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Abstract

cardiac glucose metabolism after SAH.

"8FFDG and '**I-mIBG uptake defect.

Introduction: Although aneurysmal subarachnoid hemorrhage (SAH) is often complicated by myocardial injury,
whether this neurogenic cardiomyopathy is associated with the modification of cardiac metabolism is unknown.
This study sought to explore, by positron emission tomography/computed tomography, the presence of altered

Methods: During a 16-month period, 30 SAH acute phase patients underwent myocardial '® F- fluorodesoxyglucose
positron emission tomography ('®F-FDGPET), “™Tc-tetrofosmin and '**I-meta-iodobenzylguanidine ('*I-mIBG)
scintigraphy, respectively, assessing glucose metabolism, cardiac perfusion, and sympathetic innervation. Patients with
initial abnormalities were followed monthly for two months for "8FE_FDG, and six months later for '23-mIBG.

Results: In this SAH population, acute cardiac metabolic disturbance was observed in 83% of patients (n = 25), and
sympathetic innervation disturbance affected 90% (n = 27). Myocardial perfusion was normal for all patients. The
topography and extent of metabolic defects and innervation abnormalities largely overlapped. Follow-up showed rapid
improvement of glucose metabolism in one or two months. Normalization of sympathetic innervation was slower; only
27% of patients (n = 8) exhibited normal '*I-mIBG scintigraphy after six months. Presence of initial altered cardiac
metabolism was not associated with more unfavorable cardiac or neurological outcomes.

Conclusions: These findings support the hypothesis of neurogenic myocardial stunning after SAH. In
hemodynamically stable acute phase SAH patients, cardiomyopathy is characterized by diffuse and heterogeneous

Trial registration: Clinicaltrials.gov NCT01218191. Registered 6 October 2010.

Introduction

Subarachnoid hemorrhage (SAH) following aneurysm rup-
ture remains a devastating condition with high mortality
and poor outcome among survivors [1,2]. Recent develop-
ments in neurocritical care have reduced the mortality rate
from 50% to 25 to 35% [3]. Medical non-neurological
complications add to morbidity and mortality, rivaling the
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frequency of mortality from neurological complications
[3-5]. Myocardial abnormalities have been reported in 50
to 100% of patients with severe SAH [6], and may include
electrocardiogram (ECG) changes [7], troponin Ic ele-
vation with myocardial necrosis [6,8], increased B-type
natriuretic peptide (BNP) level [9], and cardiogenic shock.
Despite controversies, the neurogenic hypothesis is now
the most commonly held theory of pathogenesis of this
acute stress cardiomyopathy [10-12].

We hypothesize that cardiac metabolism is modified
after SAH. The primary objective of this study was to
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observe the impairment of cardiac glucose metabolism
and to quantify its incidence and reversibility in a po-
pulation of SAH patients. In addition, the duration and
reversibility of cardiac neurogenic sympathetic injury
after SAH remain unknown, and were evaluated as a
secondary objective during the acute period and six
months later.

Materials and methods

Patients

From November 2010 through February 2012, we re-
cruited adults with aneurysmal SAH in the intensive care
unit (ICU) of the Sainte Anne Military Teaching Hospital,
Toulon, France. Eligibility criteria for inclusion were the
following: SAH related to a ruptured aneurysm docu-
mented by angiography, and age over 18 years. Patients,
families, or referring physicians were interviewed to deter-
mine the date and nature of the first clear signs or symp-
toms of SAH. If the delay from the first sign or symptom
of aneurysm rupture to arrival at the ICU was more than
48 h, patients were not included. Additional exclusion cri-
teria were pregnancy, past medical history of ischemic
heart disease or chronic heart failure, and insufficient sta-
bility to allow intrahospital transport to the Nuclear Me-
dicine Department (patients on vasopressor or inotrope,
arterial partial pressure of oxygen/fractional inspired oxy-
gen ratio under 200, fractional inspired oxygen over 60%,
intracranial pressure over 20 mmHg). Patients who died
before the first isotopic procedure were excluded. The
study protocol was approved by a national ethics review
board for human subjects (Comité pour la Protection des
Personnes Sud Méditerranée V, Nice, France). In all cases,
the patients’ next of kin provided written informed
consent.

Study procedures

All patients were admitted to our unit for at least a seven-
day period, and were managed according to the French So-
ciety of Anesthesiology and Intensive Care guidelines [13].

