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Abstract

Introduction Established fluid treatment formulas for burn
injuries have been challenged as studies have shown the
presence of tissue hypoxia during standard resuscitation. Such
findings suggest monitoring at the tissue level. This study was
performed in patients with major burn injuries to evaluate the
microdialysis technique for the continuous assessment of skin
metabolic changes during fluid resuscitation and up to four days
postburn.

Methods We conducted an experimental study in patients with
a burn injury, as represented by percentage of total body surface
area burned (TBSA), of more than 25% in a university eight-bed
burns intensive care unit serving about 3.5 million inhabitants.
Six patients with a median TBSA percentage of 59% (range
33.5% to 90%) and nine healthy controls were examined by
intracutaneous MD, in which recordings of glucose, pyruvate,
lactate, glycerol, and urea were performed.

Results Blood glucose concentration peaked on day two at 9.8
mmol/l (6.8 to 14.0) (median and range) and gradually declined
on days three and four, whereas skin glucose in MD continued

to increase throughout the study period with maximum values on
day four, 8.7 mmol/l (4.9 to 11.0). Controls had significantly
lower skin glucose values compared with burn patients, 3.1
mmol/l (1.5 to 4.6) (p < 0.001). Lactate from burn patients was
significantly higher than controls in both injured and uninjured
skin (MD), 4.6 mmol/l (1.3 to 8.9) and 3.8 mmol/l (1.6 to 7.5),
respectively (p <0.01). The skin lactate/pyruvate ratio (MD) was
significantly increased in burn patients on all days (p < 0.001).
Skin glycerol (MD) was significantly increased at days three and
four in burn patients compared with controls (p < 0.01).

Conclusion Despite a strategy that fulfilled conventional goals
for resuscitation, there were increased lactate/pyruvate ratios,
indicative of local acidosis. A corresponding finding was not
recorded systemically. We conclude that MD is a promising tool
for depicting local metabolic processes that are not fully
appreciated when examined systemically. Because the local
response in glucose, lactate, and pyruvate metabolism seems to
differ from that recorded systemically, this technique may offer a
new method of monitoring organs.

Introduction
Severe burns result in both local and systemic responses.

There is loss of homeostatic control as a result of massive
losses of fluid and protein during the first 24 hours. This is usu-
ally followed by a normalisation of permeability and reduced
fluid losses during the second day [1,2]. To counteract this
first phase, resuscitation aims to replace lost fluid. The mas-
sive amount of fluid needed during resuscitation, particularly in
larger burns, creates a generalised oedema that is caused
both by the volume of fluid itself and the decreased colloid
osmotic pressure that will ensue secondary to the resuscita-

tion fluid given and to proteins lost from the circulation [3,4].
This may compromise tissue perfusion in both injured and
uninjured tissues of the burn-injured patient.

The burn also elicits the general trauma response, including
the increase in blood glucose concentrations as a result of gly-
coneogenesis, glycogenolysis, insulin-resistance, and lipoly-
sis. There is also catabolism of lean body mass that involves
the metabolism of protein [5,6]. These changes have often
been studied systemically, even in humans, but less is known
about the changes in injured tissues.

MAP = mean arterial pressure; TBSA = total body surface area burned.

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17166287
http://ccforum.com/content/10/6/R172
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

Critical Care Vol 10 No 6 Samuelsson et al.

Over the years, several regimens have been used for resusci-
tation [7-9]. The Parkland formula, 2 to 4 ml/kg x total body
surface area burned (TBSA) percentage per 24 hours, is the
most widely used [10,11]. It is designed to ensure perfusion
of organs and tissues and is aimed at avoiding overhydration.
The resuscitation strategies are generally guided by blunt end-
points such as urinary output (0.5 to 1 ml/kg per hour) and
mean arterial pressure (more than 70 mm Hg). However, most
of the current regimens for resuscitation of burned patients
may be inadequate to produce both optimal central haemody-
namics and ideal conditions at the organ and tissue levels
[12,13]. Present research that is designed to improve resusci-
tation formulas has included both the need for more fluid by
investigators who have looked mainly at the central circula-
tions [13,14] and the need for less fluid or the use of colloids
by others who have the needs of the tissues in mind [8,9].
Lately, there seems to be a tendency to increase the volume of
fluid given to burned patients [15]. Severe burns are often
complicated by multiple-organ failure, indicating that current
resuscitation strategies and endpoints may be inadequate in
that they produce regions of tissue hypoxia and ischaemia
[16,17]. This emphasises the need for more specific end-
points that focus on the tissue perspective in injured and in
uninjured tissues [18,19].

