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Abstract

Introduction: Cerebral glucose metabolism and energy production are affected by serum glucose levels. Systemic
glucose variability has been shown to be associated with poor outcome in critically ill patients. The objective of this
study was to assess whether glucose variability is associated with cerebral metabolic distress and outcome after
subarachnoid hemorrhage.

Methods: A total of 28 consecutive comatose patients with subarachnoid hemorrhage, who underwent cerebral
microdialysis and intracranial pressure monitoring, were studied. Metabolic distress was defined as lactate/pyruvate
ratio (LPR) >40. The relationship between daily glucose variability, the development of cerebral metabolic distress
and hospital outcome was analyzed using a multivariable general linear model with a logistic link function for
dichotomized outcomes.

Results: Daily serum glucose variability was expressed as the standard deviation (SD) of all serum glucose
measurements. General linear models were used to relate this predictor variable to cerebral metabolic distress and
mortality at hospital discharge. A total of 3,139 neuromonitoring hours and 181 days were analyzed. After
adjustment for Glasgow Coma Scale (GCS) scores and brain glucose, SD was independently associated with higher
risk of cerebral metabolic distress (adjusted odds ratio = 1.5 (1.1 to 2.1), P = 0.02). Increased variability was also
independently associated with in hospital mortality after adjusting for age, Hunt Hess, daily GCS and symptomatic
vasospasm (P = 0.03).

Conclusions: Increased systemic glucose variability is associated with cerebral metabolic distress and increased
hospital mortality. Therapeutic approaches that reduce glucose variability may impact on brain metabolism and
outcome after subarachnoid hemorrhage.
Introduction
Hyperglycemia has been associated with morbidity and
poor outcome in patients with subarachnoid hemorrhage
[1-4]. Tight glucose control with intravenous insulin has
been shown to reduce mortality among surgical ICU pa-
tients [5,6], but not in mixed populations of critically ill
patients [7-10]. The impact of tight glycemic control in
neurological critically ill patients remains controversial.
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While some data suggest that intensive insulin therapy
fails to improve the outcome of neurologic patients and
may be deleterious due to an increased incidence of
hypoglycemia and low brain tissue glucose levels, some
authors have shown that tighter glycemic control may
avoid neurological complications in the ICU [1-5,11-13].
Microdialysis studies of cerebral metabolism indicate
that tight glucose control is associated with an increased
risk of metabolic distress, which is defined as an eleva-
tion of the lactate/pyruvate ratio [1,14-22].
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Cerebral energy production depends on an adequate
supply of glucose. Systemic glucose levels affect glucose
availability to the brain and can impact cellular metabolism
and energy production after subarachnoid hemorrhage
(SAH). Because of impaired glucose transport, systemic
glucose levels considered to be normal may be relatively in-
sufficient to meet the increased cerebral metabolic demand
seen in patients with SAH [1,16,20].
Both hypoglycemia and hyperglycemia have been shown

to exacerbate secondary brain injury [2-4,16,20,21,23] after
SAH. Acute fluctuations of systemic glucose have also
been associated with oxidative stress in diabetic outpa-
tients [24,25], with increased mortality in critically ill pa-
tients and with worse functional outcome and mortality in
neurological patients [26-32]. Patients with SAH may be
more vulnerable to glycemic variability if these acute fluc-
tuations trigger cerebral metabolic distress and lead to
secondary brain injury.
In this study, we sought to understand better the po-