Clinical and demographic data were collected. Each pa-
tient’s neurological status was assessed at the time of ad-
mission and graded according to the World Federation of
Neurosurgical Societies (WFNS) and the scanographic
Fisher’s scale. Data regarding aneurysmal treatment and
neurological events were also recorded.

Vasospasm was detected by clinical evaluation and
daily transcranial Doppler, and then diagnosed by cere-
bral angiography. Vasospasm was managed by hyper-
tension and hemodilution, and intracranial angioplasty
when possible. No patient enrolled in this study required
vasopressor medication during the 24 h prior to isotopic
examination.

Delayed cerebral ischemia was defined as development
of focal neurologic signs or deterioration of the level of
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consciousness, or both, with evidence of cerebral infarc-
tion on CT scan, or any new hypodensity on the CT scan
without an obvious explanation such as neurosurgical
or endovascular intervention, or perihematomal edema
even in the absence of clinical symptoms.

Scintigraphic procedures

All isotopic procedures were performed in the Nuclear
Medicine Department of the Sainte Anne Military Tea-
ching Hospital and interpreted by two of three expe-
rienced nuclear medicine physicians (MB, PC, and EB)
blinded to the clinical status of the patients. If necessary, a
consensus reading was made.

Myocardial glucose metabolism

Myocardial glucose metabolism was assessed by cardiac
'8F_fluorodesoxyglucose positron emission tomography
(*|F-FDG PET), which was performed as soon as possible
after stability was achieved. When an initial abnormality
was observed, a second examination was performed one
month later. When an abnormality persisted at the one-
month examination, the examination was repeated again
one month later. PET was performed in accordance with
the 2003 American Society of Nuclear Cardiology Practice
Guidelines on PET myocardial glucose metabolism im-
aging [14]. Each patient fasted for 6 h, and then was ad-
ministered a standardized oral glucose load of 90 g. The
targeted blood glucose level was 100 to 150 mg/dl ob-
tained, if needed, with insulin infusion according to guide-
lines [14]. '®F-FDG intravenous injection was performed
approximately 1 h after glucose loading, with a PET acqui-
sition began 45 minutes after the 185 MBq *® F-FDG using
combined PET/computed tomography (CT) technology
(Siemens Biograph BGO, Siemens Healthcare, Erlangen,
Germany). A thoracic CT scan was performed just before
a 15-minute three-dimensional PET acquisition. PET data
were reconstructed with and without CT-based atte-
nuation correction using an iterative technique. PET re-
constructed images were realigned along the short axis
and the vertical and horizontal long axes and qualitatively
interpreted. A 17-segment model of polar map presenta-
tion was obtained from left ventricular (LV) short-axis
slices. PET images were interpreted using QPS-QGS soft-
ware (Cedars-Sinai, Los Angeles, CA, USA), and myocar-
dial uptake defects were quantified as a percentage of the
entire LV wall. Myocardial glucose metabolism was con-
sidered abnormal if the *F-FDG uptake defect area was
greater than an upper threshold value of 15%.

Myocardial sympathetic innervation

Myocardial sympathetic innervation was assessed using
cardiac "**I-meta-iodobenzylguanidine (***I-mIBG) scin-
tigraphy, which was performed as soon as possible after
stability was achieved. When an initial abnormality was
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observed, a second examination was performed six
months later. '*I-mIBG scintigraphy was performed in
accordance with the European Association of Nuclear
Medicine Guidelines [15]. '**I-mIBG is an analog of nor-
adrenaline; decreased myocardial uptake of '*’I-mIBG
indicates sympathetic nerve dysfunction [15]. When it
was possible, medical therapy and drugs known to in-
fluence '*’I-mIBG uptake were discontinued for at least
24 h before tracer injection [15]. Thereby, according to
the 2010 European Association of Nuclear Medicine
guidelines [15], administration of nimodipine to prevent
vasospasm was discontinued for 24 h before this exam-
ination. Thyroid uptake of '**I was prevented with the
oral administration of 130 mg of potassium iodide one
day before and after the planned '*’I-mIBG scintigraphy.
Four hours after the intravenous injection of 220 MBq
2L_.mIBG, cardiac "*’I-mIBG scintigraphy was performed
using a double-headed gamma camera (Siemens Symbia
E, Siemens Healthcare, Erlangen, Germany) equipped with
low-energy, high-resolution, parallel-hole collimators. We
acquired a 10-minute planar imaging series in the anterior
position from a 64 x 64 matrix, as well as a single-photon
emission computed tomography (SPECT) series with 32
60-s projections (180°, 64 x 64 matrix). The SPECT series
was reconstructed using ordered-subsets expectation
maximization iterative technique without attenuation or
scatter correction, and realigned along the heart axis. To
quantify '*’I-mIBG uptake, heart to mediastinal (H/M)
average count ratio was used on the planar acquisitions.
The heart region of interest (ROI) was drawn manually to
include both ventricles and any clearly visible atrial acti-
vity. A square mediastinal ROI was drawn in the upper
mediastinum, using the apices of the lungs as anatomic
landmarks. The H/M ratio was calculated as the ratio of
the counts/pixel in the two ROIs [16]. Myocardial sympa-
thetic innervation was considered normal if the H/M ratio
exceeded a recommended threshold value of 1.75 [17]. A
17-segment model of polar map presentation was ob-
tained from LV short-axis slices. Regions of low or absent
1. mIBG uptake indicated myocardial sympathetic im-
pairment. For quantitative analysis of radionuclide uptake,
myocardial uptake defects were quantified as a percentage
of the entire LV wall using QPS-QGS software (Cedars-
Sinai, Los Angeles, CA, USA).

