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Abstract

Introduction The objective was to study the effects of a novel
lung volume optimization procedure (LVOP) using high-
frequency oscillatory ventilation (HFOV) upon gas exchange, the
transpulmonary pressure (TPP), and hemodynamics in a porcine
model of surfactant depletion.

Methods With institutional review board approval, the
hemodynamics, blood gas analysis, TPP, and pulmonary shunt
fraction were obtained in six anesthetized pigs before and after
saline lung lavage. Measurements were acquired during
pressure-controlled ventilation (PCV) prior to and after lung
damage, and during a LVOP with HFOV. The LVOP comprised
a recruitment maneuver with a continuous distending pressure
(CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of
the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP
level was identified during the decrease in CDP, which assured
a change of the PaO2/FIO2 ratio < 25% compared with
maximum lung recruitment at CDP of 45 mbar (CDP45). Data
are presented as the median (25th–75th percentile);
differences between measurements are determined by

Friedman repeated-measures analysis on ranks and multiple
comparisons (Tukey's test). The level of significance was set at
P < 0.05.

Results The PaO2/FiO2 ratio increased from 99.1 (56.2–128)
Torr at PCV post-lavage to 621 (619.4–660.3) Torr at CDP45
(CDP45) (P < 0.031). The pulmonary shunt fraction decreased
from 51.8% (49–55%) at PCV post-lavage to 1.03% (0.4–3%)
at CDP45 (P < 0.05). The cardiac output and stroke volume
decreased at CDP45 (P < 0.05) compared with PCV, whereas
the heart rate, mean arterial pressure, and intrathoracic blood
volume remained unchanged. A TPP of 25.5 (17–32) mbar was
required to preserve a difference in PaO2/FIO2 ratio < 25%
related to CDP45; this TPP was achieved at a CDP of 35 (25–
40) mbar.

Conclusion This HFOV protocol is easy to perform, and allows
a fast determination of an adequate TPP level that preserves
oxygenation. Systemic hemodynamics, as a measure of safety,
showed no relevant deterioration throughout the procedure.

Introduction
Current ventilatory strategies for 'lung-protective' ventilation in
acute respiratory distress syndrome (ARDS) include low tidal
volumes to avoid alveolar overdistension, adequate end-expir-
atory lung volume by positive end-expiratory pressure to pre-
vent end-expiratory alveolar collapse, and inspiratory pressure
limitation to minimize further stress and strain to the lung
fibrous skeleton [1]. The excessive and nonphysiological strain
to lung structures is caused by high transpulmonary pressures
(TPP), which in turn depend on the respiratory system

elastance [2]. High-frequency oscillatory ventilation (HFOV)
offers several advantages over conventional ventilation. Oscil-
lations in HFOV are superimposed on a constant fresh gas
flow and induce active inspiratory and expiratory gas move-
ment, resulting in high constant mean airway pressures at low
tidal volumes. Atelectatic lung regions are reopened by the
continuous distending airway pressure (CDP), and the super-
imposed small oscillations provide alveolar gas exchange for
CO2 removal [3]. Recruitment maneuvers are beneficial at
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initiation of HFOV to ensure sufficient gas exchange area in
the diseased lung [4].

In most clinical studies, HFOV is initiated by an initial lung vol-
ume optimization procedure (LVOP) with a CDP level 5 mbar
above the effective mean airway pressure previously used at
conventional ventilation [5-8]. The CDP is thereafter increased
in a stepwise manner (2–5 mbar every 15–30 minutes) up to
the maximum increase of PaO2 or up to a predetermined CDP.
This maneuver is followed by a stepwise reduction of the CDP
(2 mbar every 30 minutes up to 4 hours) to maintain alveolar
patency. Recruitment in a stepwise fashion is effective and
safe with regard to hemodynamic impairment, but is also time
consuming in adjusting an effective CDP.

Preclinical and clinical trials have been presented recently that
used a recruitment maneuver with a high CDP, followed by a
stepwise decrease of the airway pressure. Sedeek and col-
leagues used a continuous positive airway pressure of 50
mbar for lung recruitment in lung-lavaged sheep. The CDP
was then set according to the maximal compliance on the
pressure-volume [9]. The Treatment with Oscillation and an
Open Lung Strategy (TOOLS) trial used a standardized HFOV
protocol in patients, which showed that the combination of
HFOV and a high initial recruitment maneuver (with interrupted
HFOV) resulted in a rapid and sustained improvement in oxy-
genation. The mean airway pressure was then titrated in a dec-
remental fashion according to the oxygenation response [10].

