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Abstract
Endotoxic shock is a serious systemic inflammatory response to an
external biological stressor. The responsiveness of NF-κB is built
upon rapid protein modification and degradation involving the
ubiquitin proteasome pathway. Using transgenic mice, we have
obtained in vivo evidence that interference with this pathway can
alleviate the symptoms of toxic shock. We posit that administration
of proteasome inhibitors may enhance the survival of patients with
septic shock.

Multiple myeloma, endotoxic shock and
proteasome inhibitors
Multiple myeloma (MM) provides an example of the functional
importance of ubiquitin in the NF-κB pathway [1,2]. A drug
that shows great promise against MM is Velcade (bortezomib,
formerly PS-341), a specific reversible inhibitor of proteasome
function and, hence, ubiquitin-mediated proteolysis (Figure 1).
Velcade is thought to block the activation of NF-κB and
thereby deprive MM cells of the signals that are otherwise
constitutive. In cell culture and animal studies Velcade has
shown considerable activity against MM cells and is now in
phase II and III human clinical trials [3,4].

Despite available therapies, including corticosteroids, volume
replacement, antibiotics, and vasopressor support, endotoxic
shock remains a common cause of death in ICUs [5]. It is
characterized by hypotension, vascular damage, and in-
adequate tissue perfusion, often leading to the failure of many
organ systems, including liver, kidney, heart and lungs, after
systemic bacterial infection [1,5,6]. The pathogenesis of septic
shock seems to be primarily governed by lipopolysaccharide
(LPS). Significantly, NF-κB activation is a central component in
septic shock, stimulating the expression of several proinflam-
matory proteins such as TNF-α, IL-1β, IL-6, and inducible nitric

oxide synthase [1,7]. Moreover, NF-κB is stimulated by these
endogenous mediators in a paracrine and autocrine fashion. It
is conceivable, therefore, that inhibition of NF-κB activation by
a rapid acting proteasome inhibitor may be of potential
therapeutic benefit in the treatment of septic shock [8].
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Figure 1

Ubiquitin proteasome pathway. An E1, E2 and E3 complex promotes
the ubiquitination of protein substrates via K48 linkage, which
predominantly targets substrates for proteasomal degradation. This
process is reversible though the action of deubiquitinating enzymes
(DUBs) that can cleave ubiquitin from the modified proteins.
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Support for this assertion comes from in vivo experiments
wherein the ubiquitin proteasome system was impaired in
transgenic mice. Ubiquitin plays a role on several levels in
NF-κB activation (Figure 2) [7,9]. Upon extracellular stimu-
lation by LPS, adaptor proteins such as TNF-receptor-asso-
ciated factor 6 (TRAF6; E3 ubiquitin ligase), IL-1 receptor-
associated kinase 1 (IRAK-1) and MyD88 (Myeloid differen-
tiation primary response gene (88)) are recruited to the cyto-
plasmic domain of the receptor [10]. Subsequently, TRAF6
interacts with UBC13/UEV1A, a heterodimer that catalyzes
the synthesis of polyubiquitin chains assembled through
linkage of the carboxyl terminus of one ubiquitin molecule to
an internal lysine residue at position 63 of the subsequent
ubiquitin molecule (K63-linked chains) [11-13]. K63-linked
chains are the primary signal responsible for initiating a
kinase cascade that recruits and activates TAK1-TAB2-TAB3
and the IκB kinase (IKK) complex (IKKα, IKKβ and IKKγ) [14].
Specifically, TAK1-TAB2-TAB3 recognizes K63-linked
chains, which may facilitate the oligermerization of the

complex and promote autophosphorylation and activation of
TAK1 [14]. TAK1 then phosphorylates the IKK complex,
namely IKKβ. IKKβ proceeds to phosphorylate IκBα, an
inhibitor that sequesters NF-κB in the cytoplasm. Upon
phosphorylation, IκBα is ubiquitinated via a lysine 48 (K48)
linkage and transported to the 26S proteasome for
degradation (a process that can be disrupted by specific
proteasome inhibitors [15,16]). NF-κB then translocates to
the nucleus where it stimulates transcription of pro-
inflammatory modulators that potentiate the symptoms of
endotoxic shock.

Since K48- and K63-linked chains assemble early in the
NF-κB pathway, one could speculate that transgenic animals
expressing mutant isoforms of ubiquitin that interfere with
chain assembly in a dominant negative manner (K63R or
K48R mutant ubiquitin) would display disrupted NF-κB
activation and, thereby, survive the induction of endotoxic
shock induced by LPS. Remarkably, although all the K63R

Figure 2

NF-κB signal transduction. Extracellular stimulation of microbial ligands such as lipolysaccharide trigger the canonical NF-κB pathway that leads to
septic shock. Shortly after stimulation, a series of ubiquitination events occur that activate TAK1 and IKK complexes. This ultimately promotes IκBα
phosphorylation and its subsequent proteolysis, thereby allowing the translocation of NF-κB into the nucleus where it promotes the transcription of
its target genes. IKK = IκB kinase; JNK = c-Jun N-terminal kinase; MKK6 = Mitogen-activated protein kinase kinase 6; MyD88 = Myeloid
differentiation primary response gene (88); NF = nuclear factor; TRAF = TNF-receptor-associated factor.



