 
resistant solely as a function of β-lactamase production. dβ-lactams that are resistant as a function of β-lactamase production, usually at high levels, in combination 
with effl  ux or porin modifi cations.
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of Neisseria gonorrheae [18] and Haemophilus infl uenzae 

[19]. Th ese two enzymes occurred in high prevalence 

among the Enterobacteriaceae prior to the introduction 

of the broad-spectrum cephalosporins such as cefotaxime 

and ceftazidime [20,21]. Th e group 2b enzymes are 

readily inhibited by clavulanic acid, sulbactam, and 

tazobactam [11]. As a result, infections caused by 

organisms producing a single penicillinase can be readily 

treated with a β-lactamase inhibitor combination such as 

amoxicillin-clavulanic acid, ampicillin-sulbactam, or 

piperacillin-tazobactam.

Extended-spectrum β-lactamases

Particularly worrisome β-lactamases are found among 

the extended-spectrum β-lactamases, or ESBLs (func-

tional group 2be or molecular class A). Th ese enzymes 

were recognized shortly after the introduction of ‘β-

lactamase-stable’ cephalosporins and aztreonam. ESBLs 

were initially identifi ed as variants of the common SHV-1 

or TEM-1 β-lactamase, often diff ering from the parent 

enzymes by only one or two amino acids. After their 

recognition in the late 1980s concomitantly in Europe 

[22] and the US [23,24], they became associated with 

major outbreaks of cephalosporin-resistant infections 

caused by ESBL-producing E. coli and K. pneumoniae 

[22,25]. Th e genes that coded for these enzymes were 

generally found on plasmids that conferred resistance to 

multiple antibiotic classes and that were readily 

transferable among species [26]. Even during the fi rst 

reported outbreaks, other Enterobacteriaceae such as 

C.  freundii, Enterobacter aerogenese, and Serratia 

marcescens were identifi ed as ESBL producers [27].

ESBLs are still associated with major outbreaks of β-

lactam resistance. However, the early SHV and TEM 

variants have been largely replaced by the CTX-M family 

of ESBLs. Th e fi rst two CTX-M enzymes were identifi ed 

at approximately the same time in the early 1990s in 

western Europe and South America in individual clinical 

isolates [28,29]. Within a decade, the CTX-M β-lacta-

mases became the predominant ESBL family in many 

medical centers such that they have largely replaced most 

of the TEM- and SHV-derived ESBLs throughout the 

world [30-32].

CTX-M enzymes were particularly slow to emerge in 

the US [33] but have recently begun to dominate the 

ESBL populations of some US health centers [34]. Th e 

MYSTIC (Meropenem Yearly Susceptibility Test Informa-

tion Collection) surveillance study of 2007 identifi ed 

CTX-M genes in 80% of the US medical centers that 

reported ESBL-producing isolates in their survey [35]. 

Th e early CTX-M-producing isolates were fre quently 

resistant to cefotaxime and ceftriaxone but susceptible to 

ceftazidime because of a strong preference for hydrolysis 

of the former cephalosporins. However, some members 

of the CTX-M family demonstrate high hydrolysis rates 

for all of the extended-spectrum cephalosporins as a 

result of single amino acid mutations, resulting in 

complete cephalosporin resistance in all of the producing 

pathogens [36,37]. It is possible that regional diff erences 

in the emergence of the CTX-M family were due to 

localized preferences for therapeutic regimens employing 

cefotaxime or ceftriaxone in Europe and South America 

compared with more frequent use of ceftazidime in the 

US and Canada.

