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REVIEW
Biomarkers and acute brain injuries:
interest and limits
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Abstract

For patients presenting with acute brain injury (such as
traumatic brain injury, subarachnoid haemorrhage and
stroke), the diagnosis and identification of intracerebral
lesions and evaluation of the severity, prognosis and
treatment efficacy can be challenging. The complexity
and heterogeneity of lesions after brain injury are most
probably responsible for this difficulty. Patients with
apparently comparable brain lesions on imaging may
have different neurological outcomes or responses to
therapy. In recent years, plasmatic and cerebrospinal
fluid biomarkers have emerged as possible tools to
distinguish between the different pathophysiological
processes. This review aims to summarise the plasmatic
and cerebrospinal fluid biomarkers evaluated in
subarachnoid haemorrhage, traumatic brain injury and
stroke, and to clarify their related interests and limits for
diagnosis and prognosis. For subarachnoid
haemorrhage, particular interest has been focused on
the biomarkers used to predict vasospasm and cerebral
ischaemia. The efficacy of biomarkers in predicting the
severity and outcome of traumatic brain injury has been
stressed. The very early diagnostic performance of
biomarkers and their ability to discriminate ischaemic
from haemorrhagic stroke were studied.
of proteins neuron-specific enolase (NSE) and S100β are
considered promising candidates for neurological predic-
Introduction
Despite significant advances in understanding the patho-
physiology of brain injuries, there has been little change in
terms of therapeutic or pharmacological treatment in re-
cent years. The complexity and heterogeneity of lesions
after brain injury are most probably responsible, at least in
part, for the lack of positive results in clinical trials.
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Furthermore, patients with apparently comparable brain le-
sions on imaging may have different neurological outcomes
or responses to therapy. The use of biomarkers in the set-
ting of brain injury may be of interest not only for diagnosis
and identification of intracranial lesions but also for the
evaluation of the severity, prognosis and treatment efficacy.
In addition, patient stratification, based on biomarkers, may
be useful in clinical trials for selecting a homogeneous
population and decreasing inclusion disparity.
Brain biomarker detection in the cerebrospinal fluid

(CSF) and in the blood has been described. Due to the
separation of the brain from the blood by the blood–
brain barrier (BBB), proteins produced within the brain
are present only in small quantities in the blood if the
BBB is intact. The BBB status (open or closed) therefore
has a strong influence on the amount of those types of
proteins in the blood and must be taken into consider-
ation for the interpretation of brain injury blood
biomarkers.
The aim of this review is to summarise plasmatic and

CSF biomarkers evaluated in subarachnoid haemorrhage
(SAH), traumatic brain injury (TBI) and stroke, and to
clarify their interest and limits for diagnosis and progno-
sis. Of note, the present review will not describe the
neurological prognostic factors after cardiopulmonary
resuscitation in patients with cardiac arrest. Serum levels

tors, and a review on the clinical usefulness of these
markers has been published previously [1].
Subarachnoid haemorrhage
Initial severity and prognosis of subarachnoid
haemorrhage
Several biomarkers have been studied in terms of the
short-term or long-term neurological prognostic factors
and correlation with initial severity of patients after
aneurysmal SAH [2-13]. Table 1 summarises different
biomarkers and their correlation with initial neurological
patient severity and prognosis.
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Table 1 Main biomarkers of subarachnoid haemorrhage, and dosage correlated with initial severity, neurological
prognosis and mortality

Dosage Initial severity GOS

Biomarker CSF Plasma GCS WFNS HH Fisher 3 months 6 months 12 months Mortality

ET-1 + + + (CSF) +
(plasma)

TNF-α + + – CSF) – (CSF)

IL-6 + – +

IL-1β + – –

ICAM-1, VCAM-1 + + – (CSF,
plasma)

– (CSF,
plasma)

– (CSF,
plasma)

Light-chain NF + +

Heavy-chain NF + + + +

ApoE + + – +

S100β + + – (CSF) + (plasma) + (plasma) – (CSF) +
(plasma)

