
Available online http://ccforum.com/content/12/5/R125
Open AccessVol 12 No 5Research
The adenosine deaminase inhibitor 
erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal 
permeability and protects against experimental sepsis: a 
prospective, randomised laboratory investigation
Nalan Kayhan1*, Benjamin Funke2*, Lars Oliver Conzelmann1, Harald Winkler2, Stefan Hofer2, 
Jochen Steppan2, Heinfried Schmidt^, Hubert Bardenheuer2, Christian-Friedrich Vahl1 and 
Markus A Weigand2,3

1Department of Thoracic and Cardiovascular Surgery, University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
2Department of Anesthesiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
3Department of Anesthesiology and surgical Intensive Care Medicine, University hospital of Gießen and Marburg, Campus Gießen, Rudolf-Buchheim 
Strasse 7, 35292 Gießen, Germany
* Contributed equally  ^ Deceased

Corresponding author: Markus A Weigand, markus.weigand@med.uni-heidelberg.de

Received: 8 May 2008 Revisions requested: 21 May 2008 Revisions received: 10 Sep 2008 Accepted: 13 Oct 2008 Published: 13 Oct 2008

Critical Care 2008, 12:R125 (doi:10.1186/cc7033)
This article is online at: http://ccforum.com/content/12/5/R125
© 2008 Kayhan et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction The treatment of septic conditions in critically ill
patients is still one of medicine's major challenges. Cyclic
nucleotides, adenosine and its receptors play a pivotal role in
the regulation of inflammatory responses and in limiting
inflammatory tissue destruction. The aim of this study was to
verify the hypothesis that adenosine deaminase-1 and cyclic
guanosine monophosphate-stimulated phosphodiesterase
inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be
beneficial in experimental endotoxicosis/sepsis.

Method We used two established animal models for
endotoxicosis and sepsis. Twenty-four male Wistar rats that had
been given intravenous endotoxin (Escherichia coli
lipopolysaccharide) were treated with either erythro-9-[2-
hydroxyl-3-nonyl]-adenine infusion or 0.9% saline during a study
length of 120 minutes. Sepsis in 84 female C57BL/6 mice was
induced by caecal ligation and puncture. Animals were treated
with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections
after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed
treatment.

Results In endotoxaemic rats, intestinal production of
hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to
411.4 +/- 124.6 μmol/l and uric acid formation increased from
1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In
endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-

nonyl]-adenine, we found no elevation of adenosine metabolites.
The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control
animals; p = 2.5 × 10-7) reflects a highly permeable small
intestine and through the application of erythro-9-[2-hydroxyl-3-
nonyl]-adenine, intestinal permeability could be re-established.
The lipopolysaccharide animals had decreased L-rhamnose/3-
O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-
hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa
damage score of the septic animals was higher compared with
control and therapy animals (p < 0.05). Septic shock induction
by caecal ligation and puncture resulted in a 160-hour survival
rate of about 25%. In contrast, direct adenosine deaminase-1
inhibition resulted in a survival rate of about 75% (p = 0.0018).
A protective effect was still present when erythro-9-[2-hydroxyl-
3-nonyl]-adenine treatment was delayed for four hours (55%, p
= 0.029).

Conclusions We present further evidence of the beneficial
effects achieved by administering erythro-9-[2-hydroxyl-3-
nonyl]-adenine, an adenosine deaminase-1 and cyclic
guanosine monophosphate-stimulated phosphodiesterase
inhibitor, in an endotoxicosis and sepsis animal model. This
suggests a potential therapeutic option in the treatment of
septic conditions.
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ADA: adenosine deaminase; ANOVA: analysis of variance; APACHE: Acute Physiology and Chronic Health Evaluation; CLP: caecal ligation and 
puncture; EHNA: erythro-9-[2-hydroxyl-3-nonyl]-adenine; HPLC: high-performance liquid chromatography; K2HPO4: dipotassium phosphate; 
KH2PO4: potassium dihydrogen phosphate; LPS: lipopolysaccharide; NaCl: sodium chloride; PDE2: guanosine monophosphate-stimulated phos-
phodiesterase; SCID: severe combined immunodeficiency disease; SEM: standard error of the mean.
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Introduction
Despite improvements in treatment modalities, the leading
cause of death in non-coronary intensive care unit patients
remains sepsis and septic shock, complex systemic activa-
tions of inflammation and coagulation in response to an infec-
tious insult [1,2].