OXA β-lactamases

Th e ‘oxacillinase’ family of β-lactamases, the OXA 

enzymes, was originally named to refl ect the ability to 

hydrolyze oxacillin (or cloxacillin) [19]. Recently, a highly 

important subgroup of the OXA enzymes was identifi ed 

as a causative factor for decreasing carbapenem suscep-

tibility in non-fermentative bacteria such as Acinetobacter 

spp. and Pseudomonas aeruginosa. Th e OXA enzymes in 

Acinetobacter spp. are mainly chromosomally located, 

with little apparent transfer among strains [38]. Although 

these enzymes are structurally related to the older OXA 

β-lactamases, these new members of the OXA family 

have carbapenem-hydrolyzing activity. Because hydro-

lysis rates may be slow compared with other carba-

penemases, full carbapenem resistance may require an 

additional resistance mechanism such as a porin 

mutation or upregulated effl  ux pump [39]. Importantly, 

carbapenemases within the OXA family have the ability 

to confer carbapenem resistance to organisms that may 

already have intrinsic resistance to multiple antibiotic 

classes [40]. Th is is especially evident in the Acinetobacter 

spp. that have been identifi ed from soldiers and civilian 

populations returning from military duty in the Middle 

East [40].

Serine carbapenemases

Another emerging family of β-lactamases is the serine 

carbapenemase group (group 2f/class A). Th is group of 

enzymes has the ability to hydrolyze most β-lactam 

antibiotics, including the carbapenems that are generally 

stable to hydrolysis by all other β-lactamases that have 

serine at the active site of the enzyme [11]. Early reports 

of this group of chromosomal enzymes were from single 

isolates of Enterobacteriaceae in the western US and 

London, followed by small outbreaks in Boston and 

Chicago a decade later [41]. Th e fi rst plasmid-encoded 

serine carbapenemases in the KPC enzyme family were 

reported from the mid-Atlantic region of the US, again in 

single Klebsiella isolates (from the late 1990s) that were 

not immediately transferred within the reporting hospi-

tals [42]. However, KPC-producing K. pneumoniae 

strains soon began to spread into the New York City 

metropolitan area, then on to Israel, France, and now to 
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many other areas of the world, including southern 

Europe, southeast Asia, and South America, with high 

clonality among and within geographical locations [43]. 

In addition, the genes encoding the KPC enzymes have 

spread into other Enterobacteriaceae as well as into P. 

aeruginosa and Acinetobacter spp. [41,44].

Metallo-β-lactamases

Metallo-β-lactamases, or MBLs (functional group 3/

molecular class B) belonging to another carbapenemase 

family, were initially recognized as species-specifi c β-

lactamases with limited contributions to the overall 

resistance profi le in most medical centers [41]. Th ese 

zinc-requiring chromosomal enzymes appeared in the 

same strain with other β-lactamases that generally had 

higher hydrolysis rates for penicillins and cephalosporins. 

Although these enzymes have relatively weak β-lactamase 

activity against all β-lactams except monobactams 

(aztreonam), their distinctive property is the ability to 

hydrolyze carbapenems [41]. Th e MBLs were thereby 

responsible for carbapenem resistance in organisms such 

as Stenotrophomonas maltophilia, Aeromonas spp., and a 

small population of Bacteroides fragilis. However, the 

identifi cation of IMP-1, a plasmid-encoded MBL, in 1990 

[45] changed our perspective on the group 3 β-lactamases.

Plasmid-mediated carbapenem resistance has now 

become a serious clinical issue in parts of the world such 

as southern Europe, Japan, Brazil, and Asia. Th e initial 

IMP-1 enzyme now belongs to a family with 26 variants; 

the VIM family of MBLs has 23 variants [6]. Th ese 

enzymes were fi rst identifi ed in non-fermentative bacteria 

such as P. aeruginosa and Acinetobacter baumannii but 

have now spread to many of the Enterobacteriaceae, 

including Enterobacter spp., E. coli, C. freundii, Klebsiella 

spp., and S. marcescens [41]. Th ey are frequently asso-

ciated with integrons (genetic dissemination systems) 

containing multiple antibiotic resistance deter minants 

that are easily transferred among species. As with the 

species-specifi c MBLs, the plasmidic MBLs appear in 

organisms that almost always produce at least one other 

β-lactamase with an overlapping hydrolysis profi le. Th us, 

it is possible that the MBL gene may be lost in the 

absence of specifi c antibiotic pressure, especially carba-

penem therapy.

