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Abstract

Introduction Liver microcirculation disturbances are a cause of
hepatic failure in sepsis. Increased leukocyte-endothelial
interaction, platelet adherence and impaired microperfusion
cause hepatocellular damage. The time course and reciprocal
influences of ongoing microcirculatory events during
endotoxemia have not been clarified.

Methods Male Wistar rats (232 ± 17 g) underwent cecal
ligation and puncture (CLP). Intravital microscopy (IVM) was
performed 0, 1, 3, 5, 10 and 20 hours after CLP. Mean
erythrocyte velocity, leukocyte and platelet rolling in
postsinusoidal venules and sticking of leukocytes and platelets
in postsinusoidal venules and hepatic sinusoids were
determined. Heart rate (HR), mean arterial pressure (MAP) and
portal venous blood flow (PBF) were measured. Blood count
and investigation of hepatic enzyme release was performed after
each IVM time point.

Results Hepatic platelet-endothelial adherence in liver
sinusoids and postsinusoidal venules occurred one hour after
the induction of endotoxemia. Leukocyte-endothelial interaction
started three to five hours after CLP. A decrease of hepatic
microperfusion could be observed at three hours in sinusoids
and ten hours in postsinusoidal venules after CLP, although PBF
was reduced one hour after CLP. HR remained stable and MAP
decreased ten hours after CLP. Hepatic enzymes in blood were
significantly elevated ten hours after CLP.

Conclusion Hepatic platelet-endothelial interaction is an early
event during endotoxemia. Leukocyte adherence occurs later,
which underlines the probable involvement of platelets in
leukocyte recruitment. Although PBF is reduced immediately
after CLP, the later onset of hepatic microperfusion decrease
makes the existence of autoregulatory liver mechanisms likely.

Introduction
The liver has a central regulatory role in metabolism and host
defense mechanisms during the course of sepsis [1]. Never-
theless, hepatocellular dysfunction occurs in early stages of
the disease. The release of cytokines such as tumour necrosis
factor-alpha from activated Kupffer cells is one cause of cyto-
toxic effects on hepatocytes [1-3]. But the release and expres-
sion of endothelial adhesion molecules is also initiated by
proinflammatory cytokines [1,2,4-6].

E- and P-selectins, which are expressed by activated endothe-
lial cells, lead to the transient and reversible adhesion of leuko-
cytes (rolling) to the endothelial surface via L-selectin [7-9].

The adhesion of platelets to endothelial cells is also mediated
by selectins [10]. Activated endothelial cells produce chem-
oattractants, such as interleukin-8 and platelet-activating fac-
tor, that may be secreted or remain surface bound. In
leukocytes, interleukin-8, platelet-activating factor and C5a ini-
tiate a cascade of intracellular events that lead to the activation
of β-integrins (LFA-1 and Mac-1) [11,12]. These β-integrins
enable leukocytes to adhere to endothelial adhesion mole-
cules, such as intercellular adhesion molecules, vascular cell
adhesion molecule-1 and platelet-endothelial cell adhesion
molecule-1, which initiates extravasation [9,13,14]. The
release of superoxide, arachidonic acid metabolites and pro-
teases of transendothelial migrated leukocytes and the
impaired microperfusion injures hepatocytes [13,15-20].
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AST, ALT = hepatocellular enzymes; CLP = cecal ligation and puncture; FITC = fluorescein isothiocyanate; IVM = intravital microscopy; MAP = mean 
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The time course of ongoing hepatic microcirculatory events
during sepsis, especially the role of platelets, is not yet com-
pletely clarified. For this reason, we investigated the time
dependent events of leukocyte adherence, platelet adherence
and impaired microperfusion in an animal model of sepsis by
intravital microscopy (IVM).

Materials and methods
Animals and protocols
All experimental procedures and protocols used in this inves-
tigation were approved by the Governmental Animal Protec-
tion Committee (Karlsruhe, Germany).

