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Abstract

Susceptibility and response to infectious disease is, in part,
heritable. Initial attempts to identify the causal genetic poly-
morphisms have not been entirely successful because of the
complexity of the genetic, epigenetic, and environmental factors
that influence susceptibility and response to infectious disease and
because of flaws in study design. Potential associations between
clinical outcome from sepsis and many inflammatory cytokine gene
polymorphisms, innate immunity pathway gene polymorphisms, and
coagulation cascade polymorphisms have been observed. Confir-
mation in large, well conducted, multicenter studies is required to
confirm current findings and to make them clinically applicable.
Unbiased investigation of all genes in the human genome is an
emerging approach. New, economical, high-throughput techno-
logies may make this possible. It is now feasible to genotype
thousands of tag single nucleotide polymorphisms across the
genome in thousands of patients, thus addressing the issues of
small sample size and bias in selecting candidate polymorphisms
and genes for genetic association studies. By performing genome-
wide association studies, genome-wide scans of nonsynonymous
single nucleotide polymorphisms, and testing for differential allelic
expression and copy number polymorphisms, we may yet be able
to tease out the complex influence of genetic variation on suscep-
tibility and response to infectious disease.

Introduction

Infectious diseases impose a huge burden on modern health-
care systems - a problem that is even more significant in
developing countries. In older adults infectious diseases
accounted for 13% of all hospital charges in the USA in one
study [1]. Another study conducted in a pediatric population
estimated that in 2003 a total of 286,739 infectious disease
hospitalizations occurred among infants in the USA,
accounting for 42.8% of all hospitalizations of infants [2].
Additionally, we face the problem of increased hospital
mortality rates and costs due to increasingly resistant
organisms such as methicillin-resistant Staphylococcus
aureus [3-6] and vancomycin-resistant enterococci [7,8]. An
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understanding of what determines susceptibility and
response to infectious disease is central to reducing its
associated burden and improving health care.

Susceptibility and response to infectious disease is heritable.
Sorensen and colleagues [9] found that the genetic
contribution to death from infection is five times greater than
the genetic contribution to cancer. Since that report was
published, multiple groups have confirmed that susceptibility
to and outcome from infectious disease is heritable [10-12].
As a result, investigators have sought to identify genetic
variants associated with altered susceptibility and response
to infectious disease. ldentification of the genetic variants
associated with infectious disease would permit early
identification of patients at greater risk for adverse outcome
from, for example, pneumonia, sepsis, and acute respiratory
distress syndrome. It would also promote development of
novel, perhaps individually tailored, treatments for these
patients. In addition, detrimental side effects and expense of
adjuvant therapy could be avoided in other patients who, by
genotype, are predicted not to benefit.

Initial investigations have highlighted the complexity of the
immune response and thus the large number of host genes
that probably play a role in determining an individual's
susceptibility and response to infection. Additionally, environ-
mental factors may greatly modify genetic effects. Important
environmental factors include type of organism, antibiotic
susceptibility, site of infection, how soon the infection is
detected, and whether it is treated appropriately with anti-
biotics, resuscitation, supportive medical management and/or
surgery. Searching for genetic contributors to susceptibility
and response to infection is challenging in view of these
important confounders. Inadequate sample size and mis-
matching of patients with control individuals may contribute

CNP = copy number polymorphism; GWAS = genome-wide association studies; IL = interleukin; MBL = mannose-binding lectin; Ml = myocardial
infarction; nsSNP = nonsynonymous single nucleotide polymorphism; SNP = single nucleotide polymorphism; TLR = Toll-like receptor.
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to the lack of reproducibility seen in case-control studies.
Gene-gene interactions, epigenetic effects, and patterns of
linkage disequilibrium contained within haplotypes are all
issues that must be addressed. Despite this extremely high
degree of complexity, high-throughput genotyping techno-
logies and large patient cohorts may now allow us to tease
out the key genetic variants that influence susceptibility and
response to infection.