tential role of increased systemic glucose variability in
cerebral oxidative metabolism and potentially secondary
brain injury. Specifically, we hypothesized that increased
glycemic variability is associated with cerebral metabolic
distress and increased mortality in patients with SAH.
Materials and methods
Patients
We retrospectively reviewed 28 consecutive patients ad-
mitted to the neurological ICU at Columbia University
Medical Center between May 2006 and January 2009 after
SAH who underwent multimodality neuromonitoring
with intracranial pressure (ICP), cerebral microdialysis
and brain tissue oxygen pressure (PbtO2) as part of their
clinical care. This study was approved by the Columbia
University Institutional Review Board (IRB). Written in-
formed consent was obtained from all patients or person
responsible.
Clinical management
Patient care for SAH conformed to guidelines established
by the American Heart Association [11]. Hemodynamic
and fluid management were targeted to maintain cerebral
perfusion pressure (CPP) >60 mm Hg and ICP <20 mm
Hg. Hemoglobin cutoff for blood transfusions was 8 g/dL
unless there was clinical, imaging or laboratory evidence
of active cerebral or myocardial ischemia. Fever was
aggressively treated using intravascular (Celsius Control
System®, Innercool Therapies, Inc, San Diego, CA, USA)
or surface (Arctic Sun Cooling System®, Medivance Inc,
Louisville, CO, USA) cooling devices. Shivering was
treated with buspirone, skin counterwarming, magnesium
infusion and analog-sedation (dexmedetomidine, fentanyl
or meperidine) according to a stepwise protocol [33,34].
Systemic glucose control
Systemic glucose was measured with the Sure Step Flexx
system (Lifescan, Milpitas, CA, USA) using arterial blood
and the target range was between 4.4 and 8.3 mmol/L (80
to 150 mg/dL) as part of a glucose control protocol using
intravenous insulin infusion Humulin (©Lilly, Indianapolis,
IN, USA). Hypoglycemia with systemic glucose below
3.3 mmol/L (60 mg/dL) was managed with a bolus of 20
to 25 g of glucose in D50 solution. Enteral nutrition
(Osmolite, Ross Nutrition, Abbott Laboratories, Colum-
bus, OH, USA) was provided via a naso-duodenal tube
starting within the first 24 hours of admission, aiming
to 25 kcal/kg/day of ideal body weight. No parenteral
nutrition was given. Almost all of the systemic glucose
measurements while patients underwent neuromonitor-
ing were performed hourly. The median number of sys-
temic glucose measurements per patient was 105
(interquartile range (IQR), 69 to 144).
Multimodality neuromonitoring
ICP, PbtO2 and microdialysis probes were placed via a
triple lumen bolt at the bedside using full sterile tech-
nique. ICP was measured using an intraparenchymal fiber-
optic catheter (Camino System, Integra Neurosciences®,
Plainsboro, NJ, USA). Hourly microdialysis samples
were obtained with a 10 mm membrane length CMA-70
microdialysis catheter (CMA Microdialysis®, Stockholm,
Sweden). The probes were placed via a frontal approach
into the hemisphere deemed at greatest risk for secon-
dary injury (that is, perihematomal or pericontusional
tissue, or the ipsilateral anterior watershed zone in late-
ralized SAH) or in the right frontal lobe in patients with
diffuse injury. Immediately after the procedure, a brain
CT scan was performed in each patient to confirm the
location of the microdialysis catheter.
Cerebral microdialysis
A CMA 106 microdialysis perfusion pump (CMA
Microdialysis®) was used to perfuse the interior of
the catheter with sterile artificial cerebrospinal fluid
(Na+ 148 mmol/L, Ca2+ 1.2 mmol/L, Mg2+ 0.9 mmol/L,
K+ 2.7 mmol/L, Cl- 155 mmol/L) at a rate of 0.3 μl/
minute. Samples were collected every 60 minutes into
microvials, and immediately analyzed at the bedside for
glucose, lactate and pyruvate (mmol/L) with the CMA
600 analyzer (CMA Microdialysis®). At least one hour
passed between the insertion of the probe and the start
of the sampling, to allow for normalization of changes
due to probe insertion. The analyzer was automatically
calibrated on initiation and every six hours using stan-
dard calibration solutions from the manufacturer. Qua-
lity controls at three different concentrations for each
marker were performed daily.



Table 1 Clinical characteristics (number = 28)

Variable Median or number IQR or%

Age 54 41 to 61

Gender (female) 19 68

Diabetes mellitus 3 11

Hunt Hess

2 1 4

3 5 18

4 8 29

5 14 50

Modified Fisher

2 4 14

3 14 50

4 10 36

APACHE II 23 19 to 29

Admission Glasgow Coma Scale (GCS) 6 5 to 9

Days from admission to
neuromonitoring

2 1 to 4

Days with neuromonitoring 6 4 to9

Delayed cerebral ischemia (DCI) 10 36

Symptomatic vasospasm 7 25

Hospital mortality 7 25

Data are reported as number (%) or median (interquartile range) unless
otherwise indicated. APACHE II, Acute Physiology and Chronic Health
Evaluation II; IQR, interquartile range.
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Physiologic variables
Physiological variables including heart rate (HR), arterial
blood pressure, respiratory rate (RR), fraction of inspired
oxygen (FiO2) and oxygen saturation (SpO2) were con-
tinuously monitored in all patients. Hourly ICP and mean
arterial pressure (MAP) were prospectively recorded as
part of the standard of care. CPP was calculated as
CPP =MAP – ICP, with both MAP and ICP referenced to
the level of the foramen of Monroe. FiO2 was routinely
maintained at 40%. Symptomatic vasospasm was defined
as neurologic worsening and/or cerebral infarction attri-
buted to vasospasm.

