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Abstract
Imaging has become a cornerstone of stroke management, trans-
lating pathophysiological knowledge to everyday decision-making.
Plain computed tomography is widely available and remains the
standard for initial assessment: the technique rules out haemor-
rhage, visualizes the occluding thrombus and identifies early tissue
hypodensity and swelling, which have different implications for
thrombolysis. Based on evidence from positron emission
tomography (PET), however, multimodal imaging is increasingly
advocated. Computed tomography perfusion and angiography
provide information on the occlusion site, on recanalization and on
the extent of salvageable tissue. Magnetic resonance-based
diffusion-weighted imaging (DWI) has exquisite sensitivity for acute
ischaemia, however, and there is increasingly robust evidence that
DWI combined with perfusion-weighted magnetic resonance
imaging (PWI) and angiography improves functional outcome by
selecting appropriate patients for thrombolysis (small DWI lesion
but large PWI defect) and by ruling out those who would receive
no benefit or might be harmed (very large DWI lesion, no PWI
defect), especially beyond the 3-hour time window. Combined
DWI–PWI also helps predict malignant oedema formation and
therefore helps guide selection for early brain decompression.
Finally, DWI–PWI is increasingly used for patient selection in
therapeutic trials. Although further methodological developments
are awaited, implementing the individual pathophysiologic
diagnosis based on multimodal imaging is already refining
indications for thrombolysis and offers new opportunities for
management of acute stroke patients.

Introduction
In the present era of thrombolysis, of specialized acute stroke
units and of endovascular and neurosurgical interventions,
imaging has become a cornerstone of modern stroke
management. Imaging of the ischaemic process has taken
centre stage in four key areas: shaping the basic concepts of
stroke pathophysiology; guiding therapeutic approaches that
tackle these concepts; translating this knowledge to everyday

clinical decision-making; and motivating new therapeutic
developments in the field. The present review will briefly
discuss these roles, focusing on recent advances in imaging
that pertain to everyday practice.

Basic concepts
Following occlusion of a major intracranial artery, particularly
the middle cerebral artery (MCA), a gradient of hypoperfusion
emerges in the supplied basal ganglia, white matter and
cortical mantle [1]. Regions suffering the most severe hypo-
perfusion (often in and around the sylvian fissure in proximal
occlusion) rapidly progress to irreversible damage,
representing the ‘ischaemic core’. This tissue exhibits very
low cerebral blood flow (CBF), cerebral blood volume (CBV)
and metabolic rates of oxygen and glucose [2]. The remaining
hypoperfused tissue – with lost autoregulation – is patho-
physiologically divided relative to a well-defined perfusion
threshold into two compartments; namely, the ‘penumbra’
and the ‘oligaemia’.

In the penumbra, oxygen metabolism is preserved relative to
CBF, the oxygen extraction fraction is elevated and often
reaches its theoretical maximum of 100% (severe ‘misery
perfusion’), and the CBV is normal or elevated. Tissue within
the penumbra is functionally impaired and contributes to the
clinical deficit, yet is still viable and hence potentially
salvageable by effective reperfusion. The extent of the
penumbra, however, decreases over time by gradual
recruitment into the core, and as such represents a key target
for therapeutic intervention, albeit with a progressively
shrinking temporal window of opportunity – hence the ‘time is
brain’ rule [3]. This course of events varies from patient to
patient, but up to one-third of patients still exhibit large
volumes of penumbra 18 hours after stroke onset [4].
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The oligaemic compartment, on the other hand, suffers a
milder degree of hypoperfusion with normal oxygen consump-
tion and with elevated CBV and oxygen extraction fraction,
and is not normally at risk of infarction [4]. If the occlusion
persists, however, secondary events such as systemic
hypotension, intracranial hypertension or hyperglycaemia may
topple this delicate balance and force the oligaemia into a
penumbral state, and eventually recruitment into the necrotic
core. Figure 1 illustrates these concepts.