ANP + + (plasma) + (plasma)

BNP + + +

cTnI + + + + + +

vWF, MMP-9,
VEGF

+ +

CRP + + + (CSF,
plasma)

+ (CSF,
plasma)

+ (CSF,
plasma)

+ (CSF,
plasma)

+, correlation described; −, lack of correlation; plasma/CSF, dosing site. ANP, atrial natriuretic peptide; ApoE, apolipoprotein E; BNP, brain natriuretic peptide; cTnI,
cardiac troponin I; CRP, C-reactive protein; CSF, cerebrospinal fluid; ET-1, endothelin-1; Fisher, Fisher classification; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome
Scale; HH, Hunt and Hunter classification; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; MMP-9, matrix metalloproteinase-9; NF, neurofilament; S100β, S100β
protein; TNF, tumour necrosis factor; VCAM-1, vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor; WFNS, World
Federation of Neurosurgeons classification.
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Vasospasm and cerebral ischaemia
Cerebral vasospasm and its related cerebral ischaemia
remain the primary cause of mortality and neurological
deficit after SAH and the most powerful predictors of
long-term outcome [14,15]. Physiological and morpho-
logical changes observed during cerebral vasospasm
occur in two phases: a contraction of the arterial wall in
the first 72 hours after onset of SAH, followed by
smooth muscle cell proliferation in the intima of the
main cerebral arteries. Indeed, sustained arterial contrac-
tion causes an increase in the shear stress of endothelial
cells, from day 3 to day 14 after SAH, with an increase
in endothelial permeability, expression of intercellular
adhesion molecules with intimal infiltration of leuko-
cytes, platelet adhesion to the internal elastic lamina, mi-
gration of smooth muscle cells and myointimal
proliferation [16,17]. Plasma and CSF biomarkers have
been studied in the context of SAH, in relation to vaso-
spasm and other factors such as systemic inflammation,
microcirculatory disorders or microembolic release
[18,19]. A recent review classified CSF biomarkers for
cerebral vasospasm according to reports in the literature
as markers with auspicious value, candidate markers
with insufficient evidence and noncandidate markers
with no reference to cerebral vasospasm [20].
Cytokines
An inflammatory response similar to that observed during
coronary spasm appears to affect the cerebral circulation of
patients with SAH. Proinflammatory cytokines – that is,
IL-1β, IL-6 and tumour necrosis factor alpha – have been
detected in the CSF of patients with SAH, with a peak be-
tween day 5 and day 9 followed by a gradual decrease [2].
Peak concentrations of cytokines have been found to be in-
creased up to 10,000-fold, in the range detected in bacterial
meningitis [21]. The concentrations of IL-1β and IL-6
are lower in the plasma than in the CSF, suggesting
a cerebral origin of these mediators with a release
mechanism.
The triggers for this marked inflammatory response in

the subarachnoid space of patients with SAH are still
unknown. One hypothesis is a complement activation
method via osmotically induced disruption of erythro-
cytes [22,23]. A study of 35 patients with SAH revealed
parallel changes in the velocities of the middle cerebral
artery using transcranial Doppler and concentrations of
IL-1β, IL-6 and tumour necrosis factor alpha in the CSF
[2]. Another study of 64 SAH patients confirmed the in-
crease in CSF IL-6 (peak at day 4 to day 5) before the
onset of clinical signs of vasospasm (peak at day 6 to day
7), with a threshold of 2,000 pg/ml at day 4 for the

http://ccforum.com/content/18/2/220


Mrozek et al. Critical Care Page 3 of 122014, 18:220
http://ccforum.com/content/18/2/220
prediction of the development of symptomatic vaso-
spasm (sensitivity = 89% and specificity = 78%) [24]. An-
other recent study in 38 SAH patients reported higher
concentrations of IL-6 in the CSF, brain extracellular
fluid and plasma of symptomatic patients than in those
of asymptomatic patients with vasospasm [25].