Male Wistar rats (232 ± 17 g) were anaesthetized by intraperi-
toneal injection of 20 mg/kg body weight sodium pentobarbi-
tal (Nembutal; Sanofi, Düsseldorf, Germany) and 30 mg/kg
body weight intramuscular injection of Ketamin. The right jug-
ular vein was cannulated for the infusion of reagents. Sepsis
was induced by cecal ligation and puncture (CLP) [21,22].
Laparotomy of 2 cm in the lower abdomen was performed and
the cecum was exteriorised. After non-obstructive ligation of
the cecum, two stitches with an 18G needle were performed.
The right carotid artery was cannulated for the measurement
of heart rate and mean arterial pressure (MAP). To maintain
anaesthesia during the observation period, the left femoral vein
was cannulated for continuous sodium pentobarbital (8 mg/h/
kg body weight) and Ketamin (4 mg/h/kg body weight) infu-
sion. Rectal temperature was measured and maintained at
37°C using a heating pad.

IVM was performed in eight animals of each group immediately
(0 h) and 1 h, 3 h, 5 h, 10 h and 20 h after CLP. After the IVM
blood count in venous blood was performed, hepatocellular
enzyme release (AST, ALT), albumin and bilirubin levels in
blood, heart rate and MAP were measured. The blood flow of
the portal vein (PBF) was determined using the flow probe of
a small animal ultrasonic flowmeter (Transonic Systems, New
York, USA [16].

Intravital microscopy
After placing the animal beneath the microscope, a 30 minute
stabilisation period followed. The upper surface of the left liver
lobe was exteriorised on a specially designed mechanical

stage. To maintain body temperature, the liver lobe was con-
tinuously superfused by thermostat-controlled (37.0°C)
Ringer solution. Hepatic microcirculation was oserved using a
specially designed microscope for epi-illumination (Orthoplan;
Leica, Wetzlar, Germany; lens with 40-fold magnification,
Archoplan 40/0.75 W; Zeiss, Jena, Germany). To protect the
liver lobe from heat, a heat protection filter (KG 1; Leica) was
located in the body of the microscope. Microscopic images
were transferred to a monitor (PVM 1444QM; Sony Corp.,
Tokyo, Japan) by a low light camera (Kappa CF 8/1; Kappa
Messtechnik, Gleichen, Germany) and recorded on a video
tape for later evaluation using a computer assisted system for
microcirculation analysis (Cap image; Zeintl, Heidelberg, Ger-
many).

Platelet preparation
Whole heparine-blood (1 ml) from donor rats was collected
and platelets were stained with rhodamine 6G (Sigma Chem-
ical, St. Louis, USA) as described elsewhere [23]. The col-
lected blood was diluted with Alserver's buffer after addition of
prostaglandin E1. Following a four-cycle washing procedure in
phosphate-buffered saline, platelets were separated and
injected in septic animals prior to IVM.

Analysis of leukocyte-endothelial and platelet-
endothelial interactions
Leukocytes were visualized by staining them with rhodamin
6G (0.1 µg/kg body weight). The leukocyte-endothelial and
platelet-endothelial interactions were investigated in separate
animal groups and analysed in each animal within a minimum
of 10 hepatic lobuli and 10 postsinusoidal venules. Adherent
leukocytes and platelets that did move or detach from the
endothelium prior to a period of 30 s were defined as 'rollers'.
Those that adhered to the endothelial wall for longer were
classified as 'stickers'. The number of rollers and stickers in
postsinusoidal venules were calculated per mm2 of endothelial
surface (length of observed vessel segment × diameter × π =
rollers or stickers per mm2). Sticking leukocytes and platelets
in sinusoids were quantified as stickers per mm2 liver surface.
Thrombotic sinusoids were calculated as not perfused sinu-
soids/sinusoids in hepatic lobuli (%).

Table 1

Macrohemodynamic parameters

Time after cecal ligation and puncture

0 h 1 h 3 h 5 h 10 h 20 h

HR (beats/min) 358 (12) 365 (14) 369 (14) 340 (19) 331 (11) 339 (15)