This understanding of the pathophysiology underlies the
urgency of acute stroke management and is the rationale for
approaches, established or still experimental, to rescue the
penumbra, such as reperfusion therapy, neuroprotection,
induced arterial hypertension and oxygen therapy. Besides
being instrumental in this development, imaging in the acute
setting brings these physiological concepts to the bedside
and aims to identify the different tissue compartments
amenable to therapy and to define the potential for recovery
in the individual patient.

Imaging techniques
Plain computed tomography
Despite being surpassed by magnetic resonance imaging
(MRI) in versatility and image quality, plain computed tomo-
graphy (CT) remains the standard tool for initial assessment
in most centres because it is widely available and because
the large thrombolysis trials were all CT-based [5,6]. Apart
from ruling out haemorrhage, early tissue ischaemic changes
can be identified by CT within 3 hours of onset in up to 75%

of patients with MCA stroke [7], yet with moderate
interobserver agreement depending on experience [8]. These
changes comprise: tissue hypodensity, which is associated
with severe reductions in CBF and CBV on perfusion imaging
[9] and whose extent can predict final infarction [10]; and
cortical swelling without hypodensity, which on MRI is
associated with increased CBV, moderate hypoperfusion and
a normal or near-normal apparent diffusion coefficient (ADC),
reflecting salvageable tissue [11].

Early ischaemic changes thus include elements of both the
core and the penumbra. Large parenchymal hypodensity also
statistically predicts the risk of thrombolysis-associated
haemorrhage, hence the widespread notion of withholding
this treatment if it exceeds one-third of the MCA territory [6].
The Alberta Stroke Programme Early CT Score (ASPECTS)
[7] has better interrater reliability in assessing early ischaemic
changes [12], yet this is not independently associated with
poor clinical outcome [13]. Since the ASPECTS combines
swelling and hypodensity, it may not distinguish irreversibly
damaged tissue from viable tissue. A recent study comparing
CT with MRI [14] has confirmed that focal brain swelling
does not always represent infarcted tissue, supporting the
removal of this criterion from the ASPECTS scoring system.

An additional early CT sign in ischaemic stroke is the direct
visualization of the thrombus, seen as increased attenuation
in the transverse M1 segment (hyperdense MCA sign) or in
cross-section within the sylvian fissure (dot sign) [15]. The
specificity of these signs is high, but their sensitivity is
moderate (30–40%) [16], probably because CT cannot
detect fresh fibrin-poor thrombi [17]. In a general stroke
population, the hyperdense MCA sign is associated with poor
prognosis and a risk of thrombolysis-associated haemorrhage
[18], but its resolution is associated with a favourable
outcome. In patients with acute MCA occlusion, however, this
sign has no independent prognostic value [19]. Equivalent
signs have recently been reported on MRI [20].

Plain CT is also very sensitive to intracranial haemorrhage
and subarachnoid haemorrhage. Studies using gradient-
recalled echo T2* MRI, however, have shown that intracranial
haemorrhage can be equally detected with very high
sensitivity even by inexperienced users [21,22], and that fluid-
attenuated inversion recovery (FLAIR) MRI can also
demonstrate subarachnoid haemorrhage equally well [23].
These findings may support the idea of omitting CT as the
initial investigation in acute stroke and proceeding directly to
MRI (see below).

Computed tomography and magnetic resonance
angiography
In the acute setting, CT or magnetic resonance (MR) angio-
graphy can determine the site of occlusion, early recanaliza-
tion and the presence of abnormalities in the proximal arterial
tree such as stenosis, occlusion or dissection, pertaining to