Myocardial perfusion

Rest myocardial perfusion was assessed by cardiac **™Tc-
tetrofosmin gated single photon emission computed to-
mography (G-SPECT) scintigraphy, which was performed
as soon as possible after stability was achieved. Since the
simultaneous use of radiotracers could result in an im-
portant complicating cross-talk of energy spectra, **™Tc-
tetrofosmin G-SPECT scintigraphy was often performed
the preceding day of the '**I-mIBG scintigraphy. When an
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initial abnormality was observed, a second examination was
performed six months later. G-SPECT was initiated 20 mi-
nute after “’mTc-tetrofosmin intravenous injection
(740 MBq) using a double-headed gamma camera (Siemens
Symbia E, Siemens Healthcare, Erlangen, Germany)
equipped with low-energy, high-resolution, parallel-hole
collimators; a 180° rotation arc; 32 projections; 40 s/pro-
jection; 8 frames/heart cycle; and a 64 x 64 matrix. The
studies were reconstructed using filtered back-projection
without attenuation or scatter correction and realigned
along the heart axis. A 17-segment model of polar map
presentation was obtained from LV short-axis slices. Re-
gions of low or absent *’mTc-tetrofosmin uptake indicated
poor myocardial perfusion. Myocardial perfusion scin-
tigraphy studies were categorized as normal (uniform
uptake) or abnormal (global or regional defects).

Non-isotopic cardiac status assessment

Troponin T

Troponin T levels were measured daily for seven days
in 5 ml heparin plasma samples by electrochemilumi-
nescence immunoassay with a COBAS™ C6000 analyzer
(Roche Diagnostics, Basel, Switzerland). The reference
range for upper normal limit was 0.03 pg/l, and the lower
limit of detection was 0.01 pg/L.

Echocardiography

Transthoracic echocardiography (TTE) was performed
during the first two days after admission with an ACUSON
CV 70™ ultrasound system (Siemens Healthcare, Erlangen,
Germany) equipped with a 2.5-MHz transducer. TTE was
performed by one of two experienced cardiologists (FP and
CJ) blinded to all clinical, hemodynamic, and biological
data. Left ventricular ejection fraction (LVEF) was calcu-
lated by Simpson’s method. An LVEF more than 50% was
defined as normal; an LVEF less than 50% was defined as
reduced. Left ventricular filling pressure (LVFP) were
assessed by E/A and E/Ea ratios.

Neurological outcomes assessment

Neurological outcomes were assessed at one, three, and
six months after SAH through a telephone interview of
the patient or the functional rehabilitation practitioner
using a modified Rankin Scale (mRS). This scale con-
tains seven grades ranging from 0 (no symptoms at all)
to 6 (death) [18]. For patients listed mRS 0 to mRS 3,
quality of life was assessed at three and six months after
SAH using the French version of the Medical Outcome
Study Short Form-36 (SF-36) [19,20]. It is a generic
health status measurement instrument composed of 36
questions and divided into two summarized scores: the
100-point physical component summary scale (PCS) and
the 100-point mental component summary scale (MCS).
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Endpoints and sample size determination

The primary objective of this study was to evaluate cardiac
glucose metabolism during the acute phase of SAH, in-
cluding monthly follow-up of observed abnormalities. In a
previous work, we had shown that a cardiac injury was
present in 80% of patients [9]. We hypothesized that an
abnormality of myocardial glucose metabolism would also
be present in 80% of cases. A minimum of 28 study par-
ticipants was necessary to obtain 15% precision around
80%, with a 95% confidence interval.