Microdialysis is an interesting technique for in vivo sampling of
extracellular fluid. It can be applied adjacent to an injury or in
the tissue at the site of an injury [20]. The method was origi-
nally designed for use in experimental studies of the brain in
animals and focused on neurotransmitters [20] but has been
developed and has become used extensively for metabolic
studies in human skin, mostly experimentally [21,22], but also
to follow blood flow and metabolic changes during exercise
and critical limb ischaemia [23] and to study the metabolism of
adipose tissue in patients in intensive care [24]. However, to
our knowledge, the method has never been used in patients
with burns, although the organ of interest (the skin) is easily
accessible. It has been used to study burns in animals in which
histamine turnover in the skin was examined successfully [25].

Table 1

Patient and control data

Patients n =6 Controls n=9

Age in years2 27.5 (17-31) 29 (22-492)
TBSA percentage? 59 (33.5-90)

Female/Male 1/5 4/5
Survival 6

Inhalation injury 1

Days in hospital2 60.5 (86)

aData are presented as median (range). There are no significant
differences between the groups. TBSA, total body surface area
burned.
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More recently, it has been used in studies of skeletal muscle
and brain metabolism for the prediction of ischaemia and
changes in the metabolism of glucose [20,26]. It has also
been used to assess the metabolism, permeability, and local
inflammation of skin in dermatology [27].

The aim of the present study was to assess metabolic events
in the skin in patients with burns (local tissue changes in glu-
cose, lactate, pyruvate, lactate/pyruvate ratio, glycerol, and
urea) by using microdialysis during the course of conventional
fluid resuscitation. We also investigated the metabolism of
both injured (superficial second-degree burn) and uninjured
tissues in burned patients and compared them with the metab-
olism of the skin in healthy controls.

Materials and methods

After obtaining ethical committee approval and informed con-
sent from patients or close relatives, we studied five men and
one woman (median age 27.5 years [range 17 to 31] and
median TBSA percentage of 59% [33.5% to 90%]). Four of
the patients had flame burns and two had full-thickness chem-
ical burns (Table 1). Age-matched healthy hospital staff and
medical students (n = 9) acted as controls.

Treatment protocol

Oxygen was given to maintain an SaO, (arterial oxygen satura-
tion) of more than 90%, and central venous and intra-arterial
lines were inserted. The size of the burn was assessed using
the Lund and Browder diagram. Patients were broncho-
scoped to diagnose inhalation injury. Initial fluid resuscitation
was given based on the Parkland formula (2 to 4 ml/kg x
TBSA percentage per 24 hours) and was adjusted to maintain
a urinary output of more than 0.5 ml/kg per hour during the first
24 hours. Mean arterial pressure (MAP) of more than 70 mm
Hg served as a secondary endpoint. Colloids were withheld
during the first 18 hours and were then given as albumin 5%
or 20% or as hexastarch 10% (HAES; Fresenius Kabi AG,
Bad Homburg, Germany) when there was circulatory instabil-
ity. Patients were fed enterally as soon as possible (Nutrison;
Nutricia Nordica AB, Stockholm, Sweden), starting at 10 ml/
hour on day one and thereafter increasing daily until the nutri-
tional goal was achieved. Patients received a glucose infusion
of 2,000 ml/200 g per 24 hours starting on day two. The nutri-
tional goal was to reach 25 kcal/kg per 24 hours in three to five
days. Insulin was not provided during the study period. If the
patient did not tolerate enteral nutrition, total parenteral nutri-
tion (Vitrimix; Fresenius Kabi AB, Uppsala, Sweden) was pro-
vided. Blood transfusions were given to maintain a
haemoglobin concentration above 9 g/dl. Plasma was pro-
vided if there were signs of excessive bleeding judged to have
resulted from a lack of coagulation factors. All burns were
excised and grafted for the first time within 36 hours. All burn-
related data were prospectively recorded in the burns unit
database [28]. Blood gases (i-STAT; i-STAT Corporation,
East Windsor, NJ, USA) and blood glucose (HemoCue AB,



Angelholm, Sweden) were obtained four times per 24 hours
and were analysed bedside. All other blood samples were
obtained according to a set protocol and analysed at the
Department of Clinical Chemistry at the Linkoping University
Hospital.