Candidate gene-based approach to genetic
association studies

From a genetics perspective, infection is a complex disease
that arises from the interaction of an individual's genotype
with the environment (infectious micro-organisms). Classic
Mendelian, single-gene diseases are studied using tech-
niques such as linkage analysis. In linkage analysis an
identifiable genetic marker is used as a tool to track the
inheritance pattern of a nearby disease gene that has not yet
been identified but whose approximate location is known
[13]. This approach has not worked well for complex diseases
that may involve many genes. In contrast, by using the known
pathophysiology of specific diseases to direct good guesses -
called the candidate gene approach [14] - investigators have
discovered many associations between genetic variants in
these relevant candidate genes and clinical outcome in
diseases such as diabetes, hypertension, and infection.
Candidate gene association studies determine whether the
frequency of a ‘risk’ allele is higher in affected than in
unaffected individuals. Linkage studies are not as powerful as
candidate gene association studies in identifying risk genetic
variants for common, complex diseases [13] because of the
modest effect of risk alleles in complex disease and poor
resolution. However, whole-genome genotyping in very large
populations of patients with specific complex diseases is
starting to yield discoveries.

Genetic association studies in infectious diseases have
largely focused on candidate genes in the inflammatory and
immune systems, because these are assumed to be impor-
tant in the immune response to an infection. Polymorphisms
in inflammatory and immune system genes may lead to in-
appropriate activation of the inflammatory system in response
to invading micro-organisms. Critical care investigators have
also looked at candidate genes in the coagulation system,
because an inappropriate coagulation response is important
in the pathology of sepsis and is intricately tied to the immune
response [15-18].

Once a candidate gene had been selected for study, variants
within the gene must be tested for association with pheno-
type. Single nucleotide polymorphisms (SNPs) are the most
commonly occurring type of variant in the genome, and they
are the most frequently studied in genetic association
studies. SNPs are a single-base change in the DNA
sequence. HapMap [19] and related projects have now
identified most common SNPs in the human genome (about
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2.2 million SNPs with a minor allele frequency >5%) in a
variety of ancestral groups, greatly simplifying SNP selection
for genetic association studies. Polymorphisms that change
the amino acid sequence of a gene, that are in a potential
regulatory sequence, or that alter a splice site of a gene have
a higher probability of having functional consequences.
Therefore, these polymorphisms have traditionally been the
most popular candidates for genetic association studies [13].

Candidate gene single nucleotide
polymorphism associations in sepsis

Early genetic association studies using a candidate gene
strategy focused on potential functional SNPs have produced
somewhat unclear and conflicting results. We review some
well known examples in genes familiar to many intensive care
physicians.

Tumour necrosis factor-o promoter polymorphisms

The A allele of a G-to-A polymorphism at position -308 in the
promoter region of the tumour necrosis factor-o. gene was
initially found to be associated with adverse outcome in
patients with septic shock [20]. A number of subsequent
studies yielded similar results [21,22] but several studies
[23], including a recent large study [24], were unable to
reproduce these findings. Interestingly, the tumour necrosis
factor-o. gene is located close to the lymphotoxin-o. gene, the
heat shock protein 70 gene, and other inflammatory pathway
genes. A number of investigators have suggested that SNPs
in these genes may be the real cause of any observed
differences in patient outcomes.

Interleukin-6 polymorphisms

A key inflammatory cytokine that has been well examined in
genetic association studies in infectious disease is IL-6.
These studies have also produced conflicting results and
highlight the problems with reproducibility in genetic asso-
ciation studies. The C allele of a G-to-C polymorphism at
position -174 of the IL-6 gene was associated with
decreased levels of IL-6 [25] in one study, and another study
found an association between -174 GG and increased serum
IL-6 concentrations [26]. However, a third study found no
association between either allele and serum concentrations
[27]. In critically ill patients, one study found no association
between the -174 G/C polymorphism and incidence of
sepsis, although -174 GG was associated with improved
survival rates in patients with sepsis [28], whereas our group
found that the -174 G/C polymorphism was not associated
with a difference in survival [29].