The purine nucleoside adenosine, a plurifunctional mediator
and modulator of myriad physiological processes, which also
serves as the substrate for ATP, is elevated at injured and
inflamed sites, as well as in the plasma of septic and septic
shock patients [3]. It is becoming increasingly apparent that
this molecule and its receptors that elevate levels of cAMP,
play a crucial role in the regulation of inflammatory responses
and in limiting inflammatory tissue destruction [4-7]. By signal-
ling through its specific Gs protein-coupled A2A adenosine
receptor, adenosine suppresses the immune system, primarily
by inhibiting lymphoid or myeloid cells [5,8] including neu-
trophils [9], macrophages [10], lymphocytes [11,12] and
platelets [13]. A2A receptor-knockout mice present a pheno-
type of enhanced tissue damage and inflammation [5,14]. Fur-
thermore, adenosine is an endogenous inhibitor of neutrophil-
induced endothelial cell injury [15,16] and β2-integrin expres-
sion on polymorphonuclear leucocytes, which mediate adhe-
sion to the vascular endothelium, is mainly modulated by A2A
receptors [17].

Inhibition of rephosphorylation of adenosine by adenosine
kinase inhibitors [18] or its degradation by adenosine deami-
nase (ADA) improves survival of sepsis in various sepsis mod-
els [19-21]. ADA is an enzyme that is involved in purine
metabolism and essential for the proliferation, maturation and
function of lymphoid cells. Congenital deficiency of this
enzyme is associated with an accumulation of deoxyadenosine
triphosphates that will inhibit the activity of ribonucleotide
diphosphate reductase. This results in severe combined
immunodeficiency disease (SCID).

ADA activity is composed of two isoenzymes, referred to as
ADA1 and ADA2 [22]. ADA1 is ubiquitous and highly efficient
in deaminating the substrates adenosine and 2'deoxyadenos-
ine. The isoenzyme ADA2 coexists with ADA1 only in mono-
cytes and macrophages [23]. Law and colleagues
demonstrated the beneficial effect of 2'-deoxycoformycin
(pentostatin), an exclusive ADA2 inhibitor, in preventing the
systemic inflammatory response syndrome secondary to fae-
cal peritonitis in rats [24]. There is a lack of data concerning
the question if a specific inhibitor of ADA1 could also influence
survival rates in septic conditions.

Another critical aspect of a septic condition is its intestinal bar-
rier dysfunction resulting in bacterial translocation and thereby
perpetuating and aggravating the syndrome [25,26]. Endothe-
lial hyperpermeability which results in a vascular leakage can
induce edema formation in the intestinal mucosa. This might

contribute to increased gut permeability. Suttorp and Seybold
identified the importance of cyclic guanosine monophosphate-
stimulated phosphodiesterase-2 (PDE2) for the integrity of
endothelial barrier function [27,28]. They presented evidence
that in severe infection, high PDE2 activity may contribute to
endothelial barrier dysfunction, which can be antagonised by
PDE2 inhibition [28].

In this study we used an endotoxicosis animal model and a
sepsis animal model to provide evidence of the beneficial
effects of administration of erythro-9-[2-hydroxy-3-nonyl] ade-
nine (EHNA), a specific ADA1 and PDE2 inhibitor, on the pro-
duction of adenosine metabolites and intestinal permeability,
and improved survival rates.

Materials and methods
All experiments were performed in accordance with the guide-
lines for research with experimental animals (Helsinki Declara-
tion) and were approved by the Governmental Animal
Protection Committee (Karlsruhe, Germany).

