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Abstract

Introduction Liver dysfunction is a common feature of severe
sepsis and is associated with a poor outcome. Both liver
perfusion and hepatic inflammatory response in sepsis might be
affected by sympathetic nerve activity. However, the effects of
thoracic epidural anesthesia (TEA), which is associated with
regional sympathetic block, on septic liver injury are unknown.
Therefore, we investigated hepatic microcirculation and
inflammatory response during TEA in septic rats.

Methods Forty-five male Sprague-Dawley-rats were
instrumented with thoracic epidural catheters and randomized
to receive a sham procedure (Sham), cecal ligation and
puncture (CLP) without epidural anesthesia (Sepsis) and CLP
with epidural infusion of 15 ul/h bupivacaine 0.5% (Sepsis +
TEA). All animals received 2 ml/100 g/h NaCl 0.9%. In 24 (n =
8 in each group) rats, sinusoidal diameter, loss of sinusoidal
perfusion and sinusoidal blood flow as well as temporary and
permanent leukocyte adhesion to sinusoidal and venolar
endothelium were recorded by intravital microscopy after 24

hours. In 21 (n = 7 in each group) separate rats, cardiac output
was measured by thermodilution. Blood pressure, heart rate,
serum transaminase activity, serum TNF-alpha concentration
and histologic signs of tissue injury were recorded.

Results Whereas cardiac output remained constant in all
groups, sinusoidal blood flow increased in the Sepsis group and
was normalized in rats subjected to sepsis and TEA. Sepsis-
induced sinusoidal vasoconstriction was not ameliorated by
TEA. In the Sepsis + TEA group, the increase in temporary
venolar leukocyte adherence was blunted. In contrast to this,
sinusoidal leukocyte adherence was not ameliorated in the
Sepsis + TEA group. Sepsis-related release of TNF-alpha and
liver tissue injury were not affected by Sepsis + TEA.

Conclusions This study demonstrates that TEA reverses
sepsis-induced alterations in hepatic perfusion and ameliorates
hepatic leukocyte recruitment in sepsis.

Introduction
The liver is critically involved in a multitude of vital physiological
processes and contributes to the host's immune reaction in
systemic inflammatory response and sepsis [1-3]. Impaired
microcirculation and intrahepatic inflammatory reaction are
hallmarks in primary and secondary hepatic injuries [4-6]. In
severe sepsis and trauma, liver injury is associated with
increased mortality and length of hospital stay [7-10]. The
hepatic immune response determines pathogen clearance

and the systemic immune reaction [1,5,11]. After prolonged
inflammation, hepatic immune dysfunction contributes to mor-
tality [12]. Protection of liver function is therefore crucial to the
maintenance of homeostasis in perioperative and critical care
medicine.

Sympathetic nerve activity plays a crucial role in hepatic injury
and immune response. Increased sympathetic tone alone
induces intrahepatic inflammation and liver injury in healthy
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ANOVA: analysis of variance; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; HABR: hepatic arterial buffer response; 
H&E: hematoxylin and eosin; NaCl: sodium chloride; TEA: thoracic epidural anesthesia; TNF: tumor necrosis factor.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19594914
http://ccforum.com/content/13/4/R116
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


Critical Care    Vol 13 No 4    Freise et al.
mice, whereas sympathetic denervation reduced perioperative
hepatic injury [13-15]. In sepsis, both α- and β-adrenorecep-
tors impair hepatic function and immune response [16-18].

Thoracic epidural anesthesia (TEA) promotes postoperative
intestinal recovery and reduces cardiovascular mortality, most
probably mediated by regional sympathetic block [19-28].
Recently, TEA has also been shown to ameliorate organ injury
and improve outcome in sepsis and necrotizing pancreatitis
[28-32]. The hepatic effects of TEA in sepsis, however, have
never been subject to investigation.

Therefore, we conducted a randomized, blinded experimental
study to test the hypothesis that TEA: improves hepatic micro-
vascular perfusion and attenuates leukocyte activation in sep-
sis; and influences systemic inflammatory response and liver
tissue injury induced by cecal ligation and puncture (CLP) in
rats.