Microdialysis

After they had been informed about the research procedures
and had given their consent, the patients were examined and
an area with deep second-degree (partial-thickness) burns on
the trunk or proximal limb was chosen for the microdialysis
experiments. The second-degree burn was defined as an area
that maintained sensitivity to skin prick and that bled slightly at
the site of needle punctures. The area was then disinfected
with chlorhexidine in alcohol (Klorhexidine® 5 mg/ml, Fresen-
ius Kabi AS, Halden, Norway). A venous cannula (1.4 mm,
outer diameter) was inserted intradermally, and the position
was accepted if the whole metal stylet could be seen through
the skin. The metal stylet was withdrawn and the plastic tubing
was cut 1 to 2 cm from the skin. The microdialysis catheter
(membrane, 10 mm long; cutoff, 20,000 Da) (CMA 70; CMA
Microdialysis AB, Solna, Sweden) was inserted through the
plastic tubing of the venous cannula, which then was with-
drawn. With the same technique, a second catheter was
inserted into uninjured skin 5 to 10 cm away from the first cath-
eter. A 1-ml microsyringe was fitted to a precision pump (CMA
102; CMA Microdialysis AB) and connected to the catheter
tubing, and the system was perfused with lactate-free Ringer
solution (CMA perfusion fluid; Na 147, K 4, Ca 2.3, and ClI
156 mmol/l; CMA Microdialysis AB). The probes were per-
fused at a rate of 0.5 pl/minute. The perfusate was collected
in microvials that were capped to avoid evaporation of fluid
and was kept on ice in the dark. If the yield of fluid slowed, the
complete system (including catheters) was replaced, and the
new catheter was placed as close as possible to the previous
site and in the same blister or an adjacent blister within the
stated area (that is, within 5 to 10 cm). A total of four catheters
were replaced because they dislocated accidentally, probably
due to high interstitial pressure. Recording was restarted after
a three hour equilibration period. Sampling was continued until
the patient started to mobilise (usually at day five). Interrup-
tions were inevitable during operations. The perfusate was col-
lected every third hour. Sampled vials were immediately frozen
(-20°C) and stored in the freezer until analysis. All samples
were analysed within three months. Analysis of the perfusate
for glucose, urea, glycerol, lactate, and pyruvate was per-
formed by a photometric assay in a fully automated analyser
(CMA 600 Microdialysis Analyser; CMA Microdialysis AB).

The age-matched controls were given CMA 70 microdialysis
catheters identical to those used for the patients, but we used
a different, portable pump, the CMA 107 (CMA Microdialysis
AB). The catheters were placed intracutaneously in the abdo-
men at the umbilical level. Samples of microdialysis fluid were
collected every third hour, except at night, when the controls
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were instructed to change vials when they went to bed and
again when they woke up. They were asked to avoid strenuous
physical exercise, but no other restrictions in daily life were
imposed. Sampling continued for three consecutive days. The
perfusate was handled and analysed in the same way as for
the patients.

Data and statistical analysis

Data are presented as median (range) and are shown as box-
and-whisker plots (median, with 25/75 and 10/90 percen-
tiles). Medians were chosen because the data often showed a
skewed distribution. Outliers in the graphs are values between
1.5 and 3 times the height of the box, above or below.
Extremes are values more than three times the height of the
box. Data from days two to four were used in all analyses.
Because more than one sample a day was obtained, median
values for each day were calculated and used in the analyses.
The nine controls generated a total of 30 microdialysis values,
which were examined for time-dependent changes, but
because we found none, the mean value per control was cal-
culated and these values were analysed as a group. To evalu-
ate differences between controls and patients, we used the
Mann-Whitney U test; we used the Bonferroni correction fac-
tor for multiple comparisons. Furthermore, because we were
unable to find any differences in the microdialysis data
between uninjured and burn-injured tissue, the tissue data
were also analysed as a group. Correlations between skin glu-
cose levels and lactate, pyruvate, and lactate/pyruvate quo-
tients were performed using Spearman rank correlation. All
statistical analyses were performed using Statistica, version
7.0 (StatSoft, Inc., Tulsa, OK, USA). Probabilities of less than
0.05 were considered significant.