Endotoxaemic challenge
Male Wistar rats (250 g to 330 g body weight) were kept on
a diet of standard rat food until the day before the experiment.
Eight hours before the experiment began, food was withheld
from all animals but free access to water was maintained. The
rats were anaesthetised intraperitoneally with 60 mg/kg
sodium pentobarbital (Nembutal, Sanofi-aventis, Duesseldorf,
Germany). The right internal jugular vein, the left femoral vein
and the left femoral artery were cannulated with polyethylene
tubings (outer diameter = 0.9 mm; inner diameter = 0.5 mm)
to measure mean arterial pressure, and to allow drug infusion
and blood sampling, respectively. For blood sampling from the
portal vein, a midline laparotomy was performed, the small
intestine was carefully displaced and the portal vein was punc-
tured proximal to the splenic vein at three different times. After
each blood collection from the portal vein, the intestine was
covered with warmed (37°C) saline-soaked gauze to preserve
moistness and temperature. Rectal temperature was meas-
ured using a thermistor probe (YSI-400 Series) and main-
tained at 37°C with the help of a heating ventilator.

Rats were randomised into three groups of eight animals each
(Figure 1). After the animals were prepared, they were allowed
a 30-minute stabilisation period. Endotoxaemia was induced
immediately after the baseline measurements by continuous
intravenous infusion of 1.5 mg/kg/hour endotoxin (lipopolysac-
charide (LPS) from Escherichia coli 026:B6; Sigma Chemi-
cals, Deisenhofen, Germany) diluted in sodium chloride (NaCl)
0.9% for 60 minutes. The animals of group B (LPS + EHNA)
additionally received a continuous intravenous infusion of 5
mg/kg/hour EHNA diluted in NaCl 0.9% for 60 minutes from
the beginning of the endotoxaemic challenge. Animals of the
control group received no EHNA or endotoxin. The same
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amount of fluids was infused in all rats for the total duration of
the study (120 minute).

Analysis of purine compounds
Purine compounds (hypoxanthine and uric acid) were meas-
ured in 0.2 ml of collected blood in precooled dipyridamole
solution (0.2 ml; 5 × 10-5 M) to prevent nucleoside uptake by
red blood cells. After immediate centrifugation at 4°C, plasma
supernatant (0.3 ml) was deproteinated with perchloric acid
(70%; 0.05 ml). After neutralisation with potassium dihydro-
gen phosphate (KH2PO4) and centrifugation, nucleosides
were determined by HPLC. We automatically injected 0.1 ml
samples onto a C-18 column (Nova-Pak C18, 3.9 mm × 150
mm, Waters Instruments, Rochester, NY). The linear gradient
started at 100% KH2PO4/K2HPO4 (1:1 mixture of mono and
dipotassium phosphate) 1:1 (0.1 M; pH 4.0) and increased to
60% of 60/40 methanol/water (v/v) in 15 minutes, the flow
rate being 1.0 ml/minute. This was followed by a reversal of the
gradient to initial conditions over the next three minutes. We
continuously monitored absorbance of the column eluate by
using a photodiode array detector (Waters 996) to measure
hypoxanthine at 254 nm and uric acid at 293 nm. We per-
formed peak identification and quantitation of the respective
compounds by comparing the retention times of the sample
peaks with respective peaks of ultrapure standards.

Measurements
Mean arterial blood pressure and temperature were recorded
at baseline and at 15, 30, 45, 60, 75, 90, 105 and 120 min-

utes after starting the endotoxin or saline infusion. Hypoxan-
thine and uric acid were determined from arterial and portal
venous blood samples taken at baseline, 60 and 120 minutes
later. We based our calculation of the quantity of purine com-
pounds produced by the intestine on the difference between
portal venous and arterial concentrations.

Assessment of intestinal permeability and absorption
Timed recovery of 3-O-methyl-D-glucose, lactulose and L-
rhamnose in urine after duodenal administration was assessed
in our endotoxaemic rats in order to estimate absorptive
capacity and intestinal permeability. In brief, after the animals
were prepared as described above and the LPS infusion was
started, the rats received 3 ml of a solution containing 25 g/l
3-O-methyl-D-glucose (Sigma-Aldrich Chemie GmbH,
Munich, Germany), 25 g/l lactulose (Sigma-Aldrich Chemie
GmbH, Munich, Germany) and 10 g/l L-rhamnose (Sigma-
Aldrich Chemie GmbH, Munich, Germany) direct into the duo-
denum after puncturing the proximal part of the organ. Urine
was collected after animals were euthased by puncturing the
urinary bladder. High performance HPLC was conducted
according to the procedure described by Sorensen and col-
leagues [29]. Preabsorption factors, such as dilution by secre-
tion and intestinal transit time, and postabsorption factors,
such as systemic distribution and renal clearance, are
assumed to affect the saccharides equally. Therefore, the uri-
nary excretion rhamnose/glucose and lactulose/rhamnose
ratios are considered as parameters for intestinal absorption
capacity and permeability, respectively [29,30].