Materials and methods
The study was approved by the animal care committee of the
District Government of Muenster. Animals received standard
chow and were kept in a 12 hour light-dark-cycle. Food was
withheld 12 hours prior to surgery. The animals had free
access to water.

Male Sprague-Dawley rats (weighing 275 to 300 g; Harlan-
Winkelmann, Borchen, Germany) were anesthetized by isoflu-
ran in 50% oxygen. Central venous and arterial lines (0.96 mm
once daily; Liquidscan, Ueberlingen, Germany) were intro-
duced. Epidural catheters (0.61 mm once daily) were inserted
at L3/L4 and advanced to Th6 [26]. All catheters were exteri-
orized at the neck of the animal and protected by a swivel
device. The cecum was ligated below the ileocecal valve to
maintain intestinal continuity and then punctured at two loca-
tions with an 18-gauge needle. Subsequently anesthesia was
terminated and volume resuscitation was performed using 2
mL/100 g/hour isotonic sodium chloride (NaCl) solution intra-
venously. The animals were housed individually for the follow-
ing 24 hours. The correct position of the epidural catheter was
confirmed by autopsy after completion of the experiment.

After instrumentation, animals were randomly allocated to one
of the three groups by closed envelopes: Sham = sham oper-
ation, 15 μl/hour NaCl 0.9% epidural; Sepsis = CLP 24 hours,
15 μl/hour NaCl 0.9% epidural; Sepsis + TEA = CLP 24
hours, 15 μl/h bupivacaine 0.5% epidural. The investigators
were not aware of the group assignment.

Twenty-four hours after CLP and sham-laparotomy, mean arte-
rial blood pressure was recorded using a standard transducer
(PMSET 1 DT, Becton Dickinson, Germany) and a monitor
(Siemens Sirecust 404, Siemens, Germany). Heart rate was
derived from the arterial pressure curve. For blood gas analy-
ses, 80 μl blood was withdrawn. Motoric block was quantified

using an established motor score derived from the Bromage
score and adapted to rats [33].

Intravital microscopy
Twenty-four hours after sepsis induction, 24 animals (n = 8 per
group) were then re-anesthetized and tracheotomized [29].
Intravital microscopy of the left liver lobe was performed as fol-
lows: median laparotomy was extended by a left subcostal
incision and the hepatic ligaments of the left liver lobe were
carefully dissected. The animal was placed in a 110° position
on its left side onto the microscope (Eclipse 300, Nikon, Düs-
seldorf, Germany). The left liver lobe was exteriorized and the
lower surface was placed on a microscope slide in a tension
free position. Intravenously, 2 μmol/kg sodium fluorescein and
0.2 μmol/kg rhodamine 6 G (Sigma, Deisenhofen, Germany)
were used for contrast enhancement.

In each experiment, 10 randomly chosen acini and 10 postsi-
nusoidal venoles were recorded for 30 seconds both with
sodium-fluorescein and rhodamine contrast enhancement.
Offline image analysis was performed by a blinded investigator
(CG) using a computer-assisted image analysis system (Anal-
ySIS, OSIS, Muenster, Germany). Hepatic microcirculation
was assessed by the periportal sinusoidal diameter of 10 sinu-
soids per acinus and the loss of sinusoidal perfusion, defined
as the number of non-perfused sinusoids divided by all visible
sinusoids of the acinus.

The leukocyte adhesion was evaluated separately in sinusoids
and postsinusoidal venoles. Temporary adherent, that is,
slowly moving or adhering at the sinusoidal wall for less than
20 seconds, and permanently adherent, that is, adherent for
more than 20 seconds, leukocytes were counted in each aci-
nus and expressed as cells/μm2. Accordingly, temporarily and
permanently adherent leukocytes in the venoles were counted
as cells/μm2 venolar endothelium.

