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Abstract

Introduction The relationship between oxygen delivery and
consumption in  sepsis is impaired, suggesting a
microcirculatory  perfusion defect. Recombinant human
erythropoietin  (rHUEPO) regulates erythropoiesis and also
exerts complex actions promoting the maintenance of
homeostasis of the organism under stress. The objective of this
study was to test the hypothesis that rHUEPO could improve
skeletal muscle capillary perfusion and tissue oxygenation in
sepsis.

Methods Septic mice in three experiments received rHu-EPO
400 U/kg subcutaneously 18 hours after cecal ligation and
perforation (CLP). The first experiment measured the acute
effects of rHUEPO on hemodynamics, blood counts, and arterial
lactate level. The next two sets of experiments used intravital
microscopy to observe capillary perfusion and nicotinamide
adenine dinucleotide (NADH) fluorescence post-CLP after
treatment with rHUEPO every 10 minutes for 40 minutes and at
6 hours. Perfused capillary density during a three-minute
observation period and NADH fluorescence were measured.

Results rHUEPO did not have any effects on blood pressure,
lactate level, or blood cell numbers. CLP mice demonstrated a
22% decrease in perfused capillary density compared to the

sham group (28.5 versus 36.6 capillaries per millimeter; p <
0.001). Treatment of CLP mice with rHUEPO resulted in an
immediate and significant increase in perfused capillaries in the
CLP group at all time points compared to baseline from 28.5 to
33.6 capillaries per millimeter at 40 minutes; p < 0.001. A
significant increase in baseline NADH, suggesting tissue
hypoxia, was noted in the CLP mice compared to the sham
group (48.3 versus 43.9 fluorescence units [FU]; p = 0.03) and
improved with rHUEPO from 48.3 to 44.4 FU at 40 minutes (p
= 0.02). Six hours after treatment with rHUEPO, CLP mice
demonstrated a higher mean perfused capillary density (39.4
versus 31.7 capillaries per millimeter; p < 0.001) and a lower
mean NADH fluorescence as compared to CLP+normal saline
mice (49.4 versus 52.7 FU; p = 0.03).

Conclusion rHUEPO produced an immediate increase in
capillary perfusion and decrease in NADH fluorescence in
skeletal muscle. Thus, it appears that rHUEPO improves tissue
bioenergetics, which is sustained for at least six hours in this
murine sepsis model.

Introduction

Sepsis is a systemic inflammatory response to bacterial infec-
tion and is a common complication during the course of treat-
ment of patients in the intensive care unit [1]. On a

macroscopic level, significant hematological, hemodynamic,
and constitutional instability occurs secondary to the systemic
inflammatory response of sepsis. On a microscopic level, there
is impairment in the relationship between oxygen delivery

CLP = cecal ligation and perforation; DO, = oxygen delivery; EDL = extensor digitorum longus; ETC = electron transport chain; FU = fluorescence
units; Hb = hemoglobin; HR = heart rate; MAP = mean arterial pressure; NAD+ = oxidized nicotinamide adenine dinucleotide; NADH = nicotinamide
adenine dinucleotide; NS = normal saline; PLTS = platelets; RBC =red blood cell; tHUEPO = recombinant human erythropoietin; sc = subcutaneous;
WBC = white blood cell.
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(DO,) and consumption related to defects in microcirculatory
perfusion and disturbances in cellular metabolic pathways,
resulting in a deficit of oxygen extraction and use [2-4].
Whether the tissue distress seen in sepsis is caused by micro-
circulatory hypoxia or disturbances in cellular metabolic path-
ways is a source of much debate. The debate has been fueled
by the findings that despite apparent sufficient DO,, signs of
cellular hypoxia and metabolic dysfunction persist [5]. Persist-
ent regional tissue dysoxia has been demonstrated in sepsis
despite adequate resuscitation procedures that correct global
variables of DO, [4]. These observations can be explained, in
part, by a pathological redistribution of blood flow giving rise
to hypoxic microcirculatory units next to well-perfused or even
overperfused normoxic units [6-8]. Even in the absence of sys-
temic hypotension, blood flow and capillary perfusion distribu-
tion in both endotoxin and focal models of sepsis can be highly
heterogeneous between and within organ systems such as
skeletal muscle and the small bowel mucosa [7,9-14].