Figure 1

Endotoxaemic challenge (experimental design)Endotoxaemic challenge (experimental design). Rats were randomised to three groups of eight animals each. After preparation, a 30 minute sta-
bilisation period was allowed. The animals of group B (lipopolysaccharide (LPS) + erythro-9-[2-hydroxyl-3-nonyl]-adenine (EHNA)) received 5 mg/
kg/hour EHNA intravenously as a continuous infusion over one hour. Endotoxaemia was induced immediately after baseline measurements by contin-
uous intravenous infusion of LPS for 60 minutes. Animals of the control group received no EHNA or LPS. The same amount of fluids was infused in 
all rats for the total duration of the experiment (120 minutes).
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Evaluation of intestinal mucosal damage
After the animals were sacrificed, segments of the distal ileum
3 to 5 cm in length were cautiously exteriorised and immedi-
ately snap frozen in liquid nitrogen. The frozen ileal mucosa
samples were cut into 4 μm thick sections using a cryostat
(Leica CM1850, Leica Microsystems, Wetzlar, Germany),
then mounted on super frost slides, air dried at 37°C, over-
night and stained with haematoxylin and eosin following stand-
ard procedures. Mucosal damage grading was assessed by
two independent observers according to the procedures
described by Chiu and colleagues [31] (Tab. 1).

Caecal ligation and puncture
Caecal ligation and puncture (CLP) was performed as
described previously [32-36]. In brief, female C57BL/6 mice
aged 12 to 16 weeks were anaesthetised by intraperitoneal
administration of 75 mg/kg Ketamine (Ketanest, Pfizer
Pharma, Karlsruhe, Germany) and 16 mg/kg Xylazine
(Rompun, Bayer AG, Leverkusen, Germany) in 0.2 ml sterile
pyrogen-free saline (Braun AG, Melsungen, Germany). The
caecum was exposed through a 1.0 to 1.5 cm abdominal mid-
line incision and subjected to a ligation 6 mm from the caecal
tip followed by a single puncture with a G23 needle. A small
amount of stool was expelled from the punctures to ensure
patency. The caecum was returned into the peritoneal cavity
and the abdominal incision was closed by layers with 5/0 pro-
lene thread (Ethicon, Norderstedt, Germany). No antibiotics
were administered in this model. For the sham-operated mice
serving as controls, the caecum was mobilised but no ligation
or puncture was performed.

In order to investigate the therapeutic effect of EHNA, 10 mg/
kg of the adenosine deaminase inhibitor was administered by
intraperitoneal injection after 0, 12 and 24 hours or 4, 12 and
24 hours. Control groups received the same volume of LPS-

free 0.9% NaCl solution. CLP was performed blind with
respect to the identity of the treatment group. Survival after
CLP was assessed four to six times a day for seven days.

Statistical analysis
Data were analysed using the R language and environment for
statistical computing and graphics (version 2.7.2) [37]. Data
are presented in one dimensional dot plots, as well as mean
and standard error of the mean (SEM) or using Kaplan-Meier
survival curves. We performed Bartlett's test for homogeneity
of variances. The differences between groups were assessed
by one-way analysis of variance (ANOVA), post hoc Tukey-
Kramer method for pairwise comparisons and log-rank-test for
survival curve analysis. p < 0.05 were considered significant.

Results
Purine compounds
At the beginning of the experiment, mean arterial pressure and
temperature showed no differences between groups and
remained stable throughout the observation period in all
groups (Table 2). The haemodynamic parameters of experi-
mental animals are shown in Table 3.