Secondary objectives were to assess the duration and re-
versibility of cardiac sympathetic impairment after SAH,
and to compare cardiac and neurologic outcomes data ac-
cording to the initial myocardial glucose metabolism sta-
tus (normal/abnormal initial *® F-FDG PET).

Statistical analysis
Statistical analysis was performed with SPSS version 15.0
(SPSS Inc., Chicago, IL, USA), and data distributions
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were checked for normal distribution. Nominal variables
are presented as numbers (%). Continuous variables are
presented as the mean * standard deviation (SD), or as
the median [quartile 0.25 to quartile 0.75] when normal
distribution was excluded. Comparison of two groups
was performed using the Mann-Whitney U test and
Fisher’s exact test. For all tests, P <0.05 was considered
statistically significant.

Results

Patient characteristics

During the study period, 40 patients were admitted to
our ICU with acute-phase aneurysmal SAH. Five of pa-
tients refused to participate and five died before the first
isotopic procedure. The remaining 30 patients were en-
rolled in the study (Figure 1). Patient characteristics,
radiological data, and neurosurgical data are summarized
in Table 1. No patient had evidence of prior coronary
artery disease or diabetes.

| 40 patients admitted with aneurysmal SAH

10 patients not included

-Refused to participate: 5

| 30 patients included |

-Death before first isotopic procedure: 5

Initial cardiac metabolism
(" F-FDG PET))
day 5+2 n=30

Initial cardiac sympathetic innervation
('PI-mIBG scintigraphy )
day 13+ 6 n=30

Initial cardiac perfusion
(*™ Te-tetrofosmin G-SPECT)
day 11 +5 n=30

25 (83%) abnormal 5 (17%) normal

27 (90%) abnormal

30 (100%) normal

3 (10%) normal

2 died

1-month cardiac metabolism
("8 F-FDG PET )

3 died

day 36 +5 n=23

1 refused the follow -up

15 abnormal 8 normal

10 refused the follow -up

6-months cardiac sympathetic innervation
(1*I-mIBG scintigraphy )
day 188 £ 12 n=23

or were lost to follow -up

2-months cardiac metabolism

18 abnormal

5 normal

("8 F-FDG PET )
day 68 £7 n=5

3 abnormal 2 normal

Figure 1 Flow diagram of the study. PET, positron emission tomography; G-SPECT, gated single-photon emission computed tomography.
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Table 1 Population characteristics

Age, years (mean + SD) 61+12
Female sex, n (%) 22 (73%)
BMI, kg/m’ (mean + SD) 243427
Past medical history, n (%):
Active smoking 14 (47%)
Arterial hypertension 9 (30%)
Dyslipidemia 4 (13%)
Obesity (BMI >30 kg/m?) 1 (3%)
Diabetes mellitus 0 (0%)
Pheochromocytoma 0 (0%)
Thyroid disease (substituted 1 (3%)
hypothyroidism)
Renal disease 0 (0%)
Liver disease 0 (0%)
Fisher grade (1/2/3/4), n (%) 0 (0%)/3 (10%)/9 (30%)/
18 (60%)

WENS score (1/2/3/4/5), n (%) 12 (40%)/6 (20%)/3 (10%)/0

(0%)/9 (30%)

Aneurysm position, n (%)

ICA 7 (24%)
MCA 10 (33%)
AComA/ACA 10 (33%)
VA/BA 1 (3%)
PCA/PComA 2 (7%)
Aneurysm treatment
Coiled, n (%) 27 (90%)
Craniotomy, n (%) 3 (10%)
Day of treatment, (mean + SD) 19+07
ICU period, n (%):
Vasospasm 14 (47%)
Delayed cerebral ischemia 8 (27%)
Re-bleeding 4 (13%)
Hydrocephalus (derivated) 16 (53%)
Tracheostomy 11 (37%)
ICU length of stay, day (mean + SD) 16+8
Level of glucose just before 139+4

'8F-FDG PET
(mg/dl, mean + SD)

'8E-FDG PET, '8F-fluorodesoxyglucose positron emission tomography; ACA,
anterior cerebral artery; AcomA, anterior communicating artery; BA, basilar
artery; BMI, body mass index; ICA, internal carotid artery; ICU, intensive care
unit; MCA, middle cerebral artery; PCA, posterior cerebral artery; PComA,
posterior communicating artery; SD, standard deviation; VA, vertebral artery;
WEFNS, World Federation of Neurosurgical Societies.