Figure 1

Hypoperfused tissue compartments after acute MCA occlusion and
the consequences of decreasing cerebral perfusion pressure. (a) The
three hypoperfused tissue compartments (the core, the penumbra and
the oligaemia) after acute middle cerebral artery occlusion. A further
compartment with normal perfusion but partially exhausted vascular
reserve (denoted autoregulated) surrounds the oligaemic compartment
(see text). (b) Consequences of decreasing cerebral perfusion
pressure, as a result of, for example, a fall in systemic blood pressure
or an increase in intracranial pressure from vasogenic oedema, on the
four tissue compartments illustrated in (a), showing an enlargement of
the core at the expense of the penumbra, and of the latter into the
oligaemia and autoregulated compartments, with attending clinical
deterioration. The final infarction potentially involves all four
compartments entirely.
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the cause of the stroke [24]. These data can usefully inform
the decision to use intravenous thrombolysis or to proceed to
mechanical embolectomy, for example in ‘T occlusion’ of the
carotid termination [25,26]. Unlike CT, time-of-flight MR
angiography is noninvasive, utilizing the intrinsic properties of
moving blood [27]. Although less accurate than contrast-
enhanced MR angiography, this makes the technique
particularly appealing when combined with perfusion-
weighted imaging (PWI) as it avoids the repeated use of a
contrast agent.

Source images from CT angiography can themselves be
used to detect areas of very low CBV, which are comparable
with MRI diffusion-weighted imaging (DWI) lesions [24,28]
and are predictive of subsequent infarction within 6 hours
[29]. The added value is attractive, yet the technique still
needs to be fully validated.

DWI remains by far the most sensitive method of detecting
acute ischaemia [30,31] and can be positive a few minutes
from onset [32], allowing accurate localization and subtyping
of stroke. The DWI signal reflects restriction of the random
motion of water in tissue and the decline of its ADC –
although the exact biological correlates are not completely
understood, this probably involves energy failure and
subsequent cytotoxic oedema [33,34]. In combination with
perfusion imaging, DWI can also be used, albeit cautiously, to
define the ischaemic core and the penumbra [35] (see below).

Multimodal stroke imaging
Largely based on seminal positron emission tomography
(PET) observations [3,4,36], most authorities nowadays
consider that the heterogeneity and complexity of acute
ischaemic stroke necessitates a multimodal approach to
imaging that provides not only structural but also functional
and haemodynamic information to aid the decision-making
process [37]. For CT this approach currently includes plain
CT, CT angiography and perfusion computed tomography
(PCT) [28,38], while in MRI the approach includes a
combination of conventional sequences (such as T1W, T2W
and fluid-attenuated inversion recovery) and T2*W, time-of-
flight MR angiography, DWI and PWI [39].

Perfusion computed tomography
PCT images are acquired in the cine mode after intravenous
injection of an iodinated contrast agent, generating maps of
CBF, CBV as well as mean transit time (MTT) and time to peak
(TTP) [40]. The maps are reproducible, especially when relative
perfusion parameters are used [41], and reportedly have >90%
sensitivity and specificity for detecting large hemispheric stroke
[42]. Anatomical coverage, however, is typically restricted to
20 mm (two to four slices), reducing sensitivity to stroke not
caused by proximal major artery occlusion [43].

Recent studies on PCT in acute stroke demonstrated that
tissue with CBV < 2 ml/100 g represents the core, while a

relative MTT above 145% of the normal hemisphere best
outlines all at-risk tissue [44]. The penumbra can thus be
estimated as the tissue existing between those two
thresholds. Using this methodology, PCT parameters
correlate very well with MR DWI–PWI and are a good
predictor of the final infarct volume and clinical recovery
[38,41,45,46]. PCT is also potentially useful in decision-
making when the time of onset is unknown, such as with
awakening stroke [47]. In combination with CT angiography,
PCT has comparable utility with that of MR in selecting
patients for thrombolysis [38].

Magnetic resonance diffusion-perfusion imaging
The commonly used dynamic susceptibility-weighted contrast
PWI technique is similar in principle to PCT, and measures
changes in the magnetic field induced by passage of
gadolinium-based contrast in cerebral tissue – but with lesser
accuracy, particularly for CBF. Arterial spin labelling PWI is a
newer technique that avoids the use of a contrast agent
through magnetically labelling the arterial blood entering the
skull and then tracking its motion through the tissue [48]. The
latter technique, however, is less widely available and still
requires further validation in stroke.