Natriuretic peptides
Atrial natriuretic peptide and brain natriuretic peptide
(BNP) are produced in the heart in response to neural
and humoral stimuli and fluid overload [26]. BNP is
therefore not brain specific, but is also produced in brain
tissue, especially in the hypothalamus. Two possible mech-
anisms for increased BNP production in the hypothalamus
have been advanced: release secondary to humoral or para-
crine signals, and a response to hypoxia due to vasospasm.
Some evidence suggests that cerebral ischaemia after
SAH is not only caused by large vessel spasm [27]. Many
hypotheses to explain this phenomenon have been pro-
posed, including systemic infarction, microcirculatory
spasm, and the release of microemboli [18,19].
BNP may be a marker of a general process of microcir-

culatory dysfunction characterised by systemic inflam-
mation and local thrombosis, as described in sepsis or
haemorrhagic shock [28]. In addition, a recent study
links BNP release to proinflammatory cytokines [29].
Berendes and colleagues [30] and Tomida and colleagues
[31] reported an association between plasma BNP con-
centration and the development of delayed ischaemic
neurological deficit (DIND). Sviri and colleagues [32]
studied 38 patients with SAH and observed an increase
in plasma BNP between day 1 and day 3 (69.6 ± 92.4 pg/ml)
compared with control patients (5.8 ± 1.9 pg/ml). Patients
not presenting with DIND have displayed a progressive
decrease from day 3 in plasma BNP concentration. On
the contrary, patients with DIND have displayed a
gradual increase in plasma BNP concentration between
day 3 and day 12 post-SAH [32]. A recent study of 119
patients revealed a significant association between a
BNP level >276 pg/ml in the plasma and the onset of
cerebral ischaemia [27]. Of note, BNP is biologically ac-
tive and may increase the risk of cerebral ischaemia by
its direct effects on the kidneys and systemic vessels,
including natriuresis, vasodilatation and hypovolaemia.

von Willebrand factor, vascular endothelial growth factor
and matrix metalloproteinase-9
During cerebral vasospasm, sustained arterial contraction
is at the origin of increases in the shear stress of endothe-
lial cells and is associated with modifications of endothelial
permeability, expression of adhesion molecules and myoin-
timal proliferation [16,17]. Vascular endothelial growth
factor (VEGF) can initiate these changes because its con-
centration is increased in the intima after endothelial cell
damage [33,34]. Matrix metalloproteinase-9 (MMP-9) alone
can stimulate the activity of VEGF by increasing the avail-
ability of VEGF in the media of vessels [35]. Moreover,
MMP-9 expression is increased in smooth muscle cells
after alterations of endothelial cells, contributing to the ini-
tiation of myointimal proliferation [36].
von Willebrand factor is considered a plasma marker

of endothelial cell injury. McGirt and colleagues have
demonstrated an increase in plasma concentrations of
VEGF, MMP-9 and von Willebrand factor before the
diagnosis of vasospasm by both transcranial Doppler
and cerebral angiography in 38 patients with SAH [13].
Peak concentrations were observed for von Willebrand
factor, MMP-9 and VEGF at day 5, day 3 and day 2, re-
spectively. Elevated plasma von Willebrand factor levels
>5,500 ng/ml, MMP-9 levels >700 ng/ml and VEGF
levels >0.12 ng/ml each independently increased the
odds of vasospasm (17-fold, 25-fold and 21-fold, respect-
ively). However, the plasma concentrations of these
markers were not different between clinically symptom-
atic and asymptomatic patients with vasospasm. Re-
cently, Chou and colleagues reported the lack of a
correlation between CSF or plasmatic MMP-9 and vaso-
spasm in 55 patients with SAH [5].