MAP (mm Hg) 100 (6) 100 (5) 86 (4) 92 (4) 82 (2)a 81 (1)a

PBF (ml/minute) 17 (6) 9 (1)a 10 (1)a 9 (1)a 7 (1)a 6 (1)a

Values are means with standard error of the mean in parentheses. ap < 0.05 versus 0 h. HR, heart rate; MAP, mean arterial pressure; PBF, portal 
blood flow.
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Analysis of blood flow in liver sinusoids and 
postsinusoidal venules
Erythrocytes from seperate donor rats were labelled with fluo-
rescein isothiocyanate (FITC, Isomer I, No. F-7250; Sigma
Chemical, Deisenhofen, Germany). Blood was washed three
times with Alserver's buffer solution and one time with bicine-
saline buffer solution to remove plasma. The washed erythro-
cytes were diluted 1:2 with bicine-saline buffer solution and
incubated with FITC (9 mg/ml erythrocytes) for 180 minutes at
25°C. Labelled erythrocytes were further washed five times in
bicine-saline buffer solution. Then the erythrocytes were
diluted with saline until the hematocrit was 50% in citrate-
phosphate-dextrose solution (No.C-7165, Sigma Chemical,
Germany). Thirty minutes prior to IVM, the animals received
1.0 ml/kg bodyweight FITC-labelled erythrocytes. For the
measurement of sinusoidal perfusion, the velocity of 50 eryth-
rocytes in 10 acini was measured and calculated as a mean of
erythrocyte velocyte per mm2 liver surface. The velocity of 10
erythrocytes in 10 postsinusoidal venules was measured and
calculated as a mean of erythrocyte velocity (MEV) per mm2 of
endothelial surface.

Statistical analysis
All data are presented as mean ± standard error of the mean
(SEM). Differences were considered significant for p < 0.05.
Comparisons between groups were performed by one-way
ANOVA followed by LSD test after Shapiro-Wilk's analysis for
normal distribution.

Results
Macrohemodynamic parameters and laboratory values
The heart rate remained stable during the whole IVM investiga-
tion period. The MAP decreased significantly 10 h after CLP
while the PBF was decreased significantly at 1 h after CLP
compared to at 0 h (Table 1). Animals had developed signifi-
cant leukopenia 3 h, 5 h, 10 h and 20 h after CLP compared

to at 0 h. Platelets decreased significantly 3 h, 10 h and 20 h
versus 0 h after CLP. Hematokrit remained stable during the
whole investigation period. Significantly, hepatozellular
enzyme liberation (AST, ALT) was detected at 10 h and 20 h
after CLP compared to at 0 h. Bilirubin in blood was increased
significantly at 20 h versus 0 h after CLP. Levels of albumin in
blood were reduced at 3 h, 10 h and 20 h versus 0 h after CLP
(Table 2).

Intravital microscopy
The MEV in hepatic sinusoids was decreased significantly at 3
h, 5 h, 10 h and 20 h versus 0 h of IVM measurement. MEV in
postsinusoidal venules was decreased significantly 10 h and
20 h versus 0 h after CLP. Leukocyte rolling in postsinusoidal
venules was significantly increased 3 h, 10 h and 20 h versus
0 h while platelet rolling was significantly increased at 1 h, 3 h,
5 h, 10 h, and 20 h versus 0 h of IVM. At 5 h, 10 h and 20 h
versus 0 h, significantly increased sticking of leukocytes and
platelets occurred in postsinusoidal venules. In hepatic sinu-
soids at 1 h, 3 h, 5 h, 10 h and 20 h, significantly elevated
amounts of sticking platelets were detected compared to at 0
h. Sticking leukocytes in liver sinusoids were significantly
increased 5 h, 10 h and 20 h versus 0 h after CLP. The sinu-
soidal diameter was significantly reduced 10 h and 20 h ver-
sus 0 h of IVM and the ratio of non-perfused thrombotic
sinusoids was significantly increased 5 h, 10 h and 20 h ver-
sus 0 h after CLP (Table 3, Figure 1). Figure 2 shows IVM pic-
tures of hepatic postsinusoidal venules and sinusoids and
gives a visual idea of ongoing microcirculatory disturbances.
The decrease of sinusoidal diameter and reduced amount of
perfused sinusoids at 20 h (Figure 2b) versus 0 h (Figure 2a)
are obvious.