Among the generated MRI perfusion maps, TTP and MTT are
preferred for identifying hypoperfused tissue because they
correlate best with tissue fate [49,50]. Comparison of the
perfusion deficit depicted on these maps with the DWI lesion
(assumed to denote the core) yields either a mismatch
pattern (PWI > DWI), a matched lesion pattern (PWI = DWI)
or a reperfusion pattern (DWI > PWI). The mismatch pattern
is taken to indicate the existence of salvageable at-risk tissue
and is found in about 70% of all patients with anterior-
circulation stroke within 6 hours of onset [51]. The pattern’s
presence is strongly associated with proximal MCA occlusion
[51] and its resolution on reperfusion is associated with
neurological recovery [52-54]. Moreover, successful reper-
fusion prevents further expansion of the DWI lesion into the
area of mismatch [55].

The DWI–PWI mismatch can be used to select patients who
are most likely to benefit from thrombolytic therapy [56], and
the mismatch is incorporated into several ongoing thrombo-
lysis trials (see below). It has also been used to show how
variables such as hyperglycaemia [57], haematocrit [58] and
age [59] influence outcome through altering the fate of the
penumbra. DWI has also shown utility in providing a
physiologic endpoint for new therapies such as normobaric
high-flow oxygen [60].

The clinical implications of a matched DWI–PWI pattern are
less clear. In the presence of a large DWI lesion and proximal
MCA occlusion, this pattern appears to accurately predict the
development of a malignant MCA syndrome [61,62]. For
other scenarios where a matched pattern is found, the
evidence is lacking with regard to outcome and with regard
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to whether there is any benefit from instituting thrombolysis or
another specific therapy. The third pattern of normal (or
increased) perfusion with a variable size DWI lesion indicates
recanalization [63], and effectively does not appear to benefit
from thrombolysis (see below).

A number of uncertainties have recently arisen regarding the
pathophysiologic accuracy of the DWI–PWI mismatch
concept. Studies in animals and in humans have documented
the reversibility of DWI lesions and normalization of the ADC,
thus arguing against equivalence of the DWI lesion to the
‘core’ [64,65]. Predictors of such normalization are
thrombolytic therapy and recanalization, particularly within the
3-hour time window [66]. This suggests that the DWI lesion
may include penumbral tissue, as echoed recently using PET
[67,68]. Corresponding uncertainties also exist regarding
PWI, particularly in the selection of parameters for defining
the tissue at risk and in the choice of arterial input function
[49,69]. The DWI–PWI mismatch may thus overestimate the
penumbra by including oligaemic tissue or even normally
perfused but autoregulated tissue that is not at risk [70].
These questions become particularly relevant when defining
the management of matched DWI–PWI lesions, since
response to recanalization depends on whether or not there
still is penumbral tissue. Nevertheless, the DWI–PWI
concept remains a clinically and experimentally useful tool
provided these shortcomings are recognized.

Implications of imaging for thrombolysis
The 3-hour window
Patients treated with intravenous thrombolysis within the first
3 hours after stroke are at least 30% more likely to have little
or no disability at 3 months (number needed to treat = 8)
[5,71]. This is essentially based on selecting patients who
have stroke symptoms that are not rapidly resolving or minor
(NIH stroke scale < 3) with the absence of haemorrhage on
plain CT. Nonetheless, despite the use of clinical exclusion
criteria [72], the treatment carries a risk of around 6–7% of
thrombolysis-associated symptomatic haemorrhage;
therefore, the emerging role of imaging in this acute setting,
beyond exclusion of intracranial haemorrhage and
subarachnoid haemorrhage, is to identify and exclude that
subgroup of patients who are unlikely to benefit and may be
harmed by recombinant tissue plasminogen activator (rt-PA),
in turn reducing the number needed to treat. As already
mentioned, early hypodensity on plain CT >1/3 MCA territory
is associated with thrombolysis-associated haemorrhage.
Nonetheless, this fact is still debated since analysis of the
0–3 hour group in the NINDS cohort does not support this
exclusion on the basis of the extent of early ischaemic
changes alone (that is, including swelling) [73].