Studies in critical care support a reduction in the red blood cell
(RBC) transfusion threshold [15] and the use of recombinant
human erythropoietin (rHUEPQ) treatment to reduce transfu-
sion requirements [16-18]. However, besides the regulation of
erythropoiesis [19], recent studies indicate that this hormone
exerts complex actions promoting the maintenance of home-
ostasis of the organism under stressors such as oxidation
induced during ischemic-reperfusion injury [20-23]. The EPO
receptor is distributed in a wide variety of tissues in the cardi-
ovascular system, including cardiomyocytes, vascular smooth
muscle, and endothelial cells, and has been shown to mediate
anti-apoptotic, anti-inflammatory, and endothelial cell prolifera-
tion signaling in a variety of tissue injury models [24]. In addi-
tion, rHUEPO may demonstrate vasoactivity that occurs
independently of any effects on erythropoeisis and hematocrit.
The vasopressor action of rHUEPO may be mediated by sev-
eral mechanisms, including a direct vasopressor effect on the
smooth muscle cells [25,26], and by increasing the circulating
plasma levels of the endothelin-1 [27-29]. In a rat splanchnic
artery occlusion shock model, treatment with rHUEPO inhib-
ited INOS (inducible nitric-oxide synthase) activation with res-
toration of responsiveness to phenylephrine [30,31].
Additionally, rHUEPO may regulate blood flow within the
microcirculation through endothelium-dependent mecha-
nisms. Treatment of normal or chronic renal failure patients
with rHUEPO induces vasoconstriction of cutaneous capillar-
ies and may improve tissue oxygenation [32,33].

rHUEPO exerts multiple protective actions on the circulatory
system, including the microcirculation, which is known to be
dysregulated during sepsis. In addition, the blunted endog-
enous EPO response in critically ill patients with sepsis may
contribute further to microcirculatory dysfunction and tissue
dysoxia [34]. Based on these observations, we tested the
hypothesis that rHUEPO given as a single dose of 400 U/kg
would improve skeletal muscle microcirculation and tissue
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bioenergetics and thus ameliorate tissue metabolic dysfunc-
tion in a mouse model of severe sepsis.

Materials and methods

The University of Western Ontario Council on Animal Care
approved the study protocol. Animals were managed accord-
ing to guidelines set forth by the institutional Council on Ani-
mal Care. Mice were acclimatized to the laboratory for one
week and had access to mice chow and water ad /libitum. All
surgeries were performed with a clean technique.

Surgery

The C57BL/6 mice supplied by Charles River Laboratories,
Inc. (Wilmington, MA, USA) (ages 10 to 12 weeks; 23 to 26
g) received general anaesthesia with ketamine/xylazine 80:10
mg/kg via intraperitoneal injection. Sepsis was induced by
cecal ligation and perforation (CLP). An incision was made
along the linea alba. The cecum was mobilized and gently exte-
riorized using swabs moistened with warm saline (37°C). After
ligation, just distal to the ileal cecal valve with 1-0 silk, the
cecum was punctured twice with an 18-gauge needle along
the anti-mesenteric aspect and gently squeezed to ensure pat-
ency of the holes. The cecum was returned to the abdominal
cavity and the incision was closed in two layers. In the sham
mice group, a similar procedure was performed but without
the ligation and puncture. The sham and the CLP animals were
allowed to recover with free access to water and mice chow
for 18 hours post-surgery prior to treatment with rHUEPO in
the CLP group. All animals received buprenorphine 0.1 mg/kg
in 1 ml of normal saline (NS) subcutaneously injected after sur-
gery and every eight hours for analgesia and fluid resuscita-
tion. The mice were monitored for signs of discomfort
throughout the recovery period.