In the present study we investigated the immediate effect of a
modified LVOP by means of ongoing HFOV on hemodynamics
and oxygenation prior to its clinical application. To demon-
strate the feasibility and safety of this lung optimization proce-
dure, HFOV was initiated with the CDP set to 45 mbar (for 2.5
minutes) during ongoing oscillation in six pigs after saline lung
lavage, simulating an early-phase ARDS model. The CDP was
thereafter reduced in a stepwise fashion of five mbar every five
minutes with simultaneous measurement of the TPP. The
effects upon gas exchange, systemic hemodynamics, and the
pulmonary shunt proportion were observed at each CDP and
TPP level.

Methods
Animal preparation
The study protocol was approved by the institutional and state
animal care committee. Six pigs were anesthetized after pre-
medication (8 mg/kg azaperone and 0.02 mg/kg atropine
intramuscularly) with 0.01 mg/kg fentanyl (Fentanyl; Janssen
Pharmaceuticals, Neuss, Germany) and 5 mg/kg thiopentone
(Trapanal; Altana Pharma, Konstanz, Germany) intravenously.
Anesthesia was maintained by continuous infusion of thiopen-
tone (6–9 mg/kg/hour) and fentanyl (5 µg/kg/hour). The tra-
chea was intubated by tracheotomy (endotracheal tube, ID 9
mm; Ruesch, Kernen, Germany) and the pigs were ventilated
in a pressure-controlled mode (PCV) with a FiO2 of 0.3 in air,

a positive end-expiratory pressure of 5 mbar, and a variable
respiratory rate to achieve an end-tidal carbon dioxide tension
of 40 ± 5 Torr (Servo 900 C; Siemens, Erlangen, Germany).
Ringer's solution was substituted continuously at a rate of 5
ml/kg/hour intravenously.

Instrumentation included arterial and central venous catheteri-
zation by femoral cutdown for blood pressure monitoring (S/5
Monitoring; Datex-Ohmeda, Duisburg, Germany), blood gas
analysis, and drug administration. A pulmonary arterial cathe-
ter was introduced via the right internal jugular vein for mixed
venous blood gas sampling (Radiometer 500 and OSM 3;
Radiometer, Copenhagen, Denmark). A left ventricular cathe-
ter was introduced through the right internal carotid artery for
measurement of the left ventricular end-diastolic pressure
(LVEDP). The position of all catheters was verified by trans-
duction of typical pressure waveforms and was verified by
autopsy after the experiment. All intravascular pressures were
referenced to the mid-chest level. For measurement of the
esophageal pressure, a catheter with an inflatable balloon on
its tip (Oesophagus Catheter; Jaeger GmbH, Hoechberg,
Germany) was placed in the distal esophagus and filled with 1
ml air [11]. A pneumotachymeter (Pneumotachymeter; Jaeger-
Toennies, Hoechberg, Germany) was attached to the endotra-
cheal tube. The airway and esophageal pressures were
recorded and analyzed with a dedicated monitoring system
(MasterScreenIOS; Jaeger-Toennies). After finishing the study
protocol, the animals were euthanized (40 mval potassium
chloride intravenously) in deep anesthesia.

Lung lavage model
A surfactant-depletion model was induced by repetitive lung
lavages (4 ± 1) until a PaO2/FiO2 ratio less than 100 Torr was
achieved. Isotonic Ringer's solution (20 ml/kg, 38°C) was
instilled into the endotracheal tube, and the fluid was retrieved
by gravity drainage after 30 seconds of apnoea. To maintain
hemodynamic stability, a continuous infusion (mean ± stand-
ard deviation) of 3 ± 2 µg/kg/hour epinephrine was adminis-
tered during the lung lavages and was kept constant during
the entire study protocol. After lung lavages, the animals were
ventilated with a positive end-expiratory pressure of 5 mbar
during PCV (inspiratory pressure = 25 mbar, FiO2 = 1.0, inspi-
ration time:expiration time ratio = 1:1) for 120 minutes prior to
initiation of HFOV.