Clinical response to β-lactamases

Nosocomial issues

When broad-spectrum cephalosporins were introduced 

into clinical practice, ESBL-producing Enterobacteriaceae 

began to arise prolifi cally, resulting in the loss of these 

previously eff ective agents. In the late 20th century, many 

resistant Gram-negative bacteria were often treated with 

carbapenems as single therapeutic agents. At that time, it 

seemed that almost all β-lactamase-mediated resistances 

could be overcome by imipenem or meropenem. Th ese 

antibiotics were not hydrolyzed by the AmpC cephalo-

sporinases or by ESBLs. Carbapenem monotherapy was 

the approach taken by some hospitals in which 

ceftazidime-resistant, ESBL-producing, K. pneumoniae 

isolates represented a majority of the Klebsiella isolates in 

the intensive care unit (ICU) [46]. For example, in a New 

York hospital [46] with a large outbreak of infections 

caused by ESBL-producing pathogens in the early 1990s, 

cephalosporin usage was reduced 80% throughout the 

hospital, accompanied by a 71% reduction in ceftazidime-

resistant Klebsiellae in the ICU. However, the collateral 

damage was that overuse of carbapenems resulted in a 

69% increase in imipenem-resistant P. aeruginosa [46] 

and in infections caused by imipenem-resistant Acineto-

bacter that were treatable only with polymyxin B or 

ampicillin-sulbactam [47]. Interestingly, a recent study 

from a New York ICU showed that strict infection control 

combined with routine rectal surveillance cultures was 

the most important factor associated with a reduction in 

carbapenem-resistant K. pneumoniae isolates but not 

with the reduction of carbapenem-resistant P. aeruginosa 

or Acinetobacter spp.; antibiotic usage was not correlated 

with this reduction [48].

Today, we are seeing situations that are even more 

complex as multiple broad-spectrum β-lactamases are 

spreading throughout Gram-negative pathogens. Global 

dissemination of new β-lactamases is expected, with epi-

demiological characteristics easily traced with currently 

available molecular techniques. Recent studies have 

demon strated the clonal appearance of a highly homo ge-

neous CTX-M-15-producing E. coli strain that was 

present in both hospital and community isolates from 

eight countries in Europe, North America, and Asia [49]. 

Th e fi rst KPC-2-producing K. pneumoniae isolate 

reported in France was directly traced to a patient who 

had previously been treated in a New York City hospital 

[50]; subsequent analyses of KPC-producing K. pneumo-

niae isolates from the Centers for Disease Control and 

Prevention (CDC) identifi ed a major sequence type that 

accounts for over 70% of the CDC KPC isolates [43]. 

OXA carbapenemases have been identifi ed in multiple 

Acinetobacter spp. clones worldwide [40,51,52].

Organisms with multiple β-lactamases responsible for 

high-level resistance to most β-lactams are also appearing 

more frequently. A K. pneumoniae clinical isolate has 

been reported to produce eight diff erent β-lactamases, 

including at least one ESBL, an AmpC, and a KPC 

enzyme [53]. Th e MBL VIM-1 was identifi ed in a Greek 

K. pneumoniae isolate that also produced the KPC-2 

carbapenemase [54]. Carbapenem-resistant Acineto bacter 

isolates have now been reported with both a VIM-2-like 

MBL as well as an OXA-23 carbapenemase in the same 

strain [55]. Th ese organisms are resistant not only to all 
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β-lactams but to many other antibiotic classes as well. 

Multidrug resistance has recently been reported in KPC-

producing K. pneumoniae in metropolitan New York City 

[56] and in MBL-producing isolates [57] because of 

plasmid-encoded resistance determinants that confer 

resistance to aminoglycosides, fl uoroquinolones, tri-

metho prim, sulphonamides, and chloramphenicol. Th e 

Infectious Diseases Society of America (Arlington, VA, 

USA) made Gram-negative resistance a major focus in 

their 2009 list of ESKAPE pathogens that include 

multidrug-resistant K. pneumoniae, Acinetobacter spp., P. 

aeruginosa, and Enterobacter spp. [3].