CD14 polymorphisms

CD14 is an innate immunity receptor for lipopolysaccharide,
peptidoglycan, and lipoteichoic acid, which - in association
with Toll-like receptor (TLR)4 and MD2 - forms the lipopoly-
saccharide receptor complex [30-33]. A C-to-T polymorphism
at position -159 in the promoter of the CD14 gene has been
examined for association with intermediate phenotypes and
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Genetic association studies of the CD14 C-159T polymorphism and infectious disease

Reference Patients/cells n Association
[41] 1st time MI male patients; mean age 178 cases, 135 T T cases (OR 1.78)
55.9 * 6.3 years controls, 18 volunteers TTmCD14
[108] Children 481 TT T sCD14 (P=0.01)
[109] Patients with severe sepsis 204 cases, 247 controls  No difference in allele f between cases and controls;
no association with mortality
[110] Monocytes/hepatocytes T | binding of Sp1,2,3, TFs
[111] Healthy blood donors 95 unstimulated No difference in sCD14, mCD14, or TNF concentration by
blood samples genotype
[34] White septic shock patients 95 cases, 122 controls TT T in septic shock patients and associated with T risk of
mortality
[35] Severely injured blunt trauma patients 58 cases, 95 controls No difference between cases and controls
[36] ICU patients with SIRS 77 cases, 39 controls No association with incidence of infection or outcome
[112] PBMCs from healthy persons 22 TT T TNF-o. mRNA levels after Escherichia coli or
stimulated with bacterial ligands LPS stimulation
[113] Healthy subjects 315 TT 7T risk for Chlamydia pneumoniae infection
[114] Very low birth weight infants 356 No association with development of blood-culture proven
sepsis
[115] Tuberculosis patients 267 cases, 112 controls  No association with tuberculosis or sCD14 levels
[116] PBMCs and plasma from healthy 165 TT T mCD14
individuals TT and CT T sCD14
TT T TNF-o after Chlamydiia stimulation
[117] CAD patients (78 Chlamydia positive) 610 T allele associated with T likelihood of chronic Chlamydia
infection
[118] Acute pancreatitis 117 cases, 263 controls  No association with sCD14 or mCD14
No association with disease severity
[119] Acute pancreatitis 77 cases, 71 controls No association with severity of pancreatitis
[48] ICU patients with SIRS 252 patients TT T Gram negative cultures
[39] Critically ill Japanese patients 197 cases, 214 controls  No association with sepsis or sepsis mortality
[120] Blood from healthy individuals 160 No association with cytokine release after stimulation
[38] ICU patients in Brazil 85 TT 7T survival
[121] Term neonates cord blood cultures 135 CD14 -159T T sCD14 in response to LPS
[122] Children with invasive pneumococcal 85 and 409, T prevalence of CC genotype in patients with

disease, healthy controls

respectively

S. pneumoniae

CAD, coronary artery disease; f, frequency; ICU, intensive care unit; LPS, lipopolysaccharide; mCD14, membrane bound CD14; MI, myocardial
infarction; OR, odds ratio; PBMC, peripheral blood mononuclear cell; sCD14, soluble CD14; TF, tissue factor; TNF, tumor necrosis factor.

Toll-like receptor-2 polymorphisms

clinical outcomes related to infection by numerous groups
(Table 1). There have been a number of contradictory reports
regarding the risk for developing, and outcome from, severe
sepsis and septic shock [34-40]. The CD14 -159 C/T
polymorphism does not appear to be associated with risk for
septic shock or mortality in Asian populations [39,40], and
there have been conflicting reports in mixed ethnicity and
Caucasian patient samples [34-37,41].