Tissue preparation

The sham and the CLP mice were re-anaesthetized and
placed on a heating pad, and core temperature was monitored
using a thermocouple rectal probe and maintained between
36°C and 37°C. The extensor digitorum longus (EDL) muscle
was exposed by gentle dissection. A suture was tied around
the distal tendon, which was then separated, and the muscle
was reflected over the microscope objective of a Nikon Dia-
phot 300 inverted microscope (Nikon Canada, Mississauga,
ON, Canada) with the proximal neurovascular bundle intact.
The preparation then was allowed 45 minutes to equilibrate
[35]. To visualize microcirculatory perfusion, the preparation
was epi-illuminated with a fiber optic lamp (Schott KL1500;
Carl Zeiss Canada Ltd., Toronto, ON, Canada) and images
were captured by a video camera (VE-1000CCD; Dage-MTI,
Michigan City, IN, USA). Images were displayed on a black
and white monitor (WV-BM; Panasonic Corporation of North
America, Secaucus, NJ, USA) and were digitally recorded
(Liquid Edition version 5.0; Pinnacle Systems, Inc., Mountain
View, CA, USA) for analysis [36].



Nicotinamide adenine dinucleotide (NADH) fluorescence from
the same area was measured by switching the microscope to
an epi-fluorescence configuration using a 100-W mercury arc
lamp source, a 365BP25nm excitation filter, a 450BP65 emis-
sion filter, and a 400CLP02 dichroic mirror (NADH-specific
XFO06 filter unit; Omega Optical, Inc., Brattleboro, VT, USA).
An additional 550-nm low-pass filter (Omega Optical, Inc.)
was installed within the C-mount of the microscope to prevent
interference of emission light above 550 nm with the NADH
fluorescence image. An ICCD (intensified charge coupled
device) camera (IC-110; Photon Technology International,
Inc., Birmingham, NJ, USA) captured the images [37].

Capillary density was assessed by observing capillaries of the
EDL and counting the number of perfused and stopped capil-
laries crossing three equidistant lines drawn perpendicular to
the direction of the muscle fibers on the observation screen. A
capillary was counted as perfused if RBC flow was noted at
any time during a three-minute observation period. If there was
no flow for the entire three-minute period, the capillary was
counted as stopped. Intermittent perfusion was not assessed
and plasma-filled (no RBCs visible) capillaries were not
detectable with this method. The width of the image field
measured was 320 um per objective field. Capillary density
represents the number of capillaries visible across a distance
of 1 mm as calculated from the magnification used during the
study. NADH fluorescence intensity was measured using
Sigma Scan (Jandel Scientific Inc., now part of SPSS Inc.,
Chicago, IL, USA) and was expressed in arbitrary fluores-
cence units (FU). To account for fluctuation in daily intensity
readings, all data were normalized using a standard NADH
solution (41 pumol/I).

Study protocol

Three sets of experiments were performed. In the first set of
experiments, we assessed the acute effects of rHUEPO
(Eprex; Ortho Biotech, Toronto, ON, Canada) on hemodynam-
ics, blood cell count, and arterial serum lactate level. In sham
and CLP mice at 18 hours after surgery, the mice were re-
anesthetized and were given either a 0.2 ml subcutaneous (sc)
injection of NS or 400 U/kg rHUEPO (Sham+NS, n = 6;
Sham+EPO, n = 6; CLP+NS, n = 7; CLP+rHuEPO, n = 7).
The 400 U/kg rHUEPO dose was chosen after performing
dose-response experiments using single sc doses of 200,
400, 800, and 1,000 U/kg, in which the 400 U/kg dose pro-
duced the optimal capillary perfusion during sepsis (data not
shown). We measured mean arterial pressure (MAP) by can-
nulating the carotid artery with Intramedic polyethylene tubing
(PE10) (Sparks, MD, USA) connected to a transducer and
monitor (78353B; Hewlett-Packard Co., Mississauga, ON,
Canada). The heart rate (HR) was determined from a record-
ing of the arterial pressure trace at time O and at 40 minutes
post-sc injection. Blood samples were also drawn at 40 min-
utes post-sc injection of saline or tHUEPO for measurement of
hemoglobin (Hb), white blood cell (WBC) count, platelets
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(PLTS), and arterial serum lactate. The complete blood count
was measured on an LH750 Series Beckman Coulter hema-
tology analyzer (Beckman Coulter, Fullerton, CA, USA), and
the arterial lactate was measured using a VSI 2300 Stat Plus
glucose and lactate analyzer (YSI Incorporated, Yellow
Springs, OH, USA).