Table 2

Body weight and laboratory values in venous blood of rats

Time after cecal ligation and puncture

0 h 1 h 3 h 5 h 10 h 20 h

Weight (g) 247 (5) 231 (9) 233 (9) 249 (7) 220 (7) 219 (7)

WBC (× 103/µl) 3.8 (0.3) 3.6 (0.2) 2.5 (0.2)a 2.4 (0.2)a 1.8 (0.2)a 2.0 (0.3)a

Plt (× 103/µl) 843 (39) 900 (29) 750 (25)a 829 (26) 669 (25)a 488 (44)a

Hkt (%) 51 (1) 51 (1) 46 (2) 48 (2) 48 (2) 47 (4)

AST (U/l) 61 (9) 65 (4) 65 (4) 72 (9) 145 (26)a 234 (33)a

ALT (U/l) 30 (3) 27 (1) 24 (1) 29 (1) 61 (6)a 115 (11)a

Albumin (g/l) 12 (0.4) 12 (0.4) 11 (0.2)a 12 (0.3) 11 (0.2)a 10 (0.3)a

Bili (mg/dl) 0.32 (0.03) 0.26 (0.02) 0.29 (0.02) 0.23 (0.02) 0.26 (0.03) 0.48 (0.08)a

Values are means with standard error of the mean in parentheses. ap < 0.05 versus 0 h. AST, ALT: hepatocellular enzymes; Bili: bilirubin; Hkt: 
haematokrit; Plt: platelets; WBC, white blood cell count.
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Discussion
Animal model
It has been demonstrated in the CLP sepsis model that the
hyperdynamic state of sepsis persists from 2 to 10 h and the
hypodynamic state occurs 16 to 20 h after CLP, depending on
the lesion in the cecum [22]. In our animal model, heart rate
was stable during the whole investigation period while MAP
decreased 10 h after CLP, which is an indicator for the occur-
rence of hypodynamic sepsis. Leukopenia and reduced levels
of platelets in blood, which were detected 3 h after CLP,
reflect signs of sepsis as they could be detected under clinical
conditions. Albumin levels decreased 3 h after CLP and hepa-
tocellular enzymes in blood increased significantly 10 h after
CLP, reflecting the hepatocyte damage as one characteristic
of the multiple organ dysfunction syndrome, similar to clinical
findings [24,25].

Liver perfusion
Heart rate remained stable during the IVM investigation, while
MAP decreased significantly 10 h after CLP. Hypotension,
which is observed in late, hypodynamic stages of sepsis, may
reflect progression of the ongoing disease [24]. The PBF was
significantly reduced 1 h after CLP. One reason for this finding
could be the release of nitric oxide from intestinal inflammatory
cells, which causes vasodilatation of intestinal blood vessels
[17]. The increase of vessel diameter without adequate adap-
tation of cardiac output could be the reason for diminished
PBF [15,16,24]. Nevertheless, the MEV in liver sinusoids
decreased significantly 3 h after CLP and the MEV in postsi-
nusoidal venules 10 h after CLP, which was a time delay to the
observed reduction of PBF. Even at this time point, hepatic
enzyme liberation increased significantly. One reason for this
finding may be organ hypoxia caused by diminished liver per-
fusion. Nevertheless, it seems that hepatic microperfusion can
be compensated by autoregulatory mechanisms or transloca-

tion of blood volume for a while. Constriction of hepatic stel-
late cells, which is mediated by endothelin-1, causes a
decrease of sinusoidal diameter, which was observed 10 h
after CLP in our study [15]. Therefore, changes of sinusoidal
diameter influence the hepatic perfusion in already progressed
stages of endotoxemia.

Leukocyte-endothelial and platelet-endothelial 
interactions
Increased rolling of platelets in postsinusoidal venules was
detected 1 h after CLP. Endothelial and platelet P-selectin,
which can be rapidly released from storage granules, may be
responsible for these findings [26]. Activated platelets and
endotoxin stimulate the release of selectins from Weibel-Pal-
ade bodies, which induces rolling of leukocytes on endothelial
cells [7,8,11,27,28]. Elevated leukocyte rolling in postsinusoi-
dal venules was found 3 h after CLP. The involvement of plate-
lets on leukocyte rolling recruitment explains the time lag
between an increase of platelet and leukocyte rolling. Even in
liver sinusoids, elevated amounts of sticking platelets could be
detected 1 h after CLP, while significantly increased sticking
leukocytes were found 5 h after CLP. A similar expectation
was made in postsinusoidal venules where, 1 h after CLP, an
increase of platelet sticking occurred. Nevertheless, signifi-
cant elevated values of stickers of both cell types, leukocytes
and platelets, were detected 5 h after CLP. These findings
underline a crucial role of platelets in the initiation of leukocyte-
endothelial interaction. Recently, an enhanced neutrophil
adherence to endothelial cells in the presence of platelets and
fibrinogen was described [30]. Our results confirming the ini-
tiation of leukocyte adherence to the endothelium by platelets
are compatible with these findings. But the role of fibrinogen
during these processes needs further evaluation. Platelet-leu-
kocyte interaction is the first event of observable microcircula-
tory disturbances during endotoxemia. Reduced hepatic