High-frequency oscillatory ventilation
A commercially available HFOV oscillator (Sensormedics
3100 B; Yorba Linda, California, USA) was used. Hemody-
namic stability before HFOV initiation was defined by a mean
arterial pressure (MAP) > 60 mmHg and a pulmonary artery
occlusion pressure (PAOP) > 10 mmHg. If the PAOP was
inadequate, repetitive boluses of 5 ml/kg colloids within 10
minutes were applied until hemodynamic stability was
achieved. The following HFOV settings were used and kept
constant throughout the entire protocol (Figure 1): FiO2 of 1.0,
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an oscillatory frequency of 6 Hz, an inspiration time of 33% of
the respiratory cycle, a bias flow of 30 l/minute, and a pressure
amplitude of 40 mbar.

The protocol for lung volume optimization during HFOV com-
prised three steps: step 1, a lung recruitment maneuver – set-
ting the initial CDP during ongoing oscillations to 45 mbar
(CDP45) for 2.5 minutes; step 2, decrease of the CDP – the
CDP was reduced in a stepwise manner by 5 mbar every 5
minutes from 45 mbar to 40 mbar, 35 mbar, 30 mbar, 25 mbar,
and 20 mbar (CDP20) with simultaneous measurement of the
TPP; and step 3, identification of the optimal TPP – the TPP
level necessary to maintain lung recruitment was defined as
the TPP necessary to prevent a decrease in the PaO2/FiO2
ratio > 25% compared with the PaO2/FiO2 ratio at CDP45
(that is to say, maximum lung recruitment).

Measurements
The following parameters were recorded before and 120 min-
utes after initiation of lung damage during PCV, and at every
CDP level during HFOV: the heart rate, the MAP, the right
atrial pressure, the PAOP, the mean pulmonary artery pres-
sure, and the LVEDP. In addition, the intrathoracic blood vol-
ume, the extravascular lung water, and the cardiac output
(CO), as obtained by the PiCCO®-Technology system (Pul-
sion Medical Systems, Munich, Germany), were recorded. For
blood gas analyses, arterial and mixed venous blood samples
were drawn (ABL 500/OSM 3; Radiometer, Copenhagen,
Denmark). The pulmonary vascular resistance, the systemic
arterial vascular resistance, the stroke volume (SV), oxygen
delivery, the oxygenation index, and the pulmonary shunt pro-
portion were calculated according to standard formula.

The TPP was calculated as the difference between the CDP
(measured at the proximal end of endotracheal tube) and the
esophageal pressure.

Statistical analysis
Data are expressed as the median, and 25th and 75th percen-
tiles (interquartile range). Intraindividual differences before and
after induction of lung injury and during the recruitment maneu-
ver (PCV post-lavage and CDP45) were tested nonparametri-
cally using the Wilcoxon signed-rank test. Any differences
during the fast CDP deceleration trial were addressed by a
Friedman repeated-measures analysis of variance on ranks
and multiple comparisons by Tukey's test. P < 0.05 was con-
sidered significant (SigmaStat Version 2.03; SPSS Inc., San
Raphael, California, USA).

Results
All six animals (25 ± 2 kg bodyweight, mean ± standard devi-
ation) completed the entire study protocol. Hemodynamic and
gas exchange variables before and after induction of lung
damage are presented in Table 1. The MAP and PAOP before
initiation of HFOV complied with the predefined requirements;
that is, PAOP of 13 (11–13) mmHg and MAP of 83 (82–85)
mmHg. Repetitive lung lavages decreased the PaO2/FiO2
ratio (PCV pre-lavage, 559 (535–658) Torr vs PCV post-lav-
age, 99 (56–128) Torr; P < 0.05), and increased the pulmo-
nary shunt fraction (PCV pre-lavage, 9.97% (8.8–11%) vs
PCV post-lavage, 51.8% (49–55%); P < 0.05). The oxygena-
tion index increased from PCV pre-lavage (1.4 (1.2–2)) to
PCV post-lavage (16.3 (14.6–21.3)) (P < 0.05). The extravas-
cular lung water increased from PCV pre-lavage (290 (241–
311) ml) to PCV post-lavage (420 (354–463) ml) (P < 0.05).