Results

The patients were given Ringer's acetate 3.6 ml/kg (2.1 to 5.9)
x TBSA percentage. Urinary output was 1.99 ml/kg per hour
(1.4 to 2.2) and MAP was 76 mm Hg (70 to 95) on day one.
For the remaining three days of the study, urinary output was
1.0 ml/kg per hour (0.7 to 1.9). MAP was 76 mm Hg (60 to
95).

Blood analyses

The concentration of glucose in blood increased from 8.0
mmol/l (7.0 to 9.0) on day one and reached a maximum of 9.8
mmol/l (6.8 to 14.0) on day two. There was a gradual reduc-
tion on days three and four (6.6 mmol/l [4.3 to 13.3] on day
four). There were no signs of systemic acidosis during the
study period (days two to four). Median arterial blood pH, base
excess, and pCO, (partial pressure of carbon dioxide) were
within the reference ranges: 7.48 (7.38 to 7.58), 4.6 (-0.3 to
7.7), and 5.2 kPa (3.2 to 6.6), respectively. None of the
patients had signs of renal failure; blood urea nitrogen was 4.0
mmol/l (1.9 to 10.1).
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Microdialysis

Glucose

The cutaneous concentration of glucose increased in parallel
to that in blood but, unlike blood concentrations, did not peak
on day two. Instead, it continued to increase throughout the
study period, reaching maximum values of 8.7 mmol/l (4.9 to
11.0) on day four in uninjured skin and 8.5 mmol/| (5.2 to 12.3)
in injured skin. Cutaneous glucose concentrations in controls
(8.1 mmol/l [1.56 to 4.6]) were significantly lower than in
burned patients (p < 0.001), except on day two (Figure 1).

Pyruvate and lactate

The pyruvate concentration in skin showed a tendency to
increase, but to a lesser extent than lactate, during all study
days in patients in uninjured skin (131 mmol/l [63 to 181]) and
burned skin (142 mmol/l [65 to 179]) compared with controls
(87 mmol/I [49 to 138]). This reached significance at day three
(p < 0.05). The lactate concentration in skin of controls was
within the reference range (1.1 mmol/l [0.5 to 1.6]), whereas
lactate concentration in burned patients was significantly (p <
0.01) higher in uninjured and burned skin (3.8 mmol/l [1.6 to
7.5] and 4.6 mmol/l [1.3 to 8.9], respectively). There was a
tendency for higher median values in burned skin than in unin-
jured skin (Figures 2 and 3). There was a significant correlation
(p < 0.05) between glucose and pyruvate (r=0.54) as well as
lactate (r=0.64).