Similarly, MR-based studies show that severely reduced
ADC, CBF and CBV are associated with subsequent
haemorrhagic transformation within the infarction [74,75].
These studies, however, do not distinguish symptomatic and

asymptomatic grades of haemorrhagic transformation, and
thus their relevance to clinical outcome is unclear. Another
proposed MRI marker of haemorrhagic transformation is
delayed gadolinium enhancement of cerebrospinal fluid
space on FLAIR [76]. This marker appears only after
reperfusion has been achieved and thus its clinical usefulness
is uncertain. Thomalla and colleagues [77] make the
distinction between haemorrhagic transformation and
parenchymal haemorrhage, arguing that the former is a
clinically irrelevant epiphenomenon whereas the latter is a
direct effect of rt-PA therapy and deserves further investiga-
tion. Finally, T2* MRI can identify microbleeds, which may
also arguably pose a risk of parenchymal haemorrhage after
thrombolysis, yet the evidence for or against this view is still
scarce [78,79].

The constraint of the 3-hour window makes it necessary that
imaging is performed in as short a time as possible. Because
CT provides relatively limited information in early stroke,
multimodal MRI is increasingly being advocated as the
imaging investigation of choice [80]. The main concern, how-
ever, is the possible delay in treatment – up to 20 minutes in
experienced centres [81] – but this may be balanced by the
gain in diagnostic accuracy. Furthermore, shorter door-to-
needle times can probably be achieved through omitting CT,
increasing the familiarity of staff with MRI [82] and tailoring
MRI protocols to suit hyperacute stroke patients [39]. Recent
data thus indeed suggest that MR-based protocols are of
clinical benefit even within the 3-hour window (see below).

Expanding the time window for thrombolysis
For several reasons, including poor public knowledge about
stroke, ineffective delivery of patients to capable centres and
lack of preparedness in many community hospitals, only
about 20% of stroke patients arrive at emergency depart-
ments within the 3-hour window and only 3–8% of eligible
patients currently receive rt-PA therapy, except in a few
regional referral centres [83]. Being able to extend this time
window beyond 3 hours will therefore be extremely important.
A recent meta-analysis of several rt-PA studies has
suggested a potential for a favourable outcome if treatment is
given beyond 3 hours [84], and this motivates ongoing
thrombolysis trials such as IST3 and ECASS3. Indeed, the
pathophysiological model outlined earlier suggests that
reperfusion can be beneficial beyond 3 hours through salvage
of the penumbra in appropriate patients. Efforts are thus
currently directed at adopting acute MR to select suitable
patients beyond the 3-hour window.

The Diffusion and Perfusion Imaging Evaluation for Under-
standing Stroke Evolution (DEFUSE) study used MRI to
evaluate treatment with alteplase 3–6 hours from stroke
onset, and demonstrated a better clinical response among
patients with small DWI and the presence of mismatch on
MR than in other subgroups, including the ‘matched’
DWI–PWI and the small DWI and PWI lesion subgroups
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[85]. The ongoing EPITHET trial [86] further addresses this
question by randomizing patients to alteplase or placebo
3–6 hours after stroke onset regardless of the baseline MRI
findings, testing the hypothesis that in retrospective analysis
patients with mismatch will benefit more than those without.

Studies comparing MRI-based alteplase treatment within
3–6 hours with conventional CT-based treatment within
3 hours have demonstrated similar recanalization rates and
functional outcomes [87,88]. Furthermore, MRI-based
treatment in the timeframe of 0–6 hours also shows similar or
superior safety and efficacy to CT-based treatment within
3 hours, when compared directly [89] or with data from a
meta-analysis [90]. Preliminary findings from pooling of results
of 1,210 patients confirm and amplify these conclusions [91].