In the second set of experiments, we wished to determined the
acute effects of rHUEPO on the microcirculation and NADH
levels in the EDL of CLP mice and using the mice as their own
baseline control observation at time 0. We performed baseline
intravital microscopy in untreated sham mice (n = 7) and CLP
mice (n = 8) 18 hours after surgery. The CLP animals then
received a 400 U/kg bolus of rHUEPO by sc injection. Images
of the capillaries and NADH fluorescence were recorded every
10 minutes for 40 minutes for both groups.

In the third set of experiments, we wished to determine
whether the effects of rHUEPO observed in the second exper-
iment persisted in treated versus untreated CLP mice. Mice
underwent CLP and 18 hours later received 0.2 ml sc injec-
tions of saline (CLP+NS, n = 10) or rHUEPO 400 U/kg
(CLP+rHUEPO, n = 14). After an additional six hours, the mice
were re-anesthetized and intravital microscopy was performed
as described above.

Statistics

The data are expressed as means * standard error of the
mean. Groups were compared at 18 hours before rHUEPO
treatment by means of an unpaired t test. Within-group com-
parisons over time were made using a repeated measures
analysis of variance, with post hoc paired t tests to detect spe-
cific differences. A p value of less than 0.05 was considered
statistically significant.

Results

Table 1 shows that the CLP group, when compared to the
sham, demonstrated an 81% decrease in the WBC count, a
319% decrease in the PLTS, and a 215% increase in arterial
serum lactate. CLP also caused a modest drop in MAP from
86 to 73 mm Hg. All of these changes were statistically signif-
icant. Treatment with 400 U/kg rHUEPO, however, did not
have any effect on the blood pressure, HR, lactate levels, Hb,
WBC count, or PLTS at 40 minutes. The Hb level was similar
in all four groups (range, 12.1 to 12.8 g/dl). There was no mor-
tality in any of the three series of mice that are reported in this
study.

The baseline comparison at 18 hours after CLP demonstrated
an approximately 22% decrease in perfused capillary density
in the EDL muscle as compared to the sham group, which was
statistically significant (28.5 versus 36.6 capillaries per millim-
eter; p < 0.01; Figure 1). The decreased baseline capillary
density was associated with a 10% increase in tissue NADH
fluorescence (48.3 versus 43.9 FU; p = 0.08; Figure 2).
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Table 1

Hemodynamics, hematology, and lactate measurements in sham and CLP mice

Group Number Mean arterial pressure Heart rate Hemoglobin2 White blood cell Platelets? Lactate2
(mm Hg) (beats per minute) (g/dl) count? (103/ul) (mmol/l)
(103/ul)
0 minutes 40 minutes 0 minutes 40 minutes
Sham+NS 6 86 (1.9)° 87 (2.4) 277 (8) 283 (13) 12.7 (0.5) 6.36 (0.84) 1(,356.)8 0.90 (0.17)
81.3
Sham+EPO 6 90 (4.7) 86 (4.3) 294 (11) 293 (4) 12.8 (0.8) 5.97 (1.26) 1,206.7 0.79 (0.18)
(128.6)
CLP+NS 7 73 (1.8)° 68 (2.7)c 337 (30) 358 (29) 12.1 (0.6) 1.19 (0.35)c 938.8 (82.7)4  1.94 (0.37)d
CLP+EPO 7 70 (2.8)c 71 (3.0)d 328 (26) 340 (25) 12.7 (0.6) 1.09 (0.29)c 956.1 (55.2) 1.91 (0.26)c

aBlood sample obtained at 40 minutes; Pmean (+ standard error); ¢p < 0.01 versus corresponding control groups; 9p < 0.05 versus
corresponding control groups. CLP, cecal ligation and perforation; EPO, erythropoietin; NS, normal saline.