Figure 1

Figure 2
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Box-and-whisker plots showing median (interquartile) pyruvate concen-
trations in microdialysate from days one to four. Open boxes indicate
uninjured skin and controls; shaded boxes indicate burned skin. Con-
trols, n = 9. Uninjured skin on day 1, n=2; day 2, n=5;day 3, n=6;
and day 4, n=>5. Burned skinonday 1,n=2; day 2, n=5;day 3, n=
6; and day 4, n=4.*P<0.05.
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Box-and-whisker plots showing median (interquartile) glucose concen-
trations in microdialysate from days one to four. Open boxes indicate
uninjured skin and controls; shaded boxes indicate burned skin. Filled
circle indicates outlier (burned skin). Controls, n = 9. Uninjured skin on
day 1, n=2; day 2, n=5; day 3, n = 6; and day 4, n = 5. Burned skin
onday 1,n=2;day 2,n=5; day 3, n=6;and day 4, n=4.**P<
0.001. Contr, control.
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Box-and-whisker plots showing median (interquartile) concentrations of
lactate in microdialysate from days one to four. Open boxes indicate
uninjured skin and controls; shaded boxes indicate burned skin. Con-
trols, n = 9. Uninjured skin on day 1, n = 2; day 2, n=>5; day 3, n = 6;
and day 4, n=>5. Burned skinonday 1,n=2;day 2, n=5;day 3, n=
6; and day 4, n =4.**P < 0.01 and ***P < 0.001. Filled circles and
plus signs indicate outliers and extremes, respectively.
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Box-and-whisker plots showing lactate/pyruvate ratio in microdialysate
from days one to four. Open boxes indicate uninjured skin and controls;
shaded boxes indicate burned skin. Controls, n = 9. Uninjured skin on
day 1, n=2; day 2, n=>5; day 3, n = 6; and day 4, n = 5. Burned skin
onday 1,n=2;day 2, n=5;day 3, n=6;and day 4, n=4.**P<
0.001. Filled circle indicates outlier.

Tissue lactate/pyruvate ratio

The tissue lactate/pyruvate ratio increased two- to fourfold,
with significantly higher values in burned patients during study
days two to four. The ratios in uninjured skin were 33 (day
two), 27.5 (day three), and 28 (day four) and in burned skin 47
(day two), 34 (day three), and 29 (day four); the ratio in con-
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Box-and-whisker plots showing median (interquartile) concentrations of
glycerol in microdialysate from days one to four. Open boxes indicate
uninjured skin and controls; shaded boxes indicate burned skin. Con-
trols, n = 9. Uninjured skin on day 1, n=2; day 2, n=5; day 3, n =6;
and day 4, n=5. Burned skinon day 1, n=2; day 2, n="5;day 3, n=
6; and day 4, n=4.**P < 0.01. Filled circle and plus signs indicate
outlier and extremes, respectively.

Day after injury

Box-and-whisker plots showing urea in microdialysate from days one to
four. Open boxes indicate uninjured skin and controls; shaded boxes
indicate burned skin. Controls, n = 9. Uninjured skin on day 1, n = 2;
day 2, n=>5; day 3, n=6; and day 4, n=5. Burned skinonday 1, n=
2; day 2, n=>5; day 3, n=6; and day 4, n = 4. No significant differ-
ences were noted compared with controls. Filled circles indicate
outliers.

trols was 13 (p < 0.001). There was a peak on day two in both
uninjured and burned skin, but the ratio in the uninjured skin
then returned to the initial value on day three and remained sta-
ble thereafter. The burned skin was slower to recover and
reached the initial value on day four (Figure 4). There was no
correlation between glucose and the lactate/pyruvate quotient
(r=0.13).

Glycerol

The concentration of glycerol in the skin was increased in the
patient group during the study period controls 46.4 umol/I
[17.1 to 257.3], burned skin 136.6 umol/l [75.9 to 970], and
uninjured skin 123.4 umol/l [73.4 to 309]) and this reached
significance on days 3 and 4 (p < 0.01) (Figure 5).

Urea

The concentration of urea was within the reference range in
controls (4.6 mmol/l [1.1 to 7.6]) as well as in uninjured skin
(4.1 mmol/l [1.6 to 6.5]) and injured skin (3.5 mmol/l [3.0 to
5.2]) (Figure 6).

Discussion

The main findings of this study were that microdialysis could
be applied to critically ill burned patients and that skin meta-
bolic processes could be followed for several days. This tech-
nique seems to picture events in the skin, which are not
recognised in the central circulation. There is acidosis in the
skin. The systemic effects of trauma on the homeostasis of
glucose and fat were also illustrated by the technique and
showed hyperglycaemia and lipolysis.
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We do recognise the limitation of this study in the small
number of patients and the heterogeneity in the burn trauma
(chemical/flame injury). In regard to the type of trauma, the
chemical burns were considered representative of a
significant tissue trauma because the fluid needs and the clin-
ical course were rather similar to those of the flame burns.