MR-based selection has also been used in two studies
testing the new thrombolytic agent desmoteplase. In the
Desmoteplase in Acute Ischemic Stroke trial [92], the
presence of a MR DWI–PWI mismatch of 20% or higher was
used to select patients for thrombolysis in the window of
3–9 hours. A more favourable clinical outcome was demon-
strated in patients who experienced reperfusion than in those
who did not (52.5% versus 24.6%), and the treatment effect
was independent of the duration from onset to treatment.
Similar criteria were also used in the follow-up dose-finding
study [93], with good clinical outcome. Results of the
Desmoteplase in Acute Ischemic Stroke II study are still
awaited. The mismatch concept is also being employed for
selecting suitable candidates in ongoing trials of mechanical
clot retrieval, such as MERCI.

Finally, MRI is also being employed for selecting suitable
candidates in trials of mechanical clot retrieval in posterior
circulation stroke [94] where CT is often unhelpful and the
evidence is much more limited on the use of thrombolysis.

Implications of imaging for other specific
therapies
Neuroprotection
When tested in humans, neuroprotectant agents designed to
delay or prevent the demise of at-risk tissue and thus extend
the therapeutic time window have consistently failed to
produce the effects observed in animal studies. This failure
may be attributed in part to the very limited use of physiologic
imaging in such trials [95], in addition to potential flaws in trial
design, inadequate preclinical data or even the choice of
ineffective compounds.

Despite earlier failures, interest has recently been revived in
normobaric oxygen therapy in acute stroke. In a pilot study
[60], the MRI DWI–PWI mismatch was used to select acute
stroke patients (<12 hours from onset) to receive either
100% oxygen or room air for 8 hours via a face mask.
Oxygen-treated patients improved clinically during therapy
and at 24 hours, and smaller MR diffusion lesions were seen

in this group than in control subjects at early time points.
Moreover, oxygen therapy was associated with an increase in
relative CBF and CBV within the perfusion (MTT) abnormality,
consistent with earlier observations of a vasodilatory
response to hyperoxia in ischaemic brain tissue rather than
the vasoconstriction induced in normal brain tissue [96].
Larger trials using a similar methodology may eventually
establish the usefulness of this simple and widely available
approach to neuroprotection.

Surgical brain decompression
Space-occupying malignant MCA infarctions carry a very
poor prognosis under standard therapy, with a case-fatality
rate approaching 80%. Decompressive surgery, in the form of
wide hemicraniectomy and duraplasty, performed as early as
possible (within 48 hours of stroke onset), has been shown in
pooled randomized trials to not only significantly reduce
mortality by an absolute 50% but also to improve functional
outcome in the survivors, although less impressively [97].
Early decompression probably works not only by preventing
life-threatening herniation and subsequent brainstem
compression, but also by reducing the detrimental effects of
raised intracranial pressure on tissue perfusion pressure,
which can precipitate the penumbra, the oligaemia and even
perhaps the simply autoregulated tissue into irreversible
damage (see Figure 1).

Predicting the development of malignant MCA infarctions as
early as possible, particularly from imaging parameters, is
thus important to allow surgery to be undertaken in time.
Imaging-based predictors such as occlusion of the proximal
MCA, carotid T occlusion, involvement of both the superficial
and deep MCA territories, an inadequate circle of Willis, and
involvement of other vascular territories have modest but
useful value [62,98]. DWI–PWI MR, however, appears of
considerable potential. In one study, a DWI lesion volume
above 145 ml within 14 hours of onset was reported to
predict this fate with 100% sensitivity and 94% specificity
[62]. In another study, a smaller ADC lesion volume (82 ml)
was advocated if imaging was performed within 6 hours [61].
Furthermore, a ratio of the time to peak to ADC lesion volume
< 2.4 and/or an ADC value within the core < 300 mm2/s were
also proposed as predictors of malignant MCA infarctions in
the same study. In the DEFUSE study [85], a DWI or PWI
lesion volume >100 ml also accurately predicted malignant
MCA infarctions. There is also some evidence that other
factors such as blood–brain barrier breakdown may be
instrumental in the development of malignant infarction [99].