Myocardial glucose metabolism

Initial "®F-FDG PET

All 30 patients first underwent PET on day 5 + 2. Out of
30 patients, 25 patients (83%) revealed severely and dif-
fusely reduced '®F-FDG LV uptake in a large area (mean
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defect of 54 +21%), where the defect pattern could not
be explained by a single coronary artery distribution.
Five patients (17%) exhibited normal *F-FDG uptake
(defect <15%), and their follow-up was stopped.

"8F_FDG PET follow-up
One month later, two additional patients had died, and
PET was performed on day 36+5 for 23 patients.
8E_FDG LV uptake was still impaired for 15 patients, with
a mean defect area of 37 + 17%. Eight patients exhibited
normal '®F-FDG uptake, and their follow-up was stopped.
Another one month later, PET was performed on day
68 + 7 for only five patients. Indeed, 10 other patients re-
fused the follow-up or were lost to follow-up at this time.
E_FDG LV uptake was still impaired for three patients,
with a mean defect area of 25+ 6%. Two patients exhi-
bited normal '*F-FDG uptake. The Figure 2 illustrated the
exemplary case of a patient exhibiting normal '*F-FDG
uptake two months after aneurysm rupture.

Myocardial sympathetic innervation

Initial "*>I-mIBG scintigraphy

All 30 patients underwent initial **I-mIBG scintigraphy on
day 13 + 6. Twenty-seven patients (90%) exhibited reduced
myocardial 1231_mIBG uptake (H/M ratio <1.75), and three
patients (10%) exhibited normal uptake. For the 27 patients
with reduced uptake, the mean H/M ratio was 1.38 + 0.23.
For the three patients with normal uptake, the mean H/M
ratio was 1.87 + 0.03. The mean LV **I-mIBG uptake de-
fect was, on average, 26 + 18% in all patients, 28 + 18% for
the 27 patients with an abnormal H/M ratio, and 9 + 7% for
the three patients with a normal H/M ratio.

Sixth-month '*3I-mIBG scintigraphy follow-up

Of the 27 patients with an abnormal initial ***I-mIBG
scintigraphy, only 23 underwent a new examination six
months later (day 188 +12). Indeed, three patients had
died in the period since the previous examination, and one
refused the follow-up exam. Of the 23 patients examined,
five exhibited a normalized H/M ratio (1.92 + 0.18); and 18
continued to have an abnormal H/M ratio (1.53 +0.22).
For the 23 controlled patients, an H/M ratio mean global
increase of 0.19 (13.7%) was noted between the initial
examination and the six-month follow-up examination.
After six months, the mean LV **I-mIBG uptake defect
was 17 £ 15%.

Mpyocardial perfusion

All 30 patients underwent initial cardiac gated *’mTc-
tetrofosmin scintigraphy on day 11 + 5. Myocardial per-
fusion of *’mTc-tetrofosmin was normal in all patients,
and their follow-up was stopped.
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Acute phase exams:

initial abnormal '® F-FDG PET

initial abnormal'? I-mIBG SPECT

initial normal perfusion scintigraphy

1-month abnormal'® F-FDG PET

2-months normal'® F-FDG PET

6-months abnormal'?* I-mIBG SPECT

Figure 2 Representative PET, SPECT, and scintigraphy findings. Left ventricular transaxial slices (vertical long axis, horizontal long axis) and polar
map presentation (17-segment model) of, respectively, cardiac '®F-FDG PET, '**l-mIBG SPECT, and perfusion scintigraphy performed during acute
phase and follow-up in a patient with aneurysmal subarachnoid hemorrhage. We observed that the uptake of both "8F-FDG and '**-mIBG were
markedly reduced during the acute phase. The uptake of '®F-FDG was normalized two months later. The uptake of '*-mIBG was still impaired six
months after the onset of symptomatology. '**I-mIBG, '**-meta-iodobenzylguanidine; '®F-FDG PET, "®F-fluorodesoxyglucose positron emission
tomography; PET, positron emission tomography; SPECT, single-photon emission computed tomography.