Lactate and pyruvate

The production of lactate and pyruvate in the dermis has been
investigated in healthy humans, and the values of lactate in
dermis have been shown to be higher than those in plasma
[22]. It is also recognised that hyperglycaemia increases the
production of lactate in subcutaneous tissue by up to 50%
[29]. As anticipated, we found a correlation between
increased tissue glucose levels and increases in both tissue
lactate and pyruvate levels.

During non-ischaemic conditions, a parallel increase in pyru-
vate is seen, and the ratio of lactate to pyruvate remains stable.
An increased ratio indicates ischaemia [22,30]. Indeed,
increased lactate/pyruvate ratio is considered a sensitive
marker of ischaemia.

The ratio was significantly higher in patients in both burned
and uninjured skin, during early as well as late resuscitation.
This suggests ischaemia of the skin, despite the lack of signs
of acidosis in the central circulation. The difference between
uninjured and burned skin was not significant, but there was a
trend toward higher values in burned skin. This increased ratio
eventually returned to the value of the uninjured skin on day
four, which may be explained by an initial relative under-resus-
citation and hypovolaemia that affected the circulation in the
skin, as suggested in several studies using other endpoints for
resuscitation [7,13]. Haemodilution is often seen as a conse-
quence of the aggressive early fluid resuscitation in burns, and
this adds a further reduction in oxygen delivery and a deposi-
tion of fluid in the injured tissue, both of which may lead to
reduced perfusion and tissue ischaemia [18,31].

In patients with severe burns, the systemic inflammatory
response syndrome is present [2]. Disseminated intravascular
coagulation with loss of platelets is due to thromboses in the
microvasculature, which results in an impaired microcircula-
tion that could lead to an increased lactate/pyruvate quotient,
and thereby another plausible explanation for our findings is
added.

We found a clear increase in the lactate/pyruvate quotient,
especially during days three and four postburn. Since the time
of the study, new knowledge on unwanted degradation of
pyruvate during storage at -20°C (that is, a 7% to 10% pyru-
vate decrease per month) has been revealed (application note
8, 2006, CMA Microdialysis AB). It needs to be stressed that
this was not known at the time of the study. Given the storage
times of the present study, there is a risk for reporting a falsely
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high lactate/pyruvate ratio. Recalculating the ratios, assuming
a three month analysis delay, the ratios are still more then
twice those of the controls. We would also like to stress that,
at the time of the study, all procedures were handled accord-
ing to manufacturers' recommendations.

The patients in this study received what appear to be exces-
sive amounts of fluids, leading to urinary output levels above
the endpoint goals. This may be explained in part by the sizes
of the burn injuries as stated above. All the patients in the
present study had major burns (median TBSA percentage,
59%), but it needs to be pointed out that the study is in line
with modern fluid treatment traditions, which at present tend
to use larger resuscitation volumes [15].

Glucose

Microdialysis has been described most fully for glucose stud-
ies and is known to accurately reflect changes in both blood
and tissue concentrations [22,32]. In this study, blood glucose
concentration was influenced by trauma-induced insulin resist-
ance, which peaked on day two and then gradually decreased
to a lower but still increased value. It is important to underline
that this study was conducted prior to the era of tight glucose
control, but due to the risk of hypoglycaemia [33], insulin treat-
ment is still not standard during the early resuscitation period
in our unit although we do use an aggressive glucose control
protocol thereafter [6,34,35]. Glucose concentration in the
skin initially followed the same pattern as in blood but surpris-
ingly continued to increase throughout the study period in both
burned and uninjured skin. It seems that insulin resistance con-
tinues locally, in this case in the dermis, even when the sys-
temic situation is beginning to normalise.

The reason for the trauma-induced insulin resistance is not
fully understood, but increasing evidence in skeletal muscle
indicates a low interstitial insulin concentration, making the
capillary wall rate-limiting and capillary recruitment essential
for optimised insulin kinetics in peripheral tissue [36,37]. Such
an explanation would also be relevant for burns given that
microvascular disturbances during early resuscitation for
shock are to be expected. What then becomes puzzling is that
experimental studies either on induced vasoconstriction or
ischaemia all show decreased glucose levels interstitially [26].