TLR2 is an innate immune receptor for Gram-positive bacteria
that activates the nuclear factor-kB signaling cascade and
transcription of inflammatory cytokines [42-44]. Polymorphisms
in the TLR2 gene have been associated with increased risk
for Gram-positive infections and decreased responsiveness
to bacterial peptides [45-48] but, in contrast, not with
mortality from severe S. aureus infection [49].
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Haplotype associations in sepsis

With the development of public resources such as dbSNP,
HapMap [50], the Human Genome Diversity Project [51], and
gene-based re-sequencing projects (SeattleSNPs [52] and
the National Institute of Environmental Health Sciences SNPs
Program [53]), we are beginning to develop a better under-
standing of the patterns of diversity across the human
genome. Data from the HapMap project have been used to
describe patterns of linkage disequilibrium in the human
genome, while detailed descriptions of variation in individual
genes allow researchers to describe haplotypes - patterns of
SNPs that are inherited as a single unit - of individual genes
(Figure 1). These tools have allowed researchers to move
away from a candidate (functional) SNP-based approach to a
broader survey of ‘tag’ SNPs that represent all known and
unknown polymorphisms in a haplotype of a candidate gene.
This eliminates the potential bias of examining only candidate
functional SNPs. The SeattleSNPs Program [54] has been
especially useful in picking tag-SNPs to examine in infectious
disease, because they focus on re-sequencing genes of the
inflammatory and immune systems [52].

We may not have a complete understanding of how poly-
morphisms in genes alter their expression or function, and so
it may be more useful to select SNPs that allow us to
describe all of the variation in a gene, and not just the
variation that we presume may have functional significance.
Our limited knowledge of transcriptional regulation and the
structure of linkage disequilibrium may in part be responsible
for the lack of reproducibility of many genetic association
studies in sepsis. A haplotype-based approach to candidate
gene association studies enables us to avoid making pre-
sumptions about the functional significance of SNPs in
candidate genes. A number of haplotype-based studies have
found associations between candidate genes and infectious
disease.

Protein C haplotypes

Two polymorphisms 13 base pairs apart in the promoter
region of the protein C gene (-1,654 C/T and -1,641 G/A)
have been suggested to alter outcome in sepsis [55] and to
alter protein C levels in blood [56] (Figure 1). Chen and
coworkers [57] found that the CA haplotype of protein C
-1,654 C/T and -1,641 G/A was associated with increased
risk for death and organ dysfunction in Chinese Han patients
with severe sepsis. The C allele of protein C 673 T/C (linkage
disequilibrium with the CA haplotype, D' = 100%) was also
found to be associated with increased mortality and organ
dysfunction in a cohort of 100 North American East Asians
with severe sepsis [58].

IL-6 haplotypes

IL-6 haplotype clades were associated with mortality and
organ dysfunction in critically ill adults [29]. A different,
common IL-6 haplotype running from nucleotides -1,363 to
+4,835 relative to the transcription start site of IL-6, and
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spanning the gene, conferred risk for susceptibility and
response to acute lung injury [59]. However, haplotype
analysis revealed that the IL-6 gene was not associated with
susceptibility and response to invasive pulmonary
aspergillosis in a Spanish population [60].

Mannose-binding lectin haplotypes

Mannose-binding lectin (MBL) binds sugar groups on
microbial surfaces and activates the ‘alternative’, or lectin,
complement pathway [61]. Three structural mutations have
been found in exon 1 of the MBL gene [62-64] that occur as
six different haplotypes [65-67]. These haplotypes have
consistently been associated with different serum levels of
MBL [65-67], but there have been conflicting reports of the
association between MBL haplotypes and outcome from
sepsis [48,68,69], as well as from other infectious and
inflammatory processes [70-76].

C-reactive protein haplotypes

The C-reactive protein haplotype 1,184C; 2,042C; 2,911C
was found to be more frequent in individuals who were not
colonized with S. aureus in the vestibulum nasi, and host
genotype was associated with the carriage of specific
S. aureus genotypes [77]. This is interesting in that it
highlights the importance of looking not just at host genetic
variation but also at variation in micro-organisms and how this
affects the interaction between host and micro-organism.