Glycemic variability and metabolic distress
Daily glycemic variability was assessed using standard de-
viation (SD) [29,35-37]. SD is calculated as the squared
root of the average of the squared differences between in-
dividual glucose values and the mean. SD was calculated
daily to test for associations with metabolic distress and
calculated for the entire monitoring period to test for as-
sociations with mortality.
Metabolic distress was defined as a lactate/pyruvate ra-

tio (LPR) above 40. This threshold was defined based on
previous reports demonstrating associations with cere-
bral metabolic disarray, cerebral ischemia, or poor cli-
nical outcome in patients with SAH [38,39].

Data acquisition
A Solar 8000i utilizing a General Electric Medical Systems
Information Technologies’ Unity Network® was used as
the patient physiologic monitor. A high resolution data ac-
quisition system (BedmasterEX, Excel Medical Electronics,
Jupiter, FL, USA) using an open architecture of the Unity
Network® automatically acquired vital signs, alarm and
waveform data from all the patient monitoring devices in
the NICU. Digital data were acquired every five seconds
and recorded in an SQL database. Waveform data were
stored at a resolution of 240 Hz in binary files. LICOX®
(Integra Neuroscience, Plainsboro, NJ, USA) and brain
metabolism data were incorporated into the data acquisi-
tion system utilizing the communications (COM) port on
the device which was plugged into a serial-to-TCP/IP
interface device (Equinox ESP-8, Avocent, Sunrise, FL,
USA).

Statistical analysis
Due to the small sample of patients and large number of
measurements the data were analyzed using generalized
estimating equations (GEE). Univariate analyses were used
to test for associations between predictor and outcome
variables. Variables with significant associations (P <0.1)
were considered candidates for the multivariable analyses.
Multivariable models were constructed using a general
linear model (GLM) with a logistic link function (logistic
regression), extended by generalized estimating equations
(GEE) to account for within-subject variation. The within-
subject correlation structure was modeled using the auto-
regressor of the first order (AR-1) [40-42]. Model building
was performed with a stepwise procedure starting with
the variable of interest. The relationship between serum
glucose variability (SD) and cerebral metabolic distress
was assessed using a multivariable model. The occurrence
of at least one episode of metabolic distress (LPR >40) in
each day of monitoring was considered a binary outcome
variable. SD was tested as the main predictor variable and
adjusted for significant covariates. We reported the final
multivariable model. The model building procedure used
the corrected quasi-likelihood under independence model
criterion (QICC) for model selection [40].
Finally, in order to identify independent associations

between SD and outcome we fitted a multivariable logistic
regression model with hospital mortality as the binary out-
come. Serum glucose variability averaged over the period
of monitoring was entered as the predictor variable and
adjusted for other significant covariates and clinically im-
portant variables. Goodness of fit was assessed with the
Hosmer-Lemeshow test.
Adjusted odds ratios (OR) and 95% confidence intervals

(CI) were reported for all significant predictor variables.
All statistical analyses were performed using SPSS 16



Table 2 Multimodality monitoring

Variable Median IQR

Cerebral perfusion pressure (mmHg) 95 78 to 105

Hemoglobin (g/dL) 9.7 9 to 10.5

Serum glucose (mmol/L) 7.7 6.9 to 8.3

Serum glucose variability

Standard deviation (SD) per day 1.4 1.2 to 1.8

Microdialysis

Lactate (mmol/L) 4.0 3.1 to 4.8

Pyruvate (mmol/L) 121 87 to 162

Glucose (mmol/L) 0.98 0.68 to 1.48

LPR 30 27 to 50

PbtO2 (mmHg) 28 20 to 40

IQR, interquartile range; LPR, lactate/pyruvate ratio; PbtO2, partial pressure of
brain tissue oxygen.
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software (SPSS Inc., Chicago, IL, USA). A P value <0.05
was considered statistically significant.