Non-isotopic cardiac damage assessment normal LV systolic function, with a mean LVEF (assessed
The data are summarized in Table 2. by Simpson’s method) of 62.3 + 4.9%. Regarding LV dia-

All 30 included patients underwent TTE during the stolic parameters, filling pressures were low with a mean
first two days after admission. All of them exhibited E/A ratio of 1.0 £ 0.3, and a mean E/Ea ratio of 5.1 + 2.5.
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Table 2 Initial gravity, cardiac damage, neurological outcomes, and quality-of-life assessment according to

normal/abnormal initial '® F-FDG PET

Initial normal
PET (n=5)

Initial normal PET vs.
initial abnormal PET

Initial abnormal
PET (n=25)

Fisher grade (1/2/3/4), n (%)

WENS (1/2/3/4/5), n (%)

0 (0%)/0 (0%)/

1 (20%)/4 (80%)
1 (20%)/1 (20%)/
2 (40%)/0 (0%)/

0 (0%)/3 (12%)/ -
8 (32%)/14 (56%)
11 (44%)/5 (20%) -
/1 (4%)/0 (0%)/

1 (20%) 8 (32%)
Echocardiography (mean + SD)
LVEF % 642+6.1 619+46 NS
E/A 09+03 1.1+03 NS
E/Ea 6.1+£26 49+24 NS
Cardiac biomarkers [Median interquartile range]
Troponin T peak, pg/I 0.03 [0-0.04] 0 [0-0.09] NS
Neurological outcomes (mean + SD)
mRS 1 month 45+14 39+14 NS
mRS 3 months 3718 32116 NS
mRS 6 months 33+21 27+18 NS
Quality of life (mean + SD)
MCS 3 months 63+6 46+ 18 NS
MCS 6 months 54+ 11 55+ 17 NS
PCS 3 months 64+7 44+ 15 NS
PCS 6 months 57+21 55+£19 NS

Troponin T values denote the peak daily dosage during the first seven days. Statistical significance was accepted at P <0.05. '® F-FDG PET, '® F-fluorodesoxyglucose
positron emission tomography; LVEF, left ventricular ejection fraction; mRS, modified Rankin Scale; MCS, mental component summary scale; NS, non-significant;
PCS, physical component summary scale; WFNS, World Federation of Neurosurgical Societies.

Troponin T

During the first seven days, an abnormal troponin T level
increase (>0.03 pg/l) was noted for 11 patients (37%), with
a median peak level of 0.15 [0.07 to 0.36] pg/l, and oc-
curred on average on day 2+ 1.8. This group of 11 pa-
tients with abnormal troponin T levels was characterized
by a mean WENS score of 3.5+ 1.8, a mean Fisher grade
of 3.7+0.5, and mRS scores of 4.5+ 1.0 (one-month
follow-up) and 3.0 + 1.8 (six-month follow-up). In com-
parison with the group of 19 patients with normal tropo-
nin T levels, no significantly differences were observed
with regard to initial gravity or neurological outcome.

Neurological outcomes and quality of life assessment
Neurological outcomes assessed by mRS are summa-
rized in Table 2 and Figure 3. The mean mRS scores
were 3.9 + 1.4 after one month, 3.2+ 1.6 after three
months, and 2.7 + 1.8 after six months. Regarding qua-
lity of life assessed by SF-36 (Table 2), the mean PCS
was 47 + 16 after three months and 56 + 20 after six
months, and the mean MCS was 49 + 18 after three
months and 55 + 16 after six months.

Vasospasm concerned 14 patients and delayed cerebral
ischemia concerned eight patients. This group of eight
patients with delayed cerebral ischemia was characte-
rized by a mean WENS score of 3.8 £ 1.8, a mean Fisher
grade of 3.9 0.4, abnormal initial "®F-FDG uptake in
75%, abnormal initial '**I-mIBG uptake in 100%, abnor-
mal troponin T levels in 62.5%, a mean LVEF of 65 + 6%,
and modified Rankin Scale scores of 4.9 +0.8 (one-
month follow-up) and 4.1 + 1.4 (six-month follow-up).

Initial gravity and outcomes data according to normal/
abnormal initial '®F-FDG PET

Initial gravity (Fisher grade and WENS), cardiac damage,
neurological outcomes, and quality-of-life assessments
of the five patients with normal initial cardiac glucose
metabolism were compared with those from the 25 pa-
tients who initially exhibited abnormal cardiac glucose
metabolism (Table 2). No significantly differences were
observed with regard to Fisher grade, WENS, systolic or
diastolic echocardiographic parameters; troponin T level;
neurological outcomes with mRS scores at one, three,
and six months (Figure 3); or quality of life (SF-36, MCS
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Figure 3 Modified Rankin Scale score distribution in both groups at one and six months of follow-up.
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and PCS) at three and six months. Acute phase altered
cardiac glucose metabolism was not associated with
more unfavorable cardiac or neurological outcomes.