Bartlett's test for all experimental groups revealed homogene-
ity of variances. In the control animals, the intestinal hypoxan-
thine and uric acid production remained statistically
unchanged throughout the observation period (one-way
ANOVA: hypoxanthine p = 0.6, uric acid p = 0.6). Similarly, the
intestinal hypoxanthine and uric acid production in endotoxin-
stimulated animals with EHNA application (LPS + EHNA
group) did not change during the duration of the experiment
(one-way ANOVA: hypoxanthine p = 0.07, uric acid p = 0.9).
In contrast, in the endotoxaemic rats without EHNA applica-
tion (LPS group), the intestinal production of hypoxanthine
increased from 9.8 ± 90.2 μmol/l at baseline to 411.4 ± 124.6

μmol/l after 120 minutes (post hoc Tukey-Kramer test: p =
0.03), and the intestinal production of uric acid increased from
1.5 ± 2.3 mmol/l at baseline to 13.1 ± 2.7 mmol/l after 120
minute (post hoc Tukey-Kramer test: p = 0.01). Furthermore,

after 120 minutes the LPS group differed in the mean of intes-
tinal hypoxanthine and uric acid production from control and
EHNA treated animals (hypoxanthine production: ANOVA p =
0.02, post hoc Tukey-Kramer test p = 0.03; uric acid produc-

Table 1

Intestinal mucosal damage grading score.

Grade Histological characteristics

Grade 0 Normal mucosal villi

Grade 1 Subepithelial Gruenhagen's space (oedema), usually at the apex of the villus

Grade 2 Extension of the subepithelial space with moderate lifting of epithelial layer from the lamina propria

Grade 3 Massive epithelial lifting down the sides of villi. A few tips may be denuded

Grade 4 Denuded villi with lamina propria and dilated capillaries exposed

Grade 5 Digestion and disintegration of lamina propria; haemorrhage and ulceration
Page 4 of 11
(page number not for citation purposes)



Available online http://ccforum.com/content/12/5/R125
tion: ANOVA p = 0.01, post hoc Tukey-Kramer test p = 0.009)
(Figures 2a and 2b).

Intestinal permeability and absorption capacity
The recovery of saccharides excreted in urine at their appropri-
ate ratios is shown in Figure 3. The lactulose/L-rhamnose ratio
of the LPS group with an elevation of about three times the
value of the control group (ANOVA p = 3.5 × 10-9, Tukey-
Kramer test p = 2 × 10-7) reflects a highly permeable small
intestine in septic rats. Through the application of EHNA,
intestinal permeability could be recovered to a value compara-
ble with that of control animals (Figure 3a). Also, the LPS ani-
mals had decreased L-rhamnose/3-O-methyl-D-glucose urine
excretion ratios (0.38 ± 0.05) compared with normal controls
(0.58 ± 0.12, post hoc test p = 0.05), consistent with a
decrease in gastrointestinal functional absorptive capacity.
ADA1 inhibition by a single dose of EHNA diminished this
effect (Figure 3b).

Evaluation of intestinal mucosal damage
Histologically, we were able to demonstrate a protective effect
of ADA1 inhibition by EHNA against intestinal mucosal dam-
age in our endotoxaemic animal model (Figures 4 and 5).
According to an established mucosal damage score [31], the
control and therapy groups (LPS + EHNA) are not statistically
different even though the score is somewhat increased in the
therapy group. In contrast, the mucosa damage score of the
septic animals is higher compared with control and therapy
animals (p < 0.05).

Survival after CLP
Septic shock induction by CLP resulted in a 160-hour survival
rate of about 25%. In comparison, the direct adenosine deam-
inase-1 inhibition after septic shock induction via CLP resulted
in a 160-hour survival rate of about 75% (p = 0.0018). A pro-
tective effect was still present when the treatment of EHNA

was delayed for four hours after CLP (55% survival, p =
0.029). Kaplan-Meier survival curves are shown in Figure 6.