and wild-type animals showed symptoms of endotoxic shock
necessitating humane euthanasia within 24 hours, more than
half the K48R animals survived for 2 weeks, at which point
the experiment was terminated (Figure 3). The more profound
effects of K48R mutant ubiquitin in vivo suggests that K48R
mutant ubiquitin interferes more strongly with NF-κB
signaling. Therefore, the proteasome is likely a better target
for anti-NF-κB intervention than the IKK cascade for
treatment of septic shock. Clinically, our findings may help
explain why Velcade has greater efficacy than the IKK
inhibitor PS-1145 in blocking the activation of NF-κB in MM
[17]. Moreover, it has become clearer that LPS triggers inflam-
matory cascades involving as many as 14 distinct signaling
pathways, including the NF-κB pathway. Interestingly, many
of the genes in these pathways are regulated by the
proteasome [18]. Therefore, combined with our results, this
may also help explain why targeting one aspect of a signaling
cascade such as IKK might not be therapeutically beneficial.
However, since the proteasome is a common regulator of
LPS signaling and proteasome inhibitors such as Velcade are
already being used in clinical trials for cancer, it is not difficult
to imagine that drugs of this type could be administered in a
bolus for the treatment of septic shock. In fact, a recent study
by Reis and colleagues [19] also supports our notion of using
proteasomal inhibition to provide protection against septic
shock. However, further studies are required to determine the
full potential of proteasomal inhibitors such as Velcade in the
treatment of septic shock.

Future: proteasome inhibition and animal
experimentation
There is much yet to be learned from in vivo systems of
septic shock and proteasome inhibition. Ideally, one would
like to survey the activity of NF-κB at the level of the whole
organism in Velcade treated and untreated animals. Opti-
mally, one would like to know how the NF-κB pathway
functions in any tissue of interest (for example, the brain or
lungs, where innate immunity is active). Preferably, this should
be done in a living animal to facilitate monitoring of temporal
changes. Conveniently, 3X NF-κB luciferase transgenic
animals (in which transcription of luciferase is dependent on
NF-κB activation) have been developed, and such reagents
could be used to validate the approach [20,21]. These
animals could be injected with various doses of bacterial LPS
to induce endotoxic shock followed by the administration of
proteasome inhibitors such as Velcade. Subsequently, they
would be injected with the substrate luciferin and imaged
using an image intensifying CCD camera. If our prediction is
correct, then there should be reduced signal in treated versus
untreated animals and a better overall survival. Moreover, this
model would also be amenable to testing the clinical
significance of proteasome inhibition in acutely infected
animals with progressive invasive infection by performing a
cecal ligation and puncture (CLP) procedure, which leads to
polymicrobial sepsis and septic shock. We believe that the
3X NF-κB luciferase CLP model would at least begin to

address possible risks associated with proteasome inhibitors
in preclinical models with an acute and invasive infection prior
to testing such therapies in patients with similar acute and
invasive infections. Interestingly, a recent study by Reis and
colleagues [19] supports the notion of enhanced survival in a
septic shock animal model with the use of proteasome
inhibition combined with antibiotic treatment. This study at
least is one of the first to demonstrate the safety of
proteasome inhibition in acutely but invasively infected
preclinical animal models. Although these results are en-
couraging, the animals were pretreated with proteasome
inhibitors and antibiotics and, thus, experiments would need
to be repeated in animals already undergoing septic shock.
Overall, we believe that these results are at least encouraging
with respect to safety and future use of proteasome inhibitors
in septic shock patients with progressive infections.

We still expect much to be learned from the in vivo 3X NF-κB
luciferase model using Velcade. Certainly, the 3X NF-κB
luciferase mouse model alone or in combination with the CLP
procedure will also be useful to test how conventional
therapies compare to proteasome inhibitors, to optimize the
pharmacological properties of such drugs for this application,
and to determine if such agents should be used indepen-
dently or in combination with current treatments.

Conclusion
Conventional therapies to treat endotoxic shock improve the
survival of some, but not all, patients; thus, additional novel
treatments are required to treat this condition. Proteasome
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Figure 3

Mutant ubiquitin expressing mice are protected from endotoxic shock.
Survival of FVB/N transgenic mice expressing wild-type (WT) and
mutant ubiquitin (K48R or K63R) after a toxic intraperitoneal dose of
40 mg/kg of lipopolysaccharide. Two independent lines of K63R mice
were evaluated (lines 75 and 204). The generation of these lines has
been described in previous publications [22,23].



inhibitors effectively target the main signaling pathway(s)
active during septic shock, and genetic experiments suggest
that inhibition of this system should be advantageous for
clinical interventions. It would seem desirable, therefore, to
evaluate the potential of existing or novel proteasome
inhibitors to promote the survival of patients experiencing
toxic shock.
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