Endothelin-1
Endothelin-1 has major vasoconstrictive effects in hu-
man arteries, including cerebral vessels [37]. Further-
more, endothelin-1 has been found in neurons, glial
cells, the choroid plexus and macrophages. The concen-
tration of endothelin-1 in the CSF of SAH patients was
significantly higher (2.5 ± 0.7 pg/ml) on the first day after
onset of SAH than in the CSF of controls (normal values
<0.85 pg/ml) [38]. Endothelin-1 concentrations in CSF
increase until the sixth day and then gradually decrease
in patients without vasospasm. In addition, a significant
increase in CSF endothelin-1 has been observed between
day 4 and day 7 in symptomatic patients with vasospasm
[38,39]. One study found an endothelin-1 increase in the
CSF before detection of angiographic vasospasm [38].
Moreover, a significant correlation has been found be-
tween the concentration of endothelin-1 in the CSF and
the extension of angiographic vasospasm [40]. In plasma,
no significant difference in endothelin-1 concentration
has been demonstrated between patients with SAH and
controls [41].
Endothelin receptor antagonists have emerged as

a promising therapeutic option. A recent Cochrane
database review concluded that endothelin receptor
antagonists appear to reduce DIND and angiographic
vasospasm, but their benefit to clinical outcome re-
mains unproven. Moreover, their associated adverse
events were not negligible (for example, hypotension
and pneumonia) [42].
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Intercellular adhesion molecule-1 and vascular cell adhesion
molecule-1
There is a large amount of evidence that inflammatory
reactions may be involved in the pathogenesis of delayed
ischaemic lesions. Several molecules could initiate the steps
of the inflammatory cascade. These include intercellular
adhesion molecule-1, an immunoglobulin-like molecule
that is exposed to endothelial cells and induced by expos-
ure to inflammatory cytokines, and vascular cell adhesion
molecule-1 [43,44]. Animal studies have demonstrated an
upregulation of intercellular adhesion molecule-1 on endo-
thelial and medial layers of cerebral arteries after SAH.
Treatment with monoclonal antibodies against intercellular
adhesion molecule-1 can reduce or even inhibit cerebral
vasospasm in animals [45]. An increase in the blood and
CSF concentrations of intercellular adhesion molecule-1
and vascular cell adhesion molecule-1 in patients with
SAH compared with a control group within the first 7 days
has been described [7]. There appears to be a correlation
between cerebral blood flow velocities measured using
transcranial Doppler and a secondary increase of intercel-
lular adhesion molecule-1 and vascular cell adhesion
molecule-1 in plasma and CSF [46].

Neurofilaments
Neurofilaments are components of the axonal cytoskel-
eton and include heavy-chain neurofilaments (NF-H; 190
to 210 kDa), medium-chain neurofilaments (160 kDa),
light-chain neurofilaments (68 kDa) and α-internexin
(66 kDa) [47]. In physiological conditions, neurofilaments
are restricted to the intracellular compartment of the
neuronal cells. Alteration of the axonal membrane integ-
rity can result in the release of neurofilament proteins in
the extracellular space and their spread into the CSF. The
subunits of neurofilaments are therefore potentially useful
for revealing axonal injury.
Plasma NF-H concentrations in healthy individuals aver-

age 0.11 ng/ml, and CSF NF-H concentrations average
0.94 ng/ml [48]. Petzold and colleagues reported a positive
correlation between CSF concentrations of NF-H and
prognosis (Glasgow Outcome Scale at 3 months) in SAH
patients [49]. Lewis and colleagues confirmed that high
concentrations of NF-H in plasma and CSF were associ-
ated with a poor outcome at 6 months and that patients
with vasospasm had increased levels of NF-H in CSF and
plasma (16.7 ± 19.9 ng/ml and 0.44 ± 0.68 ng/ml) com-
pared with patients without vasospasm (0.29 ± 0.44 ng/ml
and 8.3 ± 15.3 ng/ml) [9]. NF-H may thus be a useful
marker of axonal injury in SAH.
More recently, Zanier and colleagues [41] reported

higher concentrations of light-chain neurofilaments in
CSF obtained by external ventricular shunt in patients
with early cerebral ischaemia defined by hypodense le-
sion on computed tomography (CT) within 72 hours of
ruptured aneurysm (related to intracranial haemorrhage
or complications of aneurysm treatment). However,
there were no significant differences in external ven-
tricular shunt light-chain neurofilaments concentrations
between patients who developed clinical vasospasm and
those with delayed cerebral ischaemia [41].