Cardiac output and liver injury
In another set of 21 animals, cardiac output was determined
applying the thermodilution technique 24 hours after sepsis. In
these animals, a thermocouple catheter (IT21, Physitemp,
Clifton, NJ, USA) was introduced into the aortic arch via the
left carotid artery during instrumentation. For measurement of
cardiac output, the area under temperature curve after injec-
tion of 0.3 ml cold saline solution (8°C) was recorded (Cardiac
Output pod and Powerlab 4/20, ADInstruments, Spechbach,
Germany). The results of three measurements were averaged
in each animal. To reduce bias of emotional stress the proce-
dure was mimicked every hour for four hours before measure-
ment.

Liver cell injury was assessed 24 hours after induction of sep-
sis by measuring serum activities of aspartate aminotrans-
ferase and alanine aminotransferase. Blood was withdrawn via
aortic puncture and plasma enzyme activity was determined by
Page 2 of 8
(page number not for citation purposes)



Available online http://ccforum.com/content/13/4/R116
means of standard enzymatic techniques (Ektachem, Kodak,
Stuttgart, Germany).

Specimens of the left liver lobe were collected immediately
after death and fixed by immersion in 4% formaldehyde solu-
tion. Subsequently, they were dehydrated and embedded in
paraffin wax to cut sections at a thickness of 5 μm. Slides were
stained with H&E and assessed by an experienced patholo-
gist.

Serum TNF-α
Twenty-four hours after CLP and sham-procedure respec-
tively, serum concentration of TNF-α was measured by a com-
mercially available anti-rat TNF-α ELISA (BD OptEIA, Cat No.
550734, Becton Dickinson, Heidelberg, Germany) according
to the manufacturer's instructions and read-out by a fluoromet-
ric plate reader (EL808, BioTek, Bad Friedrichshall, Germany).

Statistics
Sigmastat 3.0 (Systat Software, Richmond, CA, USA) was
used for statistical analysis. Normal distribution and equal var-
iance tests were performed. Sepsis-induced and TEA-related
effects were evaluated by one-way analysis of variance
(ANOVA) with post-hoc Student Newman Keuls test or
ANOVA on Ranks with post-hoc Dunn's test as appropriate. A
P < 0.05 was defined as the level of significance. Data are pre-
sented as mean ± 95% confidence interval or as median
(25%/75% percentiles) as appropriate.

Results
All animals allocated to the sepsis groups showed signs of
lethargy, piloerection, and exudation around the eyes and nose
24 hours after induction of sepsis. Peritoneal inflammation and
purulent ascites was present when the abdomen was reo-
pened for intravital microscopy.

Compared with the Sham-group, mean arterial blood pressure
and heart rate were not affected in the untreated Sepsis or
Sepsis + TEA groups. Cardiac output also remained constant
both in the Sepsis and Sepsis + TEA groups. Arterial oxygen
tension and pH were not altered by sepsis or treatment with
TEA (Table 1). Serum-lactate concentrations were increased
to 1.25 (1.00/1.50) mmol/l in the Sepsis group compared with
0.8 (0.7/0.9) mmol/l in the Sham group (P < 0.05). Leukocyte
count dropped from 6430 ± 3099 cells/μL in Sham animals to
2228 ± 1129 cells/μl in the CLP group (P < 0.05). In addition,
the Sepsis group was characterized by a drop in platelet count
compared with the Sham-group (197,000 ± 102,000 cells/μl
vs. 338,000 ± 64,000/μl; P < 0.05). These parameters were
not altered in animals subjected to Sepsis + TEA as compared
with the untreated Sepsis group. Serum TNF-α concentration
was elevated after 24 hours in the Sepsis-group (P < 0.05 vs.
Sham). This increase was not ameliorated in the Sepsis+TEA
group (Figure 1).

Hepatic microcirculation and leukocyte adherence
Sinusoidal blood flow increased in the Sepsis group, whereas
in the Sepsis + TEA group flow returned to Sham levels (Fig-
ure 2). The numbers of perfused sinusoids did not differ
between groups. However, in the Sepsis group sinusoidal
constriction was induced, which was not influenced in the
Sepsis + TEA group (Figure 3).