Discussion
Adenosine and its receptors play a crucial role in the regula-
tion of inflammatory responses and in limiting inflammatory tis-
sue destruction [4-6]. Elevation of adenosine and activation of
its receptors and their downstream signalling are promising
targets for treatment of septic conditions [38]. Thiel and col-
leagues showed that intravenous infusion of adenosine during
endotoxaemia protects from oxygen-mediated tissue injury
without compromising the bactericidal mechanisms of poly-
morphonuclear leucocytes [39]. In further studies, the authors
demonstrate that the A2A receptor agonist compensated for
the loss of endogenously formed adenosine in inflamed lungs
of oxygenated mice and thereby prevented inflammatory lung
injury and death [40]. The inhibition of the degradation of ade-
nosine by ADA improves survival from sepsis [19-21]. ADA
activity is composed of the two isoenzymes ADA1 and ADA2
[22]. ADA2 coexists with ADA1 only in monocytes and macro-
phages [23]. The specific ADA2 inhibitor 2'-deoxycoformycin
(pentostatin), primarily used to treat hairy cell leukaemia, has
seen increasing attention as an immunosuppressant [41]. Law
and colleagues demonstrated the beneficial effect of pento-
statin application in preventing the systemic inflammatory
response syndrome secondary to faecal peritonitis in rats [24].
On the other hand, ADA1 is ubiquitous and highly efficient in
deaminating the substrates adenosine and 2'deoxyadenosine.

In addition, a hallmark of septic conditions are their intestinal
barrier dysfunctions resulting in bacterial translocation and
thereby perpetuating and aggravating the syndrome [25,26].
Endothelial cells are important mediators in orchestrating the
host response in sepsis [42]. A pivotal feature of sepsis is
microvascular dysfunction in which endothelial activation, dys-
function and thereby hyperpermeability seem to play a central

Table 2

Mean arterial pressure and rectal temperature of endotoxaemic rats: Mean arterial pressure (MAP) and rectal temperature (temp) 
in control animals, in animals receiving 1.5 mg/kg endotoxin over a 60 minute period (lipopolysaccharide (LPS) group), and in 
animals receiving endotoxin plus an infusion of 5 mg/kg/hour erythro-9-[2-hydroxyl-3-nonyl]-adenine (EHNA) (LPS + EHNA group). 
Data are mean ± standard error of the mean.

Parameter Group Time (minutes)

0 15 30 45 60 75 90 105 120

MAP Control 76.0 ± 1.6 76.5 ± 3.5 76.9 ± 3.7 82.1 ± 3.6 83.0 ± 3.6 79.6 ± 3.8 84.8 ± 2.9 83.4 ± 4.0 81.3 ± 4.1

LPS 78.8 ± 3.0 73.6 ± 3.9 82.4 ± 4.4 83.1 ± 4.9 90.4 ± 3.8 87.0 ± 6.5 86.8 ± 4.7 84.8 ± 4.3 81.6 ± 4.8

LPS + EHNA 77.4 ± 3.4 75.5 ± 2.7 76.6 ± 2.5 82.0 ± 2.8 83.5 ± 3.1 86.8 ± 2.9 90.3 ± 3.1 85.5 ± 3.3 83.6 ± 3.4

Temp Control 36.1 ± 0.3 35.8 ± 0.5 36.3 ± 0.4 36.4 ± 0.5 36.4 ± 0.3 36.3 ± 0.3 36.8 ± 0.3 36.9 ± 0.3 36.6 ± 0.3

LPS 36.8 ± 0.4 36.8 ± 0.5 37.0 ± 0.6 36.8 ± 0.4 37.3 ± 0.6 36.7 ± 0.6 36.7 ± 0.6 36.8 ± 0.5 36.8 ± 0.4

LPS + EHNA 36.4 ± 0.3 36.9 ± 0.3 37.8 ± 0.2 38.2 ± 0.2 37.9 ± 0.1 37.0 ± 0.3 37.7 ± 0.3 37.8 ± 0.2 37.4 ± 0.2
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role [43]. Endothelial hyperpermeability results in a vascular
leakage of the intestinal mucosa that might contribute to
increased gut permeability. Suttorp and Seybold identified the
importance of cyclic guanosine monophosphate-stimulated
PDE2 for the integrity of the endothelial barrier function
[27,28]. They presented evidence that in severe infection, high
PDE2 activity may contribute to endothelial barrier dysfunc-
tion, which can be antagonised by PDE2 inhibition [28].

We based our approach on the hypothesis that ADA1 and
PDE2 inhibition, targeting monocytes and the endothelium/
intestinal epithelium respectively, could be beneficial in exper-
imental septic conditions and employed EHNA, a specific
ADA1 and PDE2 inhibitor, as the therapeutic agent.