Figure 1

Illustration of the time course of the study protocolIllustration of the time course of the study protocol. CDP, continuous distending pressure; CDP45, continuous distending pressure of 45 mbar; ∆P, 
pressure amplitude; HFOV, high-frequency oscillatory ventilation; PCV, pressure-controlled ventilation; Tinsp, inspiration time.
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Hemodynamics
Hemodynamic variables are presented in Table 1 for the lung
recruitment maneuver and in Table 2 for the stepwise
decrease of the CDP. The MAP, heart rate and intrathoracic
blood volume did not change throughout the entire
experiment. The right atrial pressure, mean pulmonary artery
pressure, PAOP, and LVEDP during the lung recruitment pro-
cedure increased significantly from the PCV post-lavage to
CDP45 (P < 0.05). The CO and SV decreased from PCV
post-lavage (CO, 3.6 (3.1–3.9) l/minute; SV, 32 (31–35) ml)

to CDP45 (CO, 2.6 (2.3–3.1) l/minute; SV, 19 (18–24) ml) (P
= 0.031).

Pulmonary gas exchange and pulmonary shunt fraction
The LVOP increased the PaO2/FiO2 ratio from PCV post-lav-
age (99 (56–128) Torr) to CDP45 (621 (619–660) Torr) (P <
0.05). The pulmonary shunt fraction decreased from PCV
post-lavage (51.8% (49–55%)) to CDP45 (1.03% (0.4–3%))
(P < 0.05). During the stepwise decrease of the CDP, the
shunt fraction increased to 20.2% (7.2–52%) at CDP20 com-
pared with 1.03% (0.4–1.4%) at CDP45 and compared with

Table 1

Hemodynamic data, blood gas data in pressure-controlled ventilation (PCV) pre-lavage, PCV post-lavage, and during lung volume 
optimization procedure in high-frequency oscillatory ventilation

PCV pre-lavage PCV post-lavage 45 mbar

Heart rate (beats/minute) 113 (112–124) 112 (102–125) 141 (126–167)

Right atrial pressure (mmHg) 9 (9–9) 10 (8–11) 16 (15–18)**

Mean pulmonary artery pressure (mmHg) 25 (20–37) 34 (30–41) 41 (35.7–52)**

Pulmonary occlusion pressure (mmHg) 10 (7–12) 13 (11–13) 24 (23–26)**

Left ventricular end-diastolic pressure (mmHg) 3 (1–4) 3.5 (2–6) 12 (11–13)**

Mean arterial pressure (mmHg) 89.5 (67–106) 83 (82–85) 85 (66–89)

Cardiac output (l/min) 3.28 (3.1–3.5) 3.6 (3.1–3.9) 2.6 (2.3–3.1)**

Stroke volume (ml) 31 (27–36) 32 (31–35) 19 (18–24)**

Intrathoracic blood volume (ml) 598.5 (548–622) 594 (553–690) 442 (401–469)

Extravascular lung water (ml) 290 (241–311) 420 (354–463)* 355 (315–476)

Systemic vascular resistance (dyn*s/cm5) 1817 (1277–2508) 1542 (1450–2074) 2403 (1524–2585)

Pulmonary vascular resistance (dyn*s/cm5) 266 (213–775) 545 (275–693) 639 (404–859)

Mean pulmonary artery pressure–right atrial pressure (mmHg) 16 (11–28) 26 (22–30) 28 (19–34)

Transpulmonary pressure (mbar) 4.5 (4–6) 10 (8–11)* 36 (32–43)**

PaO2 (Torr) 559 (535–658) 99 (56–128)* 621 (557–522)**

PaO2/FiO2 ratio 559 (535–658) 99 (56–128)* 621 (557–522)**

Oxygenation index 1.4 (1.2–2) 16.3 (14.6–21.3)* 7.2 (6.8–7.2)**

Oxygen delivery (ml O2/minute) 408.3 (382.5–427.6) 373 (297.6–427.9) 312 (299–466.2)

Shunt proportion 9.9 (8.8–11) 51.8 (49–55)* 1.03 (0.4–3)**

PaCO2 (Torr) 39.6 (32.8–48.4) 47 (40.7–58.8) 38.5 (28.3–46.6)

Oxygen saturation (%) 99.9 (99.9–99.9) 92 (89.7–96.5)* 99.9 (99–100)**

pH 7.45 (7.4–7.5) 7.38 (7.31–7.4) 7.41 (7.37–7.5)

Standard bicarbonate (mmol/l) 28.2 (27.8–30.2) 28.5 (26.2–30.9) 25 (23.2–27.5)

Base excess 4.8 (2.1–5.9) 2.25 (1–2.9)* 0.7 (-0.12 to 4.95)

Hemoglobin (g/dl) 7.6 (7.5–8) 7.8 (7.4–8.3) 7.9 (7.1–9.7)