Discussion
Impairment of cardiac glucose metabolism
To the best of our knowledge, this is the first study to
focus on disturbances in cardiac glucose metabolism
after SAH. The obtained results established the initial
existence of a major impairment of cardiac glucose me-
tabolism, with a LV 'F-FDG uptake severely and glo-
bally affected. The defect distribution was heterogeneous
and concerned the LV in a non-systematized way. In the
same time, cardiac perfusion was not impaired.
Impairment of cardiac metabolism has been revealed in
various situations of sympathetic stimulation such as
chronic heart failure [21] and Takotsubo cardiomyopathy
(TTC) [22-25]. Chronic heart failure causes a state of
chronic exaggerated sympathetic stimulation in which car-
diac glucose metabolism is impaired. Taylor et al. demon-
strated in 2001 that cardiac **F-FDG uptake was lower in
heart failure patients than in healthy volunteers [21].
TTC, also known as transient LV apical ballooning syn-
drome, is another neurogenic stress cardiomyopathy that
causes transient LV dysfunction in patients under emo-
tional or physical stress [26-28]. The acute stress cardio-
myopathy after SAH has often been compared with TTC
[10,12,29]. TTC has been well investigated by cardiac
nuclear medical techniques [22-25,30]. '®F-FDG PET
assessment of myocardial glucose metabolism shows se-
vere impairment, with **F-FDG uptake reduced among 87

to 100% of TTC patients during the acute phase [22-24].
The areas affected by this defect were the apical and
midventricular segments [23,24]. The mean extent of the
8E_FDG uptake defect was 33+ 15% [23]. Furthermore,
"8E_FDG PET studies revealed a strong correlation bet-
ween myocardial metabolism defects and the location of
wall motion abnormality on TTE [23]. At the same time,
myocardial perfusion scintigraphy was normal in all
patients [23]. Follow-up assessments depicted the nor-
malization of **F-FDG uptake at three months in all pa-
tients [24].

Finally, the initial impairment of cardiac glucose meta-
bolism after SAH (83% of patients, mean defect 54 + 21%)
was more diffuse than that of TTC (87 to 100% of pa-
tients, mean defect 33 + 15%). The duration of reversibility
of the 'F-FDG uptake defects appeared to be almost
similar.

Impairment of cardiac sympathetic innervation

According to our results, the impairment of cardiac
sympathetic innervation during the acute stage of SAH
affected a large majority of patients. Myocardial ***I-mIBG
uptake was severely and globally affected. Its distribution
was heterogeneous and affected the LV in a non-systema-
tized way. This infringement was slowly reversible; the
six-month follow-up revealed that the condition persisted
in the majority of affected patients.

The scientific literature concerning isotopic exploration
of myocardial sympathetic innervation after SAH is poor,
with only a single human study [11]. In this trial, 41 pa-
tients underwent myocardial '*I-mIBG and perfusion
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scintigraphy during the acute stage of SAH. '*’I-mIBG
uptake was abnormal in 12 patients (29%), with nine glo-
bal defects and three regional defects. However, the used
"L.mIBG scintigraphic protocol was different to ours.
Indeed, acquisition was performed only 15 minutes after
radiotracer injection. Now, it has been established that
norepinephrine and '**I-mIBG shared an active neuronal
recapture mechanism and a passive extraneuronal me-
chanism. '**I-mIBG uptake was mainly extraneuronal at
5 minutes and neuronal at 3 h [31,32]. "**I-mIBG scinti-
graphy performed on denervated dogs at 5 minutes and at
3 h showed that the "**I-mIBG uptake was normal at
5 minutes but deeply reduced at 3 h [31,32]. Considering
the washout of extraneuronal '*I-mIBG, late cardiac
B mIBG uptake (at 3 h) better reflects neuronal
1. mIBG uptake. Moreover, this late cardiac **’I-mIBG
uptake is correlated with the myocardial norepinephrine
concentration [33].