Other inflammation/coagulation gene haplotypes

A fibrinogen-B gene haplotype was associated with mortality in
sepsis [78]. An IL-10 haplotype has been associated with
increased mortality in critically ill patients with sepsis from
pneumonia but not in patients with extrapulmonary sepsis [79].

Remaining problems

Although haplotype analysis has produced some interesting
results, there remains the problem of nonreproducible results
seen in genetic association studies based on functional
SNPs. Additionally, groups appear to be inconsistent in their
definition of haplotypes within candidate genes, and haplo-
types defined in one patient population may not be applicable
to another. With the growing collection of documented SNPs
in the genome, our improved understanding of the patterns of
genetic variation, and high-throughput genotyping technolo-
gies, we now have the ability to move away from candidate
gene based association studies. The risk of looking for
candidate genes among pathways we already know is that
we may miss key genes because of ignorance of the other
biologic systems involved [14]. Approximately 10% of the
30,000 human genes are immune response genes, and thus
the likelihood of any single gene being associated with
infectious disease is low [80]. We now have the tools to use
a broader, less biased approach to genetic association
studies, and this may allow us finally to tease out the
contributions made by genetic variants to susceptibility and
response to infectious disease.
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Protein C gene SNPs. Protein C gene single nucleotide polymorphisms (SNPs) arranged in simplified haplotypes are illustrated. Each SNP is a
colored column labeled with its ‘rs’ number. (For example, the NCBI [National Center for Biotechnology Information] website [123] can be
searched by choosing the ‘SNP’ database and searching, for example, for ‘rs2069912'. A wealth of data relevant to this SNP is then displayed.)
The common (major) allele is illustrated in blue and the less common (minor) allele is displayed in yellow. SNPs are arranged in patterns called
haplotypes. There are four common SNP patterns, or haplotypes, observed in the protein C gene. Haplotype 3 is the most common, making up
about 40% of the observed haplotypes in those of European ancestry, whereas haplotype 2 makes up about one-third of the observed haplotypes.
Haplotype 4 is the most similar to the haplotype observed in chimpanzees, and it is therefore considered the ancestral haplotype. The common
haplotype 3 is similar to this ancestral haplotype on the left-hand SNPs, or 5’ end, but differs significantly on the right hand SNPs, or 3’ end. The 5’
end of haplotype 1 is very similar to haplotype 2, which has evolved considerably away from the ancestral haplotype. However, 3’ end of haplotype
1 is very similar to the ancestral haplotype 4. Therefore, there has almost certainly been a crossing over event that created this haplotype from two
precursors. It is evident that much more information can be determined from haplotypes than from single SNPs.

Moving forward with genetic association tions about important genes and pathways in disease are
studies in sepsis avoided and novel insights into biology are possible. That is,
Several technologies (Affymetrix and lllumina) have been whereas candidate gene studies test only for variants within
developed during the past few years that allow thousands of genes of known relevance, GWAS make it possible to gain
SNPs to be genotyped rapidly and accurately using small further insight into the pathophysiology of sepsis. Novel
amounts of DNA. As the speed and throughput of genotyping genes that have significant impact on outcome from sepsis

polymorphisms has increased, costs have decreased signifi- would implicate the gene pathways involved in sepsis.
cantly. It is now feasible for researchers to genotype thousands
of SNPs in thousands of patients at moderate cost. Now that it is economically feasible to genotype hundreds of