Plateau airway pressure (cmH20) 21 (10.8–14.4) 30 (25–35)

Inspiratory tidal volume (ml) 335 (330–450) 390 (310–440)

Dynamic lung compliance (ml/mbar) 12.6 (10.8–14.4) 7.9 (5.3–9.8)*

Data presented as median (25th–75th percentiles). *P < 0.05 vs PCV pre-lavage (Wilcoxon signed-rank test), **P < 0.05 vs PCV post-lavage.
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0.7% (0.1–1.4%) at CDP of 40 mbar (P < 0.05). The PaO2/
FiO2 ratio decreased from CDP45 (621 (619–660) Torr) to
CDP20 (429 (52–558) Torr) (P < 0.05) (Figure 2). The
PaCO2 increased from CDP45 (38.5 (28.3–46) Torr) to
CDP20 (54.4 (40.7–68.6) Torr) (P < 0.001).

Identification of the required TPP level
The lung optimization procedure in this study required less
than 30 minutes to recruit the lung and to identify the lowest
TPP level to maintain adequate oxygenation and gas

exchange. The TPP increased from PCV post-lavage (10 (8–
11) mbar) to CDP45 (36 (26–43) mbar) (P < 0.05).

A TPP between 32 and 14 mbar prevented a decrease in the
PaO2/FiO2 ratio > 25% compared with the PaO2/FiO2 ratio at
CDP45. These TPP levels were achieved at CDP settings
ranging from 25 to 40 mbar (Figure 3a). In three animals the
PaO2/FiO2 ratio did not decrease more than 25% compared
with the measurement at CDP45, independently of the applied
CDP (Figure 3b). On average, a TPP of 25.5 (17–32) mbar
was required to preserve a difference in the PaO2/FiO2 ratio <

Table 2

Hemodynamic data and blood gas data on every continuous distending pressure in high-frequency oscillatory ventilation study 
protocol

Descent continuous distending pressure trial

45 mbar 40 mbar 35 mbar 30 mbar 25 mbar 20 mbar

Heart rate (beats/minute) 141.5 (126–167) 135.5 (112–153) 128 (113–149) 126 (107–147) 115 (102–140) 116 (104.5–128.5)

Right atrial pressure (mmHg) 16 (15–18) 15 (14–15) 14.5 (13–15) 13.5 (12–15) 12.5 (11–13) 11.5 (10–13)†,**,*

Mean pulmonary artery pressure 
(mmHg)

41 (35.7–52) 39 (35–41) 39 (31–44) 41 (35–42) 39 (35–43) 38.5 (36–42)

Pulmonary occlusion pressure 
(mmHg)

24 (23–26) 21.5 (20–24) 20 (18–21) 17 (16.2–18.7) 14 (13.5–17)† 13.5 (12–15)†,**

Left ventricular end-diastolic 
pressure (mmHg)

11.5 (11–13) 9 (9–11) 9.5 (6–10) 7.5 (6–12) 7.5 (5–10)† 5 (4–6)†

Mean arterial pressure (mmHg) 85 (66–89) 70 (63–90) 74 (67–104) 74.5 (66–101) 78.5 (77–108) 84 (47–106)

Cardiac output (l/minute) 2.6 (2.3–3.1) 2.6 (2–3) 2.65 (2.28–3.36) 2.52 (2.2–3.6) 2.7 (2.2–4.2) 3.1 (1.8–4.8)

Stroke volume (ml) 19 (18–24) 21 (16.6–24.5) 23.6 (15–29) 23 (15–26.9) 18.2 (16–33) 18.7 (12.8–37)

Intrathoracic blood volume (ml) 442.5 (401–469) 395 (335–495) 485 (431–531) 506.5 (453–542) 552 (412–618) 540 (492–614)

Extravascular lung water (ml) 355 (315–476) 360 (331–441) 405 (287–430) 426 (336–495) 441 (406.5–535) 460 (390–549)

Systemic vascular resistance 
(dyn*s/cm5)

2,403 (1,524–2,585) 1,598 (1,582–2,271) 1,835 (1,567–1,997) 2,026 (1,442–2,033) 1,933 (1,303–2,469) 1,611 (1,238–2,056)

Pulmonary vascular resistance 
(dyn*s/cm5)

639 (404–859) 440 (396–663) 457 (376–663) 512 (461–746) 617 (418–970) 678 (415–1,065)