Temporary leukocyte adhesion increased in sepsis both in the
sinusoids and in the postsinusoidal venules. TEA reduced the
temporary venolar leukocyte adhesion significantly, whereas it
did not affect the increased sinusoidal adherence (Figure 4).
The permanent sinusoidal and venolar leukocyte adherence
was neither affected in the Sepsis group, nor in animals sub-
jected to Sepsis + TEA.

Liver Injury
In the untreated Sepsis group, serum activity of aspartate ami-
notransferase rose from 275 ± 101 U/l to 454 ± 108 U/l and
alanine aminotransferase activity increased from 97 ± 81 U/l
to 185 ± 58 U/l (P < 0.05 vs. Sham). These increases were
not significantly affected by TEA. Similarly, histopathologic
examination revealed only mild edema formation and patchy
pericentral necrosis in sepsis.

Discussion
The knowledge about the hepatic effects of TEA is just the
beginning. Recent investigation in the pre- and intraoperative
period in human and animals revealed conflicting results with
respect to hepatic perfusion [34-38]. All these studies were
performed in healthy subjects after a single bolus of epidural

Figure 1

Serum TNF-αSerum TNF-α. Serum TNF-α 24 hours after induction of sepsis by 
cecal ligation and puncture and sham procedure respectively. In Sep-
sis, serum TNF-α was increased compared with Sham (* P < 0.05 vs. 
Sham). Thoracic epidural anesthesia (TEA) did not ameliorate this sign 
of systemic inflammation. Data (n = 7 in each group) are displayed as 
mean ± 95% confidence interval.
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local anesthetics. The impact of continuous TEA on liver injury
in severe sepsis were not investigated.

Hepatic dysfunction in critical illness is still not completely
understood. In the current concept of septic liver injury, two
phases of dysfunction are distinguished [1]. The early phase is
related to hypoperfusion in the presence of hypovolemia and
inadequate cardiac output and resolves fast under supportive
therapy. The late and persistent dysfunction is characterized
by (supra-) normal tissue perfusion.

In this study, the microvascular liver blood flow was signifi-
cantly increased in the untreated Sepsis group. In the Sepsis
+ TEA group, sinusoidal blood flow was normalized compared
with the untreated Sepsis group. These changes in hepatic

perfusion were not correlated to changes in cardiac output,
which remained stable both in the Sepsis group and in the
Sepsis + TEA group. Furthermore, the effects of TEA on
hepatic tissue blood flow were also not associated with
altered sinusoidal vasoregulation or increased sinusoidal
recruitment.

Effects of sepsis and TEA on hepatic perfusion
Hepatic macrovascular inflow, although not directly measured
in this study, most likely remained constant because cardiac
output was not altered. This assumption is supported by
numerous studies showing a consistent correlation of cardiac
output and macrovascular hepatosplanchnic inflow in sepsis.
In human sepsis, macrovascular hepatic inflow rose with car-
diac output after therapeutic interventions [39-41]. Both in
early and late CLP-sepsis macrovascular hepatic inflow was
reduced in parallel with cardiac output [42,43]. Furthermore,
in the presence of unchanged or increased cardiac output,
hepatic macrovascular inflow also paralleled these changes in
cardiac output [42,44,45]. Consequently, the sepsis-induced
increase in sinusoidal blood flow and its reversal by TEA are
most probably not caused by changes of macrovascular
hepatic inflow.

Microvascular tissue perfusion in sepsis, however, is often
uncoupled from the systemic circulation. In the clinical therapy
of critical illness this dissociation might contribute to the per-
sistent organ failure after hemodynamic stabilization [46]. Ear-
lier studies demonstrated unchanged or even decreased
microvascular blood flow in the presence of two to three-fold
increased regional blood flow [42,45]. In our study sinusoidal
blood flow was increased in the Sepsis group whereas car-
diac output was not altered. Intravital microscopy and cardiac
output, however, needed to be performed in different sets of
animals to minimize interaction between both techniques.