Concurrently, groups such as the International HapMap Project thousands of SNPs in thousands of patients, and HapMap
[60] and Perlegen Sciences [81] have provided high-resolution has made available intermediate allele frequency polymor-
maps that allow researchers to select SNPs that are correlated phisms that are informative for association studies [50],
with adjacent polymorphisms and can act as markers, or tag  whole-genome association studies for complex disease are
SNPs, for other unmeasured SNPs. Sets of thousands of possible and have been conducted in a number of diseases.
common SNPs can now be selected so that they tag the most The first published example of a GWAS in complex disease
common variants in a population. These SNPs can then be found that functional SNPs in the lymphotoxin-o. gene are
genotyped at low cost in thousands of patient samples using associated with susceptibility and response to myocardial
new high-throughput genotyping platforms. These technologies infarction (MI) [82]. A total of 92,788 tag SNPs were
and resources make new strategies for genetic association genotyped in 94 individuals with Ml and 653 control

studies, such as genome-wide association, practical, and they individuals to identify a locus on chromosome 6p21 that was
allow researchers to take an unbiased approach to association associated with susceptibility and response to MI. Further
studies independent from selection of candidate genes. linkage disequilibrium mapping and haplotype analysis

allowed the researchers to narrow down the association to
Genome-wide association two SNPs in the lymphotoxin-o. gene in 1,133 affected
Genome-wide association studies (GWAS), like linkage individuals versus 1,006 control individuals. Importantly, the

analyses, do not require a prior hypothesis of candidate researchers validated their GWAS findings with in vitro
genes to test for association with disease. In GWAS, as in functional analysis to establish the biologic plausibility of their
genetic association studies, allele frequencies are compared finding. GWAS has now been used to find disease-
between cases and controls. In GWAS, however, it is not associated alleles in Crohn's disease [83], type 1 diabetes
allele frequencies in individual candidate genes that are [84], type 2 diabetes [85] and age-related macular degenera-
compared, but rather allele frequencies in an unbiased tion [86], and will be an important tool in identifying disease-
selection of SNPs across the whole genome. Thus, assump- associated alleles in infectious disease.
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Genome-wide array of nonsynonymous single
nucleotide polymorphisms

An alternative to genotyping tag SNPs across the genome, as
in GWAS, is to directly test association of large numbers of
nonsynonymous SNPs (nsSNPs), or amino acid changing
SNPs, to disease. There are now almost 60,000 documented
SNPs that cause nonsynonymous amino acid substitutions
[87]. High-throughput genotyping technologies allow all of
these nsSNPs to be genotyped simultaneously in thousands
of patients. nsSNPs may cause functional changes in a
protein that lead to increased susceptibility and response to
disease. By screening all known nsSNPs in the human
genome, and not just in candidate genes, researchers do not
have to make assumptions about which genes or pathways
may play a role in disease. However, this method, unlike
genome-wide association, does require some knowledge of
the structure of genes. Genome-wide scans of nsSNPs have
identified polymorphisms associated with type 1 diabetes
[88] and Crohn's disease [89].

Testing for differences in allelic expression

Recent studies have shown that polymorphic alleles may be
differentially expressed within an individual and that this may
contribute to phenotypic variation [90-94]. Classically, allele-
specific differences in expression were attributed to pheno-
mena such as genomic imprinting (methylation causing
inactivation of one parental haplotype) [95] and X-chromo-
some inactivation [96]. More recently it has been recognized
that allele-specific expression is relatively common among
non-imprinted autosomal genes [91,93,97-99] and that this
difference in allelic expression is heritable [93]. Common
polymorphisms in autosomal genes may cause subtle quanti-
tative changes in the expression of one allele of a gene that
may make a minor contribution to a quantitative trait, or to the
susceptibility and response to a disease. Genome-wide
analysis of gene expression patterns has been used to examine
differences in global patterns of gene expression between
healthy and diseased individuals [90,100,101]. Allele-specific
differences in expression appear to be cell-type and stimulus
dependent [90,100,101]. Differential allelic expression has
been associated with susceptibility and response to colo-
rectal cancer [92], schizophrenia [102], and obesity [94].