Results
Clinical characteristics and systemic parameters
Patients’ baseline characteristics are listed in Table 1. All
28 patients included in the study were mechanically venti-
lated and had a GCS less than or equal to 8 at the time of
monitoring. During the study period, 3,139 hourly micro-
dialysate samples and serum glucose measurements were
collected (median per patient 105 hourly samples (IQR,
69 to 144). Serum glucose variability was calculated for
each of the 181 days of neuromonitoring. The median
duration from admission to the start of neuromonitoring
was two days and the median duration of monitoring was
six days. Values for multimodality monitoring including
Figure 1 Relative frequency of at least one episode of metabolic distr
standard deviation (SD). The multivariable general linear model (GLM) wi
association between SD and metabolic distress. GEE, generalized estimating
CPP, PbtO2, systemic glucose and hemoglobin concentra-
tions, as well as SD are presented in Table 2. We did not
record other systemic parameters that may influence brain
metabolism such as pCO2 and temperature.

Hypoglycemia
No episodes of severe hypoglycemia (<2.3 mmol/L) oc-
curred during the study period. Sixteen patients (57%) pre-
sented with at least one episode of moderate hypoglycemia
(<3.9 mmol/L). Ten of these patients had one or two epi-
sodes and the maximum number of episodes occurred in
one patient – five episodes. There was no difference in the
number of episodes of moderate hypoglycemia sustained
by patients with increased SD (above the median) as com-
pared to those with lower SD (1 IQR (0 to 3) versus 0 IQR
(0 to 1.5)); P =NS, respectively). The development of mo-
derate hypoglycemia was also tested in the multivariate
models for metabolic distress and hospital mortality but
no association was found.

Glycemic variability and metabolic distress
SD was treated as a continuous variable in the multivari-
able model with a binary outcome variable: at least one
episode of metabolic distress per day. The proportion of
days with at least one episode of metabolic distress pro-
gressively increased with SD (Figure 1). After adjusting
for GCS and brain glucose, SD was independently asso-
ciated with an increased risk of developing at least one
episode of metabolic distress per day (Table 3).

Glycemic variability and outcome
Hospital mortality was higher for patients with increased
variability (SD above the median) (Figure 2). After
adjusting for age, worst Hunt Hess on admission, daily
ess (LPR >40) per day monitored across the quartiles of daily
th a logistic link function using GEE showed an independent
equations.



Table 3 Predictors of at least one episode per day of metabolic distress (LPR >40)

Univariate analysis Multivariate analysis

Variable Threshold Unadjusted OR CI Adjusted OR CI P value

Glucose variability (SD) NA 1.3 0.9 to 1.6 1.5 1.1 to 2.1 0.02

Brain glucose NA 0.4 0.2 to 0.8 0.3 0.1 to 0.8 0.02

Glasgow Coma Scale NA 0.8 0.7 to 0.9 0.7 0.6 to 0.9 <.001

Multivariable logistic regression model accounting for between-subject and within-subject variations over time using generalized estimating equations (GEE)
adjusted for the variables listed. All variables, including SD were entered as continuous variables. CI, confidence interval; NA, not applicable; OR, odds ratio;
SD, standard deviation.
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GCS and the development of delayed cerebral ischemia
(DCI), SD was independently associated with increased
hospital mortality in a multivariable logistic regression
model (Table 4).
We tested for interactions between DCI, diabetes status

and systemic glucose and SD and no interaction was
found. Furthermore, although our cohort had only three
diabetic patients we compared systemic glucose and SD
between patients with and without DM and no difference
was found (median systemic glucose 7.7 IQR (7.2 to 8.7)
versus 7.6 IQR (6.9 to 8.2); P =NS and median SD 1.9
(IQR 1.3 to 1.9) versus 1.6 (IQR 1.4 to 2.0); P =NS,
respectively).