Mean pulmonary artery pressure–
right atrial pressure (mmHg)

28 (19–34) 25.5 (23–26) 25 (18–29) 27.5 (26–28) 27 (25–30) 28.5 (23–31)

Transpulmonary pressure (mbar) 36 (32–43) 31 (27–38) 26.5 (22–33) 21.5 (17–28) 14.5 (12–22)†,** 10 (7–18)†,**

PaO2 (Torr) 621 (619–660) 654 (645–683) 664 (636–694) 644 629–692) 615 (469–680) 429 (52–558)**

PaO2/FiO2 ratio 82.8 (82.5–88) 654 (645–683) 664 (636–694) 644 629–692) 615 (469–680) 429 (52–558)**

Oxygenation index 7.2 (6.8–7.2) 6.1 (5.8–6.1) 5.4 (5–5.5) 4.6 (4.3–4.7) 4 (3.6–5.3) 4.8 (3.5–37.9)

Oxygen delivery (ml O2/minute) 312.5 (299–466) 358.2 (305.6–420) 360 (349–418) 357.2 (338–447) 347.4 (292–516) 399.6 (251–548)

Shunt proportion 1.03 (0.4–3) 0.7 (0.1–1.4) 1.5 (0–4.3) 1.6 (1.1–4.9) 4.7 (4.2–11.3) 20.2 (7.2–52)†,**

PaCO2 (Torr) 38.5 (28.3–46.6) 40.3 (30.1–51.1) 37.4 (30.7–44.8) 41.2 (31.1548) 46.9 (32.9–61.2) 54.5 (40.7–68.6)†,*

Oxygen saturation (%) 99.9 (99–100) 99.9 (99.8–100) 99.9 (99.9–100) 99.9 (98.3–100) 99.9 (96–100) 99.8 (83–99)

pH 7.41 (7.37–7.5) 7.4 (7.34–7.53) 7.4 (7.38–7.51) 7.4 (7.38–7.51) 7.38 (7.35–7.48) 7.29 (7.25–7.4)

Standard bicarbonate (mmol/l) 25 (24.2–29.8) 25.8 (25–27) 26 (23.4–27.6) 25.1 (23.5–27.7) 25.3 (24.2–28.5) 24.6 (24.1–28.5)

Base excess 0.95 (0.4–6.2) 1 (-1.5 to 5.2) 02 (-0.65 to 2.97) -0.15 (-2.4 to 1.6) -1.35 (-2.3 to 1.4) 0.2 (-4.25 to 0.47)

Hemoglobin (g/dl) 7.9 (7.1–9.7) 8.8 (7.4–10.1) 8.2 (7.5–10.4) 8 (7.4–9.7) 7.9 (7.1–9.4) 7.8 (7–10)

Data presented as median (25th–75th percentiles). Significant differences in parameters are indicated: *P < 0.05 vs 35 mbar, **P < 0.05 vs 40 
mbar, †P < 0.05 vs 45 mbar.
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25% related to CDP45; this TPP was achieved at a CDP of
35 (25–40) mbar.

Discussion
The present experimental study investigated the effects upon
gas exchange, TPPs, and hemodynamics of a modified HFOV
initiation protocol to optimize the lung volume in a porcine
model of acute lung injury. The protocol consists of a fast
recruitment maneuver followed by a stepwise decrease of
CDP. The fast stepwise reduction of CDP allows the identifi-
cation of the lowest TPP level required to maintain improve-
ment of oxygenation in each animal. This approach therefore
offers an effective reduction of pulmonary shunt fraction and
improvement in oxygenation without relevant adverse hemody-
namic effects within a very short time.

In most clinical and experimental studies, HFOV is initiated
with a LVOP with an initial CDP level 5 mbar above the mean
airway pressure previously used in conventional ventilation
[5,6,8,12]. The CDP is then increased in a stepwise fashion
(2–5 mbar steps) every 15–30 minutes until a maximum in
PaO2 or a predetermined CDP is reached. Our study presents
a fast lung optimization procedure that could be technically
applied easily in the clinical scenario. In contrast to recent
studies in animals and in patients, the CDP was directly set to
45 mbar for 2.5 minutes. The lowest possible TPP that still
assures the improved oxygenation is subsequently titrated.