Nonsynonymous coding SNPs can be used to test hetero-
zygote cell lines for differences in allelic expression [93,103].
Within one cell, if there are no cis-acting regulatory elements
affecting the expression of each allele, both alleles should be
equally expressed [93]. However, if an individual is hetero-
zygous for a functional cis-acting regulatory polymorphism,
then the two alleles will be differentially expressed [93]. A
nonsynonymous coding SNP within the transcript can be can
be used as a tag to distinguish between transcripts derived
from each allele [103]. Allelic discrimination can then be used
to measure relative allelic expression levels, with each allele
serving as an internal control for the other. Allele-specific
gene expression can be performed on a genome-wide scale
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using oligonucleotide arrays in order to find regulatory
elements [91]. Regulatory polymorphisms can then be
mapped and tested for association with disease. Identifying
regulatory SNPs or the haplotypes in which they lie may help
us to understand how genetic variation influences suscep-
tibility and response to disease.

Copy number polymorphisms

In addition to regulatory polymorphisms that cause allele-
specific differences in expression, protein expression may be
altered among individuals as a result of copy number poly-
morphisms (CNPs) [104,105]. CNPs are alterations in
genomic DNA that cause deletions or duplications of a gene
in adjacent segments of DNA [104,105]. Analogous to the
definition of SNPs, the minor form of a CNP must occur in
more than 1% of the population for this variation to be termed
a CNP. The deletions or duplications result in varying copy
numbers of genes among individuals and can cause
measurable differences in protein expression. The differences
in protein expression are not due to altered regulation of gene
transcription, as in allele-specific differences in expression,
but are a result of a decrease or increase in the number of
copies of the gene in the genome [104]. CNPs are likely to
contribute to complex disease and quantitative traits. An
example of a CNP that leads to human disease is the
genomic duplication of the PMP22 gene, which causes the
most common form of Charcot-Marie Tooth disease [1086].
CNPs are likely to have variable affects on phenotypes,
depending on the sensitivity of the gene to dose, interactions
with other loci, and the environment.

The availability of increasingly complex microarrays at
decreasing cost has made it possible to perform genome-
wide analysis of CNPs to quantify copy number differences.
Affymetrix and lllumina offer combined SNP genotyping and
copy number analysis, allowing researchers to perform
genome-wide studies to detect associations of disease with
either CNPs or SNPs. Genotyping of multibase, often multi-
allelic CNPs is more challenging than genotyping di-allelic
SNPs, however, and current data indicate that there is a low
correlation between quantitative measures of CNPs and the
true allelic state of each CNP in each individual [107]. More
accurate assays are needed for association studies using
CNPs.

Use of genetic tests in patient care

Although a number of important genetic associations with
outcome from sepsis have been discovered, further steps are
required to apply these discoveries to patient care. First, risk
for adverse outcome predicted by genotype is somewhat
helpful, but prediction of response to therapy is clearly more
useful for clinicians deciding on therapeutic approaches.
Therefore, genetic association studies must expand measured
end-points to include response to specific therapies. Second,
predictive genetic associations must also consider specificity
and sensitivity analyses to confirm that genotypic information



contributes to predictions of response to therapy or outcome
beyond what is possible using classical measures (age,
severity of illness, and so on). Third, prospective testing of
predictive genetic tests in large multicenter studies will be
important to validate the treatment-modifying discoveries and
to define the effectiveness (a step beyond efficacy) of
decisions based on the predictive genetic test. These are
substantial hurdles but they can be addressed, particularly by
global collaborations, which we should all now embrace.

Conclusions

The age of genomic personalized medicine is within our
reach. Previous genetic association studies in sepsis have
had problems with reproducibility as a result of a number of
issues, including small sample sizes, bias resulting from
selection of candidate genes, the influence of multiple genes
and environment on phenotype, epigenetics, and a lack of
understanding of the patterns of variation in the human
genome. We are beginning to develop the ability to deal with
these issues as new, more economically feasible technolo-
gies allow us to genotype thousands of patients at hundreds
of thousands of loci, and as we develop a better under-
standing of the complexity of patterns of variation in the
human genome and the environment. Discoveries of novel
genotype-phenotype associations in infectious disease may
provide us with a clearer understanding of the pathways that
are involved in susceptibility and response to infection, and
they may one day allow us to treat patients with more specific
treatments with fewer side effects.
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