Discussion
In this study we demonstrated an association between in-
creased systemic glucose variability with cerebral meta-
bolic distress and mortality after SAH.
In our study we used metabolic distress to evaluate

energy failure. Metabolic distress, defined as an elevated
Figure 2 Hospital mortality of patients with serum glucose variability
deviation (SD). Multivariable logistic regression demonstrated independen
LPR above 40, has been reported in the absence of ische-
mia, possibly caused by mitochondrial dysfunction, sei-
zures or reduced substrate availability. Moreover, elevated
LPR is a well-studied complication and has been shown to
be associated with poor outcome [16,34,38,39,43-48].
Systemic glucose variability has been associated with

mortality in mixed populations of critically ill patients
[29-31] and after traumatic brain injury [26,49]. Although
variability has been shown to affect diabetic and non-
diabetic patients differently [50], we found no effect in our
cohort. Recently glucose variability has been associated
with the development of cerebral infarction in a cohort
of SAH patients [49]. In our study, daily acute fluctuation
of systemic glucose was a predictor of the development of
cerebral metabolic distress after adjusting for the presence
of DCI. This finding suggests that increased glycemic vari-
ability and oxidative metabolism may be associated with,
and contribute to, poor outcome. Interestingly, the occur-
rence of hypoglycemia was not associated with increased
SD or mortality in our model. This may be explained by
below and above the median (median = 1.4) for standard
t associations between SD and hospital mortality.



Table 4 Predictors of hospital mortality

Univariate analysis Multivariate analysis

Variable Threshold Unadjusted OR CI Adjusted OR CI P value

Glucose variability (SD) NA 5.9 0.9 to 37 10.4 1.3 to 86 .03

GCS Every 1 point 1.1 0.8 to 1.4 0.5 0.2 to 0.99 .04

Multivariable logistic regression model with hospital mortality as the binary outcome adjusted for the variables listed, age, Hunt Hess, and DCI. GCS and SD were entered
as continuous variables. CI, confidence interval; DCI, delayed cerebral ischemic; GCS, Glasgow Coma Scale; NA, not applicable; OR, odds ratio; SD, standard deviation.
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the absence of severe hypoglycemia during the study
and the very low number of episodes of moderate
hypoglycemia.
The potential mechanisms involved in our findings

range from the well described morbidity of hypoglycemia
and hyperglycemia to oxidative stress triggered by acute
fluctuations of glucose levels [3,4,24]. In a case-control
study of diabetic outpatients serum glucose variability
showed a strong correlation with 8-iso prostaglandin F2,
a marker of oxidative stress [24]. The pathophysiology
behind this relationship is not clearly defined but po-
tentially involves mitochondrial dysfunction caused by
overproduction of superoxide by the mitochondrial elec-
tron-transport chain [51-53].
Our study has a number of important limitations. First,

we were not able to analyze the temporal relation between
the development of metabolic distress and glycemic vari-
ability, which limits any inference of causality. Second, we
did not evaluate factors that might be related to variability
and may influence its effect on outcome, such as intensive
insulin therapy, sepsis and organ dysfunction. Third, brain
glucose, lactate and pyruvate are involved in multiple bio-
chemical pathways, being produced and consumed. This
limits straightforward interpretation of their concen-
trations, especially as microdialysis only measures the
extracellular pool. Fourth, we cannot assess mitochondrial
dysfunction directly, which can cause abnormal oxidative
metabolism in the presence of adequate oxygen and sub-
strate delivery. Fifth, a glucometer was the method used in
the study, which may add inaccuracy to systemic glucose
measurement and potentially affect variability. Sixth, we
were not able to provide some physiological parameters
that may affect brain metabolism, such as body tem-
perature and pCO2 levels. Finally, although we found an
association with hospital mortality, we did not prospec-
tively evaluate functional short and long-term outcomes,
which will be critical for future studies in patients with
SAH.

Conclusions
We showed that glycemic variability is associated with
cerebral metabolic distress and hospital mortality in SAH
patients. Our findings are hypothesis generating but may
have important clinical implications. With increasing
evidence that systemic glucose variability is deleterious
to critically ill neurological patients, strategies aimed at
minimizing acute fluctuations may play a role in glycemic
control protocols in the Neurological ICU. Further studies
are needed in order to determine the effect of taking into
account glycemic variability in glucose control protocols.
Moreover, as multimodality monitoring becomes increa-
singly integrated into clinical practice, randomized clinical
trials are needed to assess the effect of goal-directed inter-
ventions aimed at improving cerebral metabolic profiles
on long-term outcomes of patients with SAH.

Key messages

� Increased systemic glucose variability was
independently associated with cerebral metabolic
distress, as measured by microdialysis, in patients
after poor-grade SAH.

� Glycemic variability was an independent predictor
of mortality in patients with severe SAH.

� These findings suggest that glucose variability may
impact cerebral oxidative metabolism and contribute
to secondary brain injury.
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