There is also increasing evidence that an impairment of cellular
metabolism (that is, mitochondrial dysfunction resulting in bio-
energetic failure [38] rather than hypoperfusion and concomi-
tant tissue hypoxia) is the reason for organ dysfunction sec-
ondary to trauma and sepsis [39-41]. The microdialysis result
of this study mimics the result of several such studies examin-
ing the cellular metabolism in sepsis. We do lack signs of
hypoperfusion (that is, systemic acidosis) and the patients
were fully resuscitated and likely to be hyperdynamic in their
circulation. Still, there is local acidosis in skin (increased lac-
tate/pyruvate quotients) but local skin hyperglycaemia indi-



cates sufficient blood flow for glucose delivery. But at the
same time, the use of the glucose seems impaired, which
could be explained by cytopathic hypoxia. It is of particular
interest that these cellular responses have not yet been
described in association to burn chock resuscitation. Further-
more, it is well known that hyperglycaemia worsens brain
oedema after injury [42]. It might therefore be argued that the
finding of increased glucose levels interstitially, in combination
with the permeability increase and negative imbibition pres-
sures (both well known factors for burn oedema formation),
may further promote burn-induced skin oedema.

Urea

Urea is an often-used endogenous reference substance in
vitro. Other authors [26,29] have proposed the hypothesis
that comparing the recovery (that is, the fraction of the abso-
lute tissue concentration recovered in the perfusate) values of
urea in vivo and the substance of interest would assess the
relative in vivo recovery of the given substance. We found
median recovery values of 80% and 74% for glucose in unin-
jured and burned skin, respectively, and 96% to 100% for urea
for all categories (controls and injured and uninjured skin), and
this strongly supports the view that our microdialysis results
accurately reflect events in tissues.

Glycerol

Catecholaminergic stimulation of fat cells is a key mechanism
in the regulation of fat metabolism in patients with
burns[43,44]. Lipolysis causes weight loss and affects out-
come, and this is a serious problem in burn care [6]. It has
been recognised since the 1980s that agents that block beta-
adrenergic receptors improve outcome by reducing tissue
catabolism and, in particular, lipolysis [43]. Microdialysis has
been used in numerous studies of lipolysis, showing increased
concentrations of glycerol in subcutaneous adipose and mus-
cle tissue. Sympathetic stimulation effectively inhibits the
antilipolytic effect of insulin by inducing insulin resistance [45].
It is also important to note that lipolysis differs among different
tissues [45]. We have shown three- to fourfold increases in the
concentrations in the skin of burned patients. Our belief is that
the observed increase in glycerol reflects the lipolysis induced
by the trauma stress response. Similar effects have been
shown experimentally in humans during induced sympathetic
stimulation or euglycaemic-hyperinsulinemic clamps [45]. The
finding may have implications in studies of lipolysis, making it
possible to study intervention (for example, beta blockade or
insulin) in different tissues.

Conclusion

Microdialysis can monitor effects induced by burns on tissue
lactate, pyruvate, glucose, urea, and glycerol for several days.
It seems to picture events in the skin which are not found in the
central circulation. There seems to be acidosis in the skin,
which might be related to ischaemia secondary to the fluid
resuscitation. These findings are also consistent with cyto-
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pathic hypoxia and reflect metabolic cell dysfunction. To our
knowledge, this response (previously described in sepsis) has
not been described in burn injuries before. Furthermore, the
impaired glucose metabolism may create an osmotic gradient
from blood, which may further contribute to the oedema forma-
tion. All these factors may affect skin survival, with risk for
deepening of injury and the need for further surgery. Another
interesting finding is that lipolysis can be monitored
successfully.

Key messages

e Our results show that, despite current standard regi-
mens for resuscitation of burns, there is local acidosis in
skin. This is most likely due to impaired cell metabolism,
but local ischaemia cannot be excluded.

* Microdialysis offers a possibility to monitor tissue
effects in the development of new resuscitation formu-
las and evaluate future pharmacological interventions
aiming at cell metabolism.

¢ Glucose and fat metabolisms differ locally from sys-
temic values, and microdialysis may thus be used to
better understand the peripheral pathophysiology of, for
example, glucose intolerance.
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