There are numerous animal models and all of them have limita-
tions and advantages. Indeed there is controversy whether

endotoxaemic shock and sepsis are different entities or not.
However, the LPS model has a role in helping to understand
the sepsis phenotype [44]. As our experimental basis, we uti-
lised this commonly used endotoxicosis model. LPS-induced
endotoxaemic shock simplifies aspects of experimental design
while maintaining features of a compensated human sepsis
(such as hypermetabolism, anorexia, mild hypotension, leuco-
cytosis and hyperlactataemia [45,46]). Furthermore doses of
LPS are readily measured and controlled because it is a stable
and relatively pure compound. This ensures reproducibility of
the septic challenge. As shown by Schmidt and colleagues,
this endotoxaemic rat model is associated with a release of
purine metabolites from the intestinal tract during endotoxae-
mia [47]. In our endotoxaemic rats, the intestinal production of
hypoxanthine and uric acid was also increased. In contrast, in
endotoxaemic animals treated with the ADA1/PDE2 inhibitor
EHNA, an increased intestinal production was not observed,

Table 3

Haemodynamic parameters of endotoxaemic rats. art = arterial; BE = base excess; ENHA = erythro-9-[2-hydroxyl-3-nonyl]-adenine; 
LPS = lipopolysaccharide; pCO2 = partial pressure of carbon dioxide; pHCO3

- = bicarbonate; pO2 = partial pressure of oxygen; SO2 = 
oxygen saturation. Data are mean ± standard error of the mean.

Parameter Group Time (minutes)

0 60 120

art. SO2 Control 94.5 ± 0.7 97.2 ± 0.5 95.5 ± 1.0

LPS 96.3 ± 0.8 97.4 ± 0.5 97.2 ± 0.3

LPS + EHNA 94.4 ± 0.5 92.4 ± 4.3 91.3 ± 5.6

art. PO2 control 83.4 ± 4.4 86.7 ± 3.7 88.3 ± 2.8

LPS 95.1 ± 9.5 107.1 ± 9.4 99.7 ± 4.2

LPS + EHNA 75.7 ± 2.3 89.5 ± 5.3 86.6 ± 6.9

art. PCO2 control 47.2 ± 1.4 41.3 ± 1.7 40.2 ± 1.1

LPS 42.8 ± 1.6 37.1 ± 1 35.0 ± 0.8

LPS + EHNA 49.5 ± 1 35.8 ± 3.9 34.0 ± 2.4

art. HCO3 
- control 26.9 ± 0.5 24.5 ± 1.0 24.1 ± 0.5

LPS 25.3 ± 1.0 22.8 ± 0.6 18.6 ± 1.0

LPS + EHNA 28.2 ± 0.5 21.3 ± 3.4 18.7 2.5

art. PH control 7.37 ± 0.01 7.40 ± 0.01 7.39 ± 0.01

LPS 7.38 ± 0.01 7.40 ± 0.01 7.35 ± 0.02

LPS + EHNA 7.36 ± 0.01 7.28 ± 0.12 7.31 ± 0.07

art. BE control 1.4 ± 0.6 0.2 ± 1.0 0.2 ± 0.4

LPS 0.5 ± 0.9 -1.1 ± 0.7 -5.8 ± 1.3

LPS + EHNA 2.4 ± 0.6 -5.3 ± 5.9 -6.6 ± 3.7
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neither for hypoxanthine or uric acid. Increased serum uric acid
correlates with severe sepsis and septic shock [48]. In addi-
tion, serum uric acid levels correlated significantly with scores

from Acute Physiology and Chronic Health Evaluation
(APACHE) II in critically ill patients [49,50]. Uric acid is a prin-
cipal endogenous danger signal and is released from injured