α2-spectrin breakdown products
α2-spectrin is a cytoskeletal protein. The products of its
degradation by calpain and caspase-3 are potential markers
of the severity of lesions in SAH. α2-spectrin is trans-
formed into degradation products of 150 kDa (SBDP150)
and 145 kDa (SBDP145) by calpain and is cleaved into a
degradation product of 120 kDa (SBDP120) by caspase-3
[50]. Calpain and caspase-3 are major effectors of cell
death (respectively, necrotic and apoptotic). In a study of
20 patients with a high Fisher grade of SAH, Lewis and col-
leagues reported an increase in SBDP concentration in the
CSF [51]. SBDP150, SBDP145 and SBDP120 CSF concen-
trations were higher in patients with clinical vasospasm
compared with patients who did not develop vasospasm.
Moreover, symptomatic vasospasm was associated with an
increase in the concentrations of SBDPs (SBDP145 and
SBDP150) in the CSF 12 hours prior. The treatment of
vasospasm induced a decrease in SBDPs to baseline levels
in patients without ischaemia, but SBDP concentrations
remained high in patients with cerebral ischaemia.

S100β protein
S100β protein belongs to a multigenic family of low mo-
lecular weight (9 to 13 kDa) calcium-binding S100 pro-
teins. S100β protein is mainly expressed in glial cells,
particularly astrocytes [52]. S100β protein is involved in
intracellular signal transduction via the inhibition of pro-
tein phosphorylation, regulation of enzyme activities and
affecting calcium homeostasis [53]. In addition, S100β
protein participates in the regulation of cell morphology
by interacting with elements of the cytoplasmatic cyto-
skeleton. S100β protein is actively secreted into the CSF
from astrocytes and is believed to have extracellular
functions. The protein can be detected in both CSF
(normal value 1 to 2 μg/l) and blood serum (normal
value <0.15 μg/l), resulting from the elimination process
after intracellular and extracellular actions. S100β pro-
tein’s biological half-life is 2 hours; the protein can be
detected in both CSF and blood serum. Kay and col-
leagues report an increase (compared with a control
population) of its concentration in CSF after SAH in pa-
tients with neurologic symptoms [10]. A recent study of
55 patients with SAH shows that plasma and CSF
concentrations of S100β can detect cerebral ischaemia
and intracranial hypertension after SAH, a secondary in-
crease in plasma concentration being predictive of vaso-
spasm [54].
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Other biomarkers
Recently, Siman and colleagues [55] studied combinations
of neurodegeneration biomarkers for predicting vaso-
spasm, infarction and outcome rather than the use of a
single biomarker. They reported an increase for six CSF
biomarkers from 3-fold to 10-fold between days 1 and 5
after SAH onset for patients with moderate to severe
angiographic vasospasm (14-3-3β protein, 14-3-3ζ protein,
ubiquitin C-terminal hydrolase-L-1 (UCH-L1), NSE and
two SBDPs cleaved by calpain). These biomarkers were
correlated significantly with occurrence of cerebral vaso-
spasm, brain infarction and poor outcome. They reported
the 14-3-3β protein, NSE and fragment N-terminal of
SBDPs as early predictors of vasospasm [55].
In clinical practice, none of these biomarkers have been

clearly validated for the early detection of cerebral vaso-
spasm, the main cause of mortality and neurological def-
icit after SAH. Larger and prospective studies are required
to validate their use for detection of vasospasm, but also
to validate therapeutic options guided by biomarker levels
aiming at improving neurological outcome.