Recruitment maneuvers are beneficial at the initiation of HFOV
to ensure sufficient gas exchange area in the diseased lung
[4]. In the Treatment with Oscillation and an Open Lung Strat-
egy trial, the combination of HFOV and a high initial mean air-
way pressure recruitment maneuver without ongoing HFOV
resulted in a rapid and sustained improvement in oxygenation
[10]. Although sustained inflation pressures up to 55 mbar are
necessary to overcome the opening pressure of collapsed

alveoli [13], the criteria of a fully recruited lung, defined as
pulmonary shunt proportion < 0.1 [14], was achieved at a
CDP of 45 mbar. A CDP of 32 ± 6 mbar in piglets was able to
reduce the shunt fraction < 10% [15]. During the present
study a single pressure step-up for alveolar recruitment was
performed, and therefore no estimate can be made of whether
a lower CDP and TPP would have been adequate to reopen
the lung, and whether the TPP required to open alveolar units
exceeds the TPP required to maintain alveolar patency
[15,16]. Assuming that the TPP stays above a critical closing
pressure, a significant alveolar derecruitment cannot be
expected [17,18]. In other experimental studies with the lav-
age-injury animal model, the mean airway pressures were set
according to the pressure-volume curve for the setting of the
CDP during HFOV [9,16,19]. In their study, Sedeek and col-
leagues repeated recruitment maneuvers with a continuous
positive airway pressure of 50 mbar for 1 minute until the PaO2
was stable with a CDP set according to the maximal compli-
ance on the pressure-volume curve [9].

We intended to use an alternative method without the pres-
sure-volume curve. The PaO2/FiO2 ratio was therefore used as
a criterion to identify the lowest TPP preventing alveolar dere-
cruitment during the stepwise decrease of CDP. A TPP below
this threshold was associated with an increased shunt > 10
and with an increased PaCO2. An increased PaCO2 at
unchanged HFOV settings indicates a decreased alveolar sur-
face available for gas exchange.

Previous studies in the lavage animal model showed that CO
decreased at high mean airway pressures. Interestingly, better
oxygenation values in those studies were found at lower mean
airway pressure, suggesting in our study that eventually a
lower CDP eventually would have been sufficient [16,19]. The
lung recruitment maneuver had a marked effect on hemody-
namics. These effects can easily be corrected by volume or by

Figure 2

PaO2/FiO2 ratio and shunt fraction during pressure-controlled ventilation and high-frequency oscillatory ventilationPaO2/FiO2 ratio and shunt fraction during pressure-controlled ventilation and high-frequency oscillatory ventilation. The PaO2/FiO2 ratio and shunt 
fraction during pressure-controlled ventilation (PCV) pre-lavage and PCV post-lavage in relation to continuous distending pressure (mbar). CDP, 
continuous distending pressure.
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vasoactive drug usage. There was no relevant decrease of the
intrathoracic blood volume as an indicator of reduced venous
preload [20]. Also, the fluid regime before initiation of HFOV
may have attenuated a reduction of venous return.

At a CDP of 45 mbar, the SV and CO were decreased and,
simultaneously, the cardiac filling pressures (LVEDP, right
atrial pressure, and PAOP) were elevated. This can be
explained by a compression of the heart into the cardiac fossa
due to the transmission of high TPPs [21,22]. Impairment of
hemodynamics can therefore be explained by the mechanical
restriction of the heart. Systemic afterload did not have a major
impact on the impaired SV and CO as measured by the sys-
temic vascular resistance. Right ventricular dysfunction may
occur when high airway pressures are applied, and the con-
secutive right ventricular output and left ventricular filling are
impaired leading to SV and CO decreases. As the pulmonary
vascular resistance was unaffected by a CDP of 45 mbar and
the right ventricle was able to generate a pressure gradient
(mean pulmonary artery pressure–right atrial pressure), we
excluded right ventricular failure. During the deceleration CDP
trial, the cardiac filling pressures returned to similar values as
measured before the lung recruitment maneuver. This obser-
vation assures us that the hemodynamic effects are related to
a pressure transmission of the CDP and the TPP.