Treatment of the CLP mice with rHUEPO resulted in a signifi-
cant increase in perfused capillary density to near normal lev-
els by 10 minutes (33.9 versus 28.5 capillaries per millimeter;
p < 0.001; Figure 1), which persisted until the end of the 40-
minute experimental period (33.6 versus 28.5 capillaries per
millimeter; p < 0.001; Figure 1). Similarly, tissue NADH fluo-
rescence was reduced at 10 minutes (46.5 versus 48.3 FU; p
= 0.02; Figure 2) and until the end of the 40-minute observa-
tion period (44.4 versus 48.3 FU; p = 0.02; Figure 2).

In the third set of experiments, CLP mice treated with rHUEPO
maintained a significantly higher mean perfused capillary den-
sity six hours after rHUEPO injection when compared to CLP
mice treated with saline (39.4 versus 31.7 capillaries per mil-

limeter; p <0.001; Figure 3). The increased capillary perfusion
Figure 1

40 -

35

30 ~

T —e— Sham n=7

25 - —e—CLP n=8

EPO sc 400 U/kg

Perfused Capillaries (cap/mm)

20 T T T T
0 10 20 30 40

Time (min)

Mean perfused capillary density in sham and cecal ligation and perfora-
tion (CLP) mice. The sham and CLP groups consisted of seven and
eight mice, respectively. Erythropoietin (EPO) 400 U/kg was adminis-
tered to the CLP group after baseline measurement (time 0) was
obtained.*p < 0.01 versus sham at baseline time 0. #p < 0.01 versus
CLP at baseline time 0. Values are presented as mean * standard
error. sc, subcutaneous.
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was associated with a significantly lower tissue NADH fluores-
cence at six hours (49.4 versus 52.7 FU; p = 0.03; Figure 4).

Discussion

Many studies in clinical and experimental sepsis have demon-
strated that blood flow becomes highly heterogeneous
between and within organ systems despite adequate resusci-
tation [8,35]. This maldistribution of blood flow contributes to
abnormal oxygen use at the micro-regional level, leading to tis-
sue injury and organ dysfunction. The CLP mice used in these
experiments demonstrated signs of severe sepsis, including a
significant drop in blood pressure, an increase in HR, leukope-
nia, thrombocytopenia, and elevated arterial lactate levels. In
this study, we demonstrated that the treatment of septic mice
with rHUEPO resulted in increased microcirculatory perfusion,
which coincided with a decreased bioenergetic impairment in
the skeletal muscle.

The decrease in functional capillary density of approximately
229% induced by sepsis in our mice was similar to the findings
of Lam and colleagues [35], in which a 36% reduction in per-
fused capillary density, a 2.6-fold increase in stopped-flow
capillaries, and increased heterogeneity of the spatial distribu-
tion of the perfused capillaries were reported in a septic rat
EDL model [35]. To determine the functional capillary density,
we classified capillaries only as perfused or stopped, with
more liberal criteria for perfusion than in the study of Lam and
colleagues (any flow over a three-minute period compared to
no more than 30 seconds of interrupted flow over a two-
minute period). This likely accounts for the relatively decreased
effect of sepsis on microcirculation reported in the current
study.

The observed loss of functional capillaries appeared to involve
individual capillaries as opposed to capillary beds related to
single arterioles or venules [35]. After treatment with rHUEPO,
the number of perfused capillaries in CLP mice increased
within 10 minutes and the improvement in microcirculatory
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tion and perforation (CLP) mice. The sham and CLP groups consisted
of seven and eight mice, respectively. Erythropoietin (EPO) 400 U/kg
was administered to the CLP group after baseline measurement (time
0) was obtained. *p < 0.05 versus sham at baseline time 0. #p < 0.05
versus CLP at baseline time 0. Values are presented as mean * stand-
ard error. NADH, nicotinamide adenine dinucleotide; sc, subcutaneous.

flow persisted for at least six hours. We did not demonstrate
an acute effect of rHUEPO on MAP or Hb concentration (Table
1). Thus, it does not appear that direct central vasoactive
effects or changes in RBC concentration were factors contrib-
uting to the observed improvement of tissue microcirculation.