In TTC patients, "*’I-mIBG scintigraphy revealed al-
tered cardiac sympathetic innervation, with absent or
strongly reduced tracer uptake at the hypocontractile
zones (mean LV defect, 38 + 17%) [23,30]. The topography
and extent of glucose metabolism defects (¥ F-FDG) and
sympathetic innervation abnormalities (***I-mIBG) were
largely overlapping [23]. At 12 months and despite pro-
gressive evolution, all controlled patients presented with
incomplete recovery of apical '*’I-mIBG uptake [23]. Fi-
nally, the initial impairment of cardiac sympathetic in-
nervation after SAH (90% of patients, mean defect
28 + 18%) differed from that of TTC (100% of patients,
mean defect 38 + 17%) regarding its heterogeneous and
non-systematized distribution.

Neurogenic stunned myocardium

A link between morbidity and mortality after SAH and
concomitant cardiac complications is now well established
[6,34,35]. Recently, van der Bilt et al. studied the relation-
ship between cardiac dysfunction after aneurysmal SAH
and neurological outcome. They established in particular
that wall motion abnormalities on TTE are independent
risk factors for clinical outcome, partly explained by a
higher risk of delayed cerebral ischemia [35]. Coronary
angiography [36] and perfusion scintigraphy [11] have
demonstrated that the myocardial damage does not result
from ischemia. The most widely accepted theory for
SAH-induced neurogenic myocardial stunning is the
‘catecholamine hypothesis’. The release of massive quan-
tities of catecholamines following aneurysm rupture re-
sults in specific myocardial lesions [37].

The transient regional metabolic disorder is considered
to be the metabolic state of stunned myocardium [23].
Catecholamine-mediated myocardial insulin resistance
may be responsible for reduced '*F-FDG uptake in the
hypocontractile regions [38]. The inhibition of intracellular
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translocation of glucose transporters (GLUT-4) by calcium
overload may also contribute to the reduced *F-FDG up-
take in cardiocytes [39]. The concordance of 131 mIBG
and "®F-FDG uptake abnormalities, as well as their com-
mon temporal evolution, emphasize the close relationship
between myocardial sympathetic function and glucose
metabolism.

Our results established that neither cardiac glucose me-
tabolism nor sympathetic innervation impairment resulted
in major LV systolic or diastolic dysfunction in these 30
patients. Although similar results were previously de-
scribed [9], others studies showed LV systolic dysfunction
in 22 to 38% acute phase SAH patients [6,40]. This fact
probably resulted from our exclusion criteria of patients
with a major hemodynamic instability preventing intra-
hospital transport to the Nuclear Medicine Department.
Conversely to our SAH patients, TTC causes LV dys-
function, with hypocontractile segments characterized by
normal perfusion but reduced uptake of '*F-FDG and
'2I_mIBG. These data likely attest to different patho-
physiological mechanisms underlying TTC due to stressful
events and SAH-related cardiopathy due to aneurysm rup-
ture and acute intracranial hypertension.

Nevertheless, the numerous similarities between SAH-
related myocardiopathy and TTC allow many authors to
believe that these two entities form part of a single noso-
logic group of ‘neurogenic stress cardiomyopathy, also
termed ‘neurogenic stunned myocardium’ [10,12,28,29].

Study limitations

First, the study design was based on a single-center pro-
spective recruitment with small numbers. Second, al-
though the study population was representative of real-life
SAH, external validity of the study was reduced because of
case selection bias. Indeed, patients dead before the first
isotopic exam were excluded, but these represented the
gravest cases, often with major hemodynamic instability,
and their exclusion constituted a loss of relevant informa-
tion regarding acute neurogenic stress cardiomyopathy.
Third, myocardial perfusion scintigraphy was performed
late in the course of SAH (day 11 + 5). Earlier assessment
of myocardial perfusion might have provided further in-
formation on the potential role of myocardial ischemia-
vasospasm on the pathogenesis of potential alterations in
cardiac metabolism and contractility.

Conclusions

This preliminary study contributes modestly to progress
in the knowledge of neurogenic heart disorder after SAH.
In hemodynamically stable acute phase SAH patients, car-
diomyopathy is characterized by diffuse and heteroge-
neous '"*F-FDG and '*I-mIBG uptake defect, contrasting
with an absence of significant functional consequences to
LV systolic function and segmental kinetics. Additional
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research is necessary to increase pathophysiological un-
derstanding of these diseases.

Key messages

¢ In hemodynamically stable acute phase SAH
patients, cardiomyopathy is characterized
by an impairment of cardiac metabolism
(diffuse and heterogeneous *F-FDG uptake defect).
¢ In hemodynamically stable acute phase SAH
patients, cardiomyopathy is characterized by an
impairment of sympathetic innervation (diffuse and
heterogeneous '**I-mIBG uptake defect).
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