The increase in hepatic microvascular blood flow occurred
despite sinusoidal vasoconstriction and consequently was

Table 1

Cardiorespiratory parameters

MAP
(mmHg)

HR
(bpm)

CO
(ml/min)

pH PaO2
(mmHg)

Sham 136 ± 10 432
(404/444)

420 ± 74 7.42 ± 0.02 87 ± 10

Sepsis 121 ± 11 468
(447/477)

402 ± 68 7.40 ± 0.09 91 ± 20

Sepsis + TEA 129 ± 16 420
(297/480)

391 ± 152 7.39 ± 0.09 90 ± 11

Twenty-four hours after induction of sepsis by cecal ligation and puncture and sham procedure, respectively. None of these parameters were 
significantly altered by sepsis or sepsis + thoracic epidural anesthesia (TEA). Data (n = 7) each group are displayed as mean ± 95% confidence 
interval (CI) or median (25%/75% percentile).
CO = cardiac output; HR = heart rate; MAP = mean arterial pressure; PaO2 = partial pressure of arterial oxygen.

Figure 2

Hepatic microvascular blood flowHepatic microvascular blood flow. Sinusoidal blood flow 24 hour after 
induction of sepsis by cecal ligation and puncture and sham procedure, 
respectively. In Sepsis, blood flow was increased compared with Sham 
(* P < 0.05 vs. Sham). Thoracic epidural anesthesia (TEA) reduced 
blood flow (# P < 0.05 vs. Sepsis). Data (n = 8 in each group) are dis-
played as mean ± 95% confidence interval.
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related to increased sinusoidal blood flow velocity. These find-
ings are consistent with an increased arteriolar inflow and are
thus the first hint to an impaired hepatic arterial buffer
response (HABR) in late polymicrobial sepsis. In HABR, liver
arterial blood flow is adapted in response to changes in portal
blood flow. Intrahepatic vasodilatation occurs at the level of
the preterminal branches of the hepatic artery and is regulated
by hydrogen sulfide and adenosine washout by portal blood
flow [47,48]. Our results are supported by earlier findings
demonstrating impaired HABR and a selective increase in
hepatic arterial blood flow in endotoxemia [49,50]. In the Sep-
sis + TEA group, the sepsis-related increase in liver microvas-
cular blood flow was blunted. It is therefore most likely that the
continuous TEA restored HABR. However, this line of interpre-

tation of the presented data is limited by the fact that we did
not measure hepatic and portal flow, pressure and resistance
separately in this study. Further investigations on the influence
of TEA on hepatic blood flow regulation in sepsis and other
clinically relevant conditions such as major liver resections are
warranted.

In this study, loss of sinusoidal perfusion was not present in
the Sepsis group whereas in earlier studies intravital micros-
copy revealed sinusoidal vasoconstriction and up to 30%
reduction in sinusoidal perfusion both in early and late rodent
CLP-sepsis [51-53]. Differences in volume resuscitation might
partly explain the differing results. In the previous studies an
initial bolus of 20 to 60 ml/kg saline solution was administered
during 20 to 24 hour CLP-sepsis [53,54]. In our study, volume
was infused continuously to a total dose of 144 ml/kg/24

Figure 3

Hepatic microcirculationHepatic microcirculation. (a) Percentage of non-perfused sinusoids 
and (b) sinusoidal width 24 hours after induction of sepsis by cecal 
ligation and puncture and sham procedure, respectively. In Sepsis sinu-
soidal vasoconstriction occurred (* P < 0.05 vs. Sham), which was not 
influenced in Sepsis + thoracic epidural anesthesia (TEA). Sinusoidal 
perfusion was neither influenced in Sepsis nor in Sepsis + TEA. Data (n 
= 8 in each group) are displayed as mean ± 95% confidence interval.