The safe window for plateau pressures during conventional
ventilation is considered between 30 and 35 mbar, but even
those values can lead to a harmful TPP. Depending on the
elastance of the respiratory system, volutrauma may occur
from cyclic tidal overdistension. No recommendations regard-
ing safe levels for CDP or TPP exist during HFOV. The lowest
TPP levels possible, however, should be applied. The meas-
urement and monitoring of the TPP is therefore helpful and of
increased interest, as the TPP is the effective distending force
of the lung, and ventilator-induced lung injury (VILI) depends
on the TPP [23,24]. By measuring the TPP the mechanical
ventilator settings could be set more individually with respect
to lung and chest wall mechanical characteristics, which ena-
bles the identification of lung recruitment potential in relation
to a potential risk of VILI. Such an individual approach may
reduce the risk for further lung injury in patients with ARDS
undergoing mechanical ventilation [25,26]. In a clinical sce-
nario, a CDP higher than the safe window for plateau pres-
sures under conventional ventilation should be avoided even if
suggested by the LVOP presented in this study. Although the
theoretical advantage of HFOV is the avoidance of volutrauma
caused by tidal overdistension (due to minimal tidal volumes)
in the case of excessive TPP, a compromise between oxygen-
ation and potential VILI should be made to avoid a VILI and to
accept lower but adequate oxygenation.

The esophageal pressure measured by an esophageal balloon
is used as a surrogate parameter of the pleural pressure for
calculation of the TPP. The pleural pressure and therefore the
TPP are dependent on the chest wall elastance in experimen-
tal patients and ARDS patients. For a given mean airway pres-
sure (CDP) the pleural pressure increases if the chest wall
elastance is elevated, and consequently the TPP decreases.
Chest wall elastance, however, depends on the pathophysiol-

Figure 3

Relationship between continuous distending pressure and transpulmo-nary pressure or changes in PaO2/FiO2 ratioRelationship between continuous distending pressure and transpulmo-
nary pressure or changes in PaO2/FiO2 ratio. Relationship (for each ani-
mal) between the continuous distending pressure (CDP) (mbar) and: 
(a) the transpulmonary pressure (TPP) (mbar) (X, shunt fraction > 10%; 
+, decrease of the PaO2/FiO2 ratio > 25%), and (b) changes in the 
PaO2/FiO2 ratio (%) (dotted line, decrease of the PaO2/FiO2 ratio of 
25% compared with CDP of 45 mbar (CDP45); X, shunt fraction > 
10%).
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ogy of ARDS (for example, high chest wall elastance in
extrapulmonary ARDS). The elevated pleural pressure (due to
increased chest wall elastance) leads to a lower TPP com-
pared with pulmonary ARDS with normal elastance [1,27-29].

We found a pressure difference of about 10 mbar between the
applied CDP and the resulting TPP. The difference in mean
intrathoracic pressure and CDP in HFOV increases with the
oscillatory frequency, decreasing the tracheal tube diameter
and the relative duration of the inspiratory time [30]. The inspi-
ration time:expiration time ratio of 33% in our study results in
an increased tracheal tube resistance and, consequently, in a
decreased mean intrathoracic pressure and TTP.

Limitations
A major limitation of this study is that it was performed in a lav-
age animal model of ARDS and not in patients. Large-animal
models, however, have contributed greatly to the understand-
ing of the basic physiology of HFOV and its clinical application
during severe lung injury [31]. ARDS in patients is rarely and
solely a result of surfactant deficiency only. Early institution of
HFOV, however, and institution of HFOV in patients with high
potential for recruitment is theoretically beneficial to outcome
in ARDS [32-34]. The lavage model is easily recruitable and is
probably the most comparable experimental ARDS model for
early-phase ARDS. Although it is primarily a model of sur-
factant depletion, it has been shown that mechanical ventila-
tion after lavages leads to neutrophil infiltration, cytokine
expression, and capillary-alveolar protein leak (as indicated by
the increased extravascular lung water in this study) [35-37].
The present study only observed immediate changes of hemo-
dynamics and lung oxygenation. High airway pressures and
subsequent lung overdistension may lead to mediator release
and to VILI. These adverse events were not accessible in the
present study. Also, we cannot report whether the optimized
gas exchange remained stable over a longer time period. This
raises the question of how often such recruitment maneuvers
should be applied in clinical practice.

Conclusion
This short-term experimental observation study demonstrates
the feasibility of a fast and safe lung optimization procedure
during uninterrupted HFOV. This lung optimization procedure
was well tolerated and resulted in a dramatic improvement of
oxygenation. No clinically relevant adverse effects on hemody-
namics or barotrauma occurred during the time period of
approximately 1 hour. The stepwise decrease of CDP allowed
the determination of the lowest TPP level necessary to main-
tain adequate oxygenation.
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