Table 3

Intravital microscopy measurements in postsinusoidal venules and liver sinusoids

Measurement Time point during intravital microscopy

0 h 1 h 3 h 5 h 10 h 20 h

MEV (mm/s)

Venules 0.81 (0.03) 0.75 (0.03) 0.75 (0.04) 0.83 (0.03) 0.49 (0.02)a 0.40 (0.02)a

Sinusoids 0.39 (0.02) 0.38 (0.03) 0.29 (0.01)a 0.28 (0.02)a 0.25 (0.02)a 0.25 (0.02)a

Roller (mm2 ES)

Leukocytes 48 (16) 150 (36) 221 (49)a 111 (21) 222 (54)a 269 (69)a

Platelets 6 (4) 36 (7)a 37 (9)a 47 (11)a 38 (6)a 43 (9)a

Sinusoid diameter 
(µm)

8.00 (0.40) 7.90 (0.30) 7.20 (0.30) 7.30 (0.50) 7.00 (0.30)a 6.50 (0.30)a

Thrombotic 
sinusoids (%)

0 (0) 0 (1) 1 (1) 5 (1)a 8 (1)a 11 (2)a

Values are means with standard error of the mean in parentheses. ap < 0.05 versus 0 h. ES, endothelial surface; MEV, mean erythrocyte velocity.
Page 4 of 6
(page number not for citation purposes)



Available online http://ccforum.com/content/10/1/R15
microperfusion occurs after the onset of leukocyte-endothelial
interaction, which is initiated by platelet adherence. The
increase of hepatocellular enzyme liberation is the result of
hypoxia caused by decreased organ perfusion and the libera-
tion of cytotoxic mediators (for example, superoxide, arachi-
donic acid metabolites, proteases) released by adherent and
transendothelial migrated leukocytes. The continuous recruit-
ment of platelets and leukocytes causes leukopenia and
thrombopenia in blood count, as detected 3 h after CLP in our
animal model. Thrombotic, non-perfused sinusoids increased
significantly 5 h after CLP. The formation of stable platelet-leu-
kocyte aggregates, which play an important role in thrombo-

genesis, may be responsible for this observation [29]. The role
of β-integrins, which are responsible for leukocyte sticking on
platelet endothelial adhesion, needs further investigation [9].

Conclusion
We have demonstrated that hepatic platelet-endothelial
adherence occurs early after the induction of endotoxemia.
Leukocyte-endothelial interaction starts with a time delay to
platelet adherence, which makes the involvement of platelets
in the initiation of leukocyte-endothelial interaction probable. A
decrease of hepatic microperfusion could be observed earlier
in liver sinusoids than in postsinusoidal venules, but in both
cases later than a reduction of PBF. Microcirculatory distur-
bances result in hepatocellular damage as a result of organ
hypoxia and cytotoxic cellular damage.

Figure 1

Sticking leukocytes and platelets in (a) postsinusoidal venules and (b) hepatic sinusoidsSticking leukocytes and platelets in (a) postsinusoidal venules and (b) 
hepatic sinusoids. Asterisks indicate p < 0.05 versus 0 h. ES, endothe-
lial surface; LS, liver surface.

Figure 2

Hepatic sinusoids and postsinusoidal venules during intravital micros-copy (a) 0 h and (b) 20 h after CLP demonstrate the decrease of per-fused sinusoids and sinusoidal diameter during endotoxemiaHepatic sinusoids and postsinusoidal venules during intravital micros-
copy (a) 0 h and (b) 20 h after CLP demonstrate the decrease of per-
fused sinusoids and sinusoidal diameter during endotoxemia.
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Key messages

• The hepatic microperfusion damage during endotox-
emia follows a time course of ongoing processes.

• Platelet-endothelial adherence during endotoxemia in 
the liver is an early event.

• Leukocyte-endothelial adherence occurs after the onset 
of platelet-endothelial adherence.

• Decrease of liver perfusion is the consequence of 
inflammatory platelet and leukocyte adhesion.

• Hepatocellular damage is a combination of early toxic 
and late microperfusion related hepatocyte injury.
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