Figure 2

Adenosine deaminase-1 inhibition prevents lipopolysaccharide (LPS)-induced intestinal hypoxanthine and uric acid formationAdenosine deaminase-1 inhibition prevents lipopolysaccharide 
(LPS)-induced intestinal hypoxanthine and uric acid formation. (a) 
Intestinal release of hypoxanthine and (b) uric acid calculated as the dif-
ferences (Δ) between portal venous and arterial concentrations of the 
purine metabolites after 120 minutes; in control animals, in animals 
receiving 1.5 mg/kg endotoxin over a 60 minute period (LPS group) 
and in animals receiving endotoxin plus an infusion of 5 mg/kg/hour 
erythro-9-[2-hydroxyl-3-nonyl]-adenine (EHNA) at the beginning of the 
endotoxin challenge (LPS + EHNA group). Data presented in one 
dimensional dot plots as well as mean and standard error of the mean 
(SEM). After 120 minutes the LPS group differed in the mean of intesti-
nal hypoxanthine and uric acid production from control and EHNA-
treated animals. (a) hypoxanthine production, analysis of variance 
(ANOVA) p = 0.02, post hoc Tukey-Kramer test p = 0.03; (b) uric acid 
production, ANOVA p = 0.01, post hoc Tukey-Kramer test p = 0.009.

Figure 3

Erythro-9-[2-hydroxyl-3-nonyl]-adenine (EHNA) administration re-estab-lishes intestinal barrier as well as absorption capacity: Recovery of 3-O-methyl-D-glucose, lactulose and L-rhamnose in urine after direct duode-nal administration was measuredErythro-9-[2-hydroxyl-3-nonyl]-adenine (EHNA) administration re-
establishes intestinal barrier as well as absorption capacity: 
Recovery of 3-O-methyl-D-glucose, lactulose and L-rhamnose in 
urine after direct duodenal administration was measured. (a) The 
lactulose/L-rhamnose ratio of the lipopolysaccharide (LPS) group was 
about three times higher than the control group, which indicates a 
highly permeable small intestine in septic rats. Through the application 
of EHNA the intestinal permeability could be re-established to a value 
comparable with control animals (analysis of variance (ANOVA) p = 3.5 
× 10-9, Tukey-Kramer test p = 2 × 10-7). (b) LPS animals had 
decreased L-rhamnose/3-O-methyl-D-glucose urine excretion ratios 
(0.38 ± 0.05) compared with normal controls (0.58 ± 0.12, post hoc 
test p = 0.05), consistent with a decrease in the gastrointestinal func-
tional absorptive capacity. ADA1 inhibition with a single dose of EHNA 
diminished this effect. Data presented in one dimensional dot plots as 
well as mean and standard error of the mean (SEM).
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cells. Shi and colleagues demonstrated that by eliminating uric
acid the immune response to antigens associated with injured
cells is inhibited [51].

The data of Johnston and van Nieuwenhoven demonstrated
that patients with acute sepsis exhibit an increased intestinal
permeability (lactulose/rhamnose urinary excretion ratio) and a
decreased intestinal absorption capacity (rhamnose/glucose
urinary excretion ratio) compared with healthy control subjects
[52,53]. In our study, the values for intestinal permeability and
absorption capacity as a measure of an epithelial dysfunction
of endotoxaemic animals treated with EHNA were comparable
with the control rats. In contrast, the endotoxaemic animals
presented a disturbed intestinal permeability and absorption
capacity. Our assumption that the stabilisation of the intestinal
barrier might be the result of endothelial hyperpermeability
alteration by PDE2 inhibition is highly speculative and has to
be confirmed by further functional studies.

The morphological correlate to disturbed intestinal permeabil-
ity and absorption capacity in septic patients is a modified and
destroyed intestinal mucosal architecture that is quantifiable
by intestinal mucosal damage grading according to Chiu and
colleagues [31]. By this means, we were able to demonstrate
a significantly better outcome for animals treated with the
ADA1/PDE2 inhibitor.

At this point we employed the well established more complex
animal model of sepsis (caecal ligation after puncture) with an
elevated number of individuals (n = 84) to strengthen the
statement that EHNA could have beneficial effects in experi-
mental septic conditions. Both LPS and CLP models had sim-
ilar mortality rates. The data give further evidence of a survival
benefit even when treatment was delayed for four hours, which

is more realistic in the clinical routine and suggestive of a ther-
apeutic potential of EHNA for treating septic conditions.

Conclusion
In this study based on a septic animal model, we present fur-
ther evidence of the beneficial effects of administering the
ADA1 and PDE2 inhibitor EHNA. This effect is detectable
even when EHNA is applied four hours after sepsis induction.
It may therefore be a potential therapeutic option in the treat-
ment of septic conditions – still one of medicine's big
challenges.
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