On a more optimistic note, perhaps plasmid-encoded 

MBLs and their co-production with non-carbapenemases 

may not be the disaster some have envisioned. In the 

absence of a carbapenem-selective pressure in a patient, 

it is possible that the MBL gene may be lost, although 

that organism would still maintain its resistance profi le  

to other β-lactams. Th is speculation is based on the 

experiences of Japan and Italy, two countries where 

plasmid-encoded MBLs were fi rst identifi ed. In Japan 

and Italy, MBL genes that have spread countrywide after 

their initial reports have been responsible primarily for 

small sporadic outbreaks in these countries and have not 

been a continuous cause of carbapenem resistance 

throughout all Gram-negative species at a single medical 

center [58,59]. However, co-production of two 

carbapenemases, such as a VIM and KPC or a VIM and 

an OXA carbapenemase, may lead to much more serious 

consequences in which β-lactam antibiotics could never 

be useful.

Community reservoirs

Although the main focus has been on multidrug-resistant 

infections in the hospital setting, community sources for 

β-lactamase-mediated resistances are being reported 

more frequently. Community-acquired ESBLs in loca-

tions such as nursing homes or long-term health care 

resi dences have been described for several years 

[31,32,60-62]. As one might expect, the even more 

deleterious plasmid-encoded carbapenemases are also 

being described in patients outside the hospital. Nine 

E.  coli isolates producing the KPC-2 and KPC-3 carba-

penemases, enzymes most frequently found in 

K.  pneumoniae strains, were identifi ed in seven nursing 

homes in the New York City area [63]. In Greece, a set of 

45 patients was identifi ed with community-onset urinary 

tract infections caused by VIM-2 MBL-producing 

P. aeruginosa isolates [64]. It is noteworthy that the fi rst 

CTX-M-producing E. coli isolates in the US were 

identifi ed from sources that included a number of urinary 

tract isolates originating from outpatients [34]. Th us, 

even if infection control procedures are instituted and 

strictly enforced in hospitals and medical centers, 

resistant Gram-negative pathogens have already been 

released into the community, where they can reside in 

relatively healthy people until challenged by changes in 

disease status, at which time they may become the 

causative pathogen for a new infection.

Conclusions

Resistance in Gram-negative pathogens is increasing at 

an alarming rate. New β-lactamases that are transferred 

among species on plasmids with multiple resistance 

factors are also being described as a continuing exercise. 

Th e implications for therapeutic use of the workhorse 

β-lactam antibiotics are sobering. However, it is possible 

that some of these β-lactamases may exact a high price 

from the producing organism, especially when multiple 

β-lactamases are produced by a single strain. Small 

changes in therapeutic approaches may allow the fl ora to 

be altered within a medical center so that bacterial 

producers of ESBLs or KPCs or MBLs are only a small 

portion of the nosocomial fl ora and can be contained in 

isolated areas. Combination therapy with a β-lactamase 

inhibitor combination or a carbapenem, and at least one 

agent from another antibiotic class, may be eff ective 

against isolates that have decreased susceptibilities. Use 

of the maximally approved therapeutic doses should 

always be considered for serious infections when β-

lactam MICs are close to the susceptibility breakpoints. 

Finally, β-lactam antibiotics should not be used if their 

MICs are in the highly resistant category, particularly in a 

hospital known to have high levels of plasmid-encoded 

β-lactamases that are being transferred throughout the 

facility; it should be noted that this epidemiological infor-

mation may need to be determined with the assistance of 

a reference laboratory. With judicious use of antibiotics 

and strict infection control procedures, it may be possible 

to limit the eff ects of these newer β-lactamases until the 

time when new antibacterial agents are developed to 

counteract their eff ects.
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