Traumatic brain injury
TBI severity can be assessed using the Glasgow Coma
Score (GCS) and brain imaging. Minor TBI (GCS 13 to
15) and moderate TBI (GCS 9 to 12) represent 90% of
TBI cases, but these types of TBI may induce long-term
sequelae. Because of the limits of GCS and imaging, the
use of biomarkers to improve diagnosis and classifica-
tion of TBI could be of interest.

Initial severity, prognosis and mortality
Many biomarkers have been studied in TBI to evaluate
the association of initial severity with the GCS and neu-
roradiological findings at patient admission, neurologic
outcome predictions with Glasgow Outcome Scale
(GOS) at 3 months and 6 months, and mortality predic-
tion. Several biomarkers have been found to correlate
with these associated items: S100β protein [56,57], NSE
[58,59], UCH-L1 [60-62], glial fibrillary acidic protein
(GFAP) [57,58], myelin basic protein [63,64] and tau
protein [65] in plasma, and S100β protein [56], UCH-L1,
SBDPs [66,67] and tau protein [68] in CSF.

Classification of traumatic brain injury
A recent review summarised CSF and blood biomarkers of
mild TBI to predict long-term neurological sequelae and
to assess patients with head trauma by classifying them
according to axonal, neuronal or astroglial injuries [69].

S100β protein
S100β protein can be released from astroglial cells in
many ways: by activation of adenosine and glutamate re-
ceptors [70], by stimulation of astroglial 5HT1A
receptors [71] and by adrenocorticotropic hormone
and corticotrophin-like intermediate-lobe peptide [72].
Moreover, S100β protein is secreted from proliferating
astrocytes.
In TBI patients, the acute increase in plasma S100β

protein level is most probably related to massive adeno-
sine and glutamate release in heavily damaged and per-
fused brain areas [73]. A portion of S100β protein is able
to diffuse into the bloodstream. The determination of
plasma S100β protein after TBI may be able to differen-
tiate groups of patients with minor or severe injuries. In
226 patients with minor TBI (GCS 13 to 15), the plasma
levels of S100β were significantly higher in patients with
intracranial injury, with a threshold value of 0.10 μg/l for
detecting lesions on CT scan (area under receiver oper-
ating characteristic curve = 0.73 (95% CI = 0.62 to 0.84)
and sensitivity = 95%) [74]. For 2,128 patients with minor
TBI, the plasma threshold was 0.12 μg/l, with a sensitiv-
ity of 99% and a specificity around 20% for the detection
of intracranial lesions on CT scan. The negative predict-
ive value was 99.7% (95% CI = 98.1 to 100%) [75]. A
S100β protein level below 0.12 μg/l at patient admission
could therefore be used to exclude post-traumatic intra-
cranial lesions on CT scan. However, these data require
confirmation in a larger study. S100β protein, initially
considered to be located only in the central nervous sys-
tem, is expressed in other tissues such as adipocytes or
chondrocytes. High plasma protein S100β has been ob-
served after multiple traumas in patients without brain
damage, leading to questioning of its usefulness for pre-
dicting neurological outcome in those patients [76].
Goyal and colleagues [56] studied S100β protein

temporal profiles in the CSF and plasma of adults
with severe TBI. Their temporal serum profiles were
associated with acute mortality, perhaps because of
extracerebral sources in the serum as represented by
high Injury Severity Scores, but the CSF S100β pro-
tein profiles were associated with outcomes and
mortality [56]. In clinical practice, the S100β protein
level can be obtained in 1 hour and its cost is ap-
proximately €15.

Neuron-specific enolase
NSE is one of the five isoenzymes of glycolytic enolase
in central and peripheral neurons. NSE is localised in
neuron cytoplasm and is most probably involved in the
increase of chloride concentration at the beginning of
neural activity [77]. This marker has been used to evalu-
ate neuronal functional alterations. NSE is passively re-
leased rapidly in the plasma after TBI by cell
destruction. The NSE plasma concentration at patient
admission for TBI has been found to be twofold higher
than normal reference values [58]. Despite these