Coinciding with the increase in the functional capillary density,
an improved tissue bioenergetic state was demonstrated
using a technique that we have recently validated [36,37].
Treatment with rHUEPO during sepsis resulted in a sustained
decrease of tissue NADH fluorescence. An increase in mito-
chondrial NADH signifies an impairment of electron transport
chain (ETC) function. Mitochondrial NADH reduces NADH
dehydrogenase (complex I) of the ETC, which further reduces
adjacent cytochrome complexes, creating a proton gradient
that drives ATP production. Cytochrome C oxidase, the termi-
nal complex of the ETC, reduces molecular oxygen to water,
allowing the series of redox reactions of the ETC to continue.
If energy transfer ceases anywhere along this pathway, the
redox reactions of the ETC will halt, NADH dehydrogenase will
remain perpetually reduced, and NADH will accumulate. The
accumulation of NADH within mitochondria further affects
pyruvate metabolism, which contributes to metabolic acidosis
as well. Therefore, we infer that increased NADH fluorescence
in the skeletal muscle reflects impaired function of the ETC in
these cells and thus a bioenergetic impairment of the tissue.

In the CLP animals, the initial NADH levels at 18 hours were
higher than in non-septic controls and normalized following
treatment with rHUEPO. The changes in NADH fluorescence
were relatively small; however, this observation and the asso-
ciation with a change in microcirculatory perfusion are new
observations. At present, we do not have any data that allow
us to determine the relation between changes in NADH fluo-

CLP-NS, n=10 CLP-EPO, n=14

Mean capillary density in cecal ligation and perforation (CLP) mice six
hours after treatment with normal saline (NS) or erythropoietin (EPO).
Values are presented as mean * standard error. *p < 0.05 versus CLP-
NS.

rescence of this magnitude and the prevention of cellular dys-
function or death. Because we did not measure oxidized
NADH (NAD+), we cannot rule out a change in total pool size
contributing to the decrease in NADH fluorescence. Activation
of poly (ADP-ribose) polymerase by oxidative stress in sepsis
has been proposed as a pathway that could lead to NAD+
depletion, but there is evidence against this occurring in the
CLP model [38].

Figure 4
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Mean NADH fluorescence units in cecal ligation and perforation (CLP)
mice six hours after treatment with normal saline (NS) or erythropoietin
(EPO). Values are presented as mean * standard error. *p < 0.05 ver-
sus CLP-NS. NADH, nicotinamide adenine dinucleotide.
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Although we found changes in blood pressure, lactate, WBC
count, and PLTS which are consistent with severe sepsis,
there was no mortality in this study prior to euthanasia at the
completion of each experiment. However, in preliminary stud-
ies with this model, we observed a 23% to 25% mortality
between 18 to 24 hours post-CLP. This is in contrast to the
findings of Hollenberg and coworkers [39], who reported a
higher mortality in fluid-treated CLP mice. It is known that mor-
tality in the CLP model is influenced by many factors, including
the operator, the laboratory, and groups of mice.

We also recognize that the behavior of the microcirculation in
the EDL skeletal muscle during sepsis may not be representa-
tive of the microcirculation of other tissues. We chose to use
EDL skeletal muscle in this study because it is well character-
ized in our laboratory and in the literature [35]. Similar changes
in the microcirculation of the small bowel mucosa have also
been described during sepsis [10,36], but we do not know
whether the effects of rHUEPO are generalizable to other
tissues.

Conclusion

rHUEPO treatment in a murine model of severe sepsis induces
a rapid normalization in the perfused capillary density with a
concomitant decrease in NADH fluorescence in skeletal mus-
cle. Thus, rHUEPO appears to improve mitochondria oxidative
phosphorylation and pyruvate metabolism in this septic mouse
model in part by improving DO, via increased perfused capil-
lary density. Further studies are warranted to determine the
potential mechanisms for these observations and to determine
whether this effect is sufficient to improve organ function and
reduce morbidity and mortality in sepsis.

Key messages

* Erythropoietin improves perfused capillary density in the
skeletal muscle of septic mice.

* Erythropoietin treatment can also decrease mitiochon-
drial NADH levels, suggesting improved oxidative phos-
phorylation and pyruvate metabolism.

* Erythropoietin has a potential clinical application in the
improvement of tissue bioenergetics during sepsis.
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