Hypothermia
Induction of moderate hypothermia (around 33ºC) has also
been considered in the treatment of malignant MCA
infarctions, and some small open studies showed a beneficial
effect on clinical outcome [100,101], although with attendant
risks of pneumonia and a rebound increase in intracranial
pressure on rewarming. The current trend in ongoing trials is
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to go for less dramatic hypothermia (around 35ºC), and use
intravenous infusion of cooling fluid, which seems less
problematic. The Cooling for Acute Ischaemic Brain Damage
study used MRI to show a decrease of infarct growth with
hypothermia and pointed to its possible effectiveness, yet the
small number of patients precluded statistically significant
results [102]. Interestingly, marked resolution of the DWI
lesion has recently been anecdotally reported after
hypothermic treatment [103], thus challenging the inevitable
grim outlook of malignant MCA infarctions and suggesting
that imaging can be used to select potential responders to
such treatment and to monitor treatment effects.

Implications of imaging for general
management
Demonstration of a high oxygen extraction fraction or
DWI–PWI mismatch in the setting of acute stroke implies
that autoregulation of CBF is impaired in the affected
territory. Any lowering of the systemic arterial pressure is
therefore likely to further reduce the cerebral perfusion
pressure and in turn the CBF in the affected tissue, which
can be harmful not only for the penumbra – which may
precipitate into necrosis – but also for the oligaemia, which
may become penumbral (Figure 1). Accordingly, reductions in
systemic arterial pressure in acute ischaemic stroke have
frequently been associated with worse outcome [104]. This
issue is especially important in view of the frequent
occurrence of reactive hypertension in this setting, and is
reflected in recommendations for management of blood
pressure in acute stroke [71]. Conversely, observing hyper-
perfusion, particularly if early oedema is demonstrated by CT
or MRI, may provide a rationale for treating arterial hyper-
tension since some experimental studies suggest that hyperper-
fusion in necrotic tissue may promote the development of
malignant brain swelling.

Conclusions
Physiologic imaging in the acute stroke setting allows the
clinician to visualize each patient’s pathophysiological
situation before aggressive therapy is considered [36]. Based
on the evidence reviewed above, three main patterns of
changes, each with different management implications, can
be encountered. If an early extensive core is documented,
outcome is invariably poor with considerable risk of malignant
MCA infarction, and surgical brain decompression should be
considered. Secondly, when early recanalization (without an
already extensive core) is documented, spontaneous
outcome is invariably good so no aggressive therapy should
be considered. Finally, if substantial penumbra (again without
extensive core) is documented, management should aim at
saving as much penumbra as possible – this pattern includes
the best candidates for thrombolysis, although the risk of
haemorrhagic transformation should be balanced with the
expected benefit. This practical framework is based on
current evidence but remains to be formally supported by
randomized prospective trials.

Imaging has become an integral part of acute stroke care and
the future holds more promise. Considerable evidence is
already accumulating that multimodal CT or MRI, as
compared with plain CT, provides information that is both
useful in clinical trials and in the individual patient, even within
the current 3-hour window. In the future, practical implemen-
tation of PCT with whole-brain coverage, estimation of CBF
by noncontrast arterial spin labelling [48] and of oxygen
extraction fraction based on the principles of blood-oxygen-
level-dependent (BOLD) imaging [105], and, possibly, MR-
based pH imaging [106] may add more dimensions to
imaging of ischaemic stroke. Future advances in physiologic
imaging, such as a readily available means of imaging
selective neuronal loss, translating the knowledge from PET
and single-photon emission CT studies [107,108], would
also further refine our understanding of acute stroke
pathophysiology and treatment.
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