Figure 4

Temporary leukocyte adhesionTemporary leukocyte adhesion. Numbers of leukocytes adhering tem-
porarily to the (a) sinusoidal and (b) postsinusoidal venolar endothe-
lium 24 hours after induction of sepsis by cecal ligation and puncture 
and sham procedure respectively. In Sepsis, temporary adherence 
increased both to the sinusoidal and to the venolar endothelium (* P < 
0.05 vs. Sham). The venolar leukocyte adherence was prevented in 
Sepsis + TEA (# P < 0.05 vs. Sepsis). Data (n = 8 in each group) are 
displayed as mean ± 95% confidence interval.
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hours. Detection of hypovolemia is often difficult in critical
care. In experimental rat sepsis, volume depletion is even
harder to exclude. In the present study, mean arterial pressure
and heart rate were not significantly affected. Cardiac output
remained stable both in untreated rats and in the sepsis + TEA
group. The stable systemic hemodynamic parameters com-
bined with stable acid-base-balance and a well-maintained
microvascular perfusion in the liver suggests a sufficient resus-
citation in this model. This clinically relevant infusion regimen
might have prevented loss of perfused sinusoids and contrib-
uted to increased tissue blood flow in our study.

Effects of sepsis and TEA on leukocyte adhesion
In the Sepsis + TEA group, sepsis-induced temporary leuko-
cyte adhesion to the venolar endothelium decreased, whereas
temporary sinusoidal leukocyte adhesion was not prevented.
In contrast, the permanent leukocyte adhesion after 24 hour of
sepsis was neither affected in the Sepsis group nor in the Sep-
sis + TEA group. This observation is in line with prior findings
of time-dependent pattern of leukocyte recruitment in rat CLP-
sepsis with increased leukocyte adhesion after seven hours
and normalized values after 20 hours [55]. In a recent study
hepatic neutrophil recruitment declined after eight hours [56].
In contrast to sinusoidal temporary adhesion, hepatic venolar
temporary leukocyte adhesion is initiated by selectins [4,57-
59].

Reduced venolar rolling in the Sepsis + TEA group might have
been related to immune regulatory consequences of splanch-
nic sympathetic block. The technique of continuous TEA used
in this study induced a sympathetic block including hepatic
and intestinal sympathetic nerve roots as demonstrated by
thermography [26]. This block can be induced as long as 72
hours after catheter placement. There is some evidence of
hepatic sympathetic immune regulation supporting this inter-
pretation. Increased sympathetic activity in acute urinary reten-
tion results in hepatic inter-cellular adhesion molecule-1
expression [60]. Increased portal norepinephrine in sepsis
trigger hepatic release of TNF-α [17,18], which is in turn a pre-
requisite for venolar temporary leukocyte adhesion [61,62].
Furthermore, TEA has already been shown to reduce tempo-
rary adhesion in mesenteric venoles in hemorrhagic shock
[63]. Therefore, the abdominal sympathetic block associated
with TEA also might have reduced the venolar temporary leu-
kocyte adhesion in sepsis.

Finally, intestinal injury and portal inflow of inflammatory medi-
ators induce secondary hepatic inflammation [1,64,65]. Con-
sequently, the decreased hepatic leukocyte adhesion may be
related to the intestinal protection provided by TEA
[29,30,66]. The systemic inflammatory response as measured
by systemic release of TNF-alpha was not influenced in the
Sepsis + TEA group.

Thoracic epidural infusion of local anesthetics is related to a
segmental sensoric block, analgesia, and sympathetic block.
Each of these aspects, as well as systemically resorbed bupi-
vacaine might contribute to the observed effects of TEA on
hepatic microvascular perfusion and leukocyte adhesion.
However, the present study does not allow to distinguish or
weight these potential mechanisms or to separate primarily
hepatic effects from those secondary to intestinal effects of
TEA.

Conclusions
In this study, TEA ameliorated the sepsis-induced increase in
microvascular liver blood flow and attenuated leukocyte
recruitment. These results suggest an altered regulation of
liver blood flow and a modified intrahepatic immune response
during continuous TEA in sepsis. The consequences of TEA
with respect to liver injury, remote organ dysfunction and out-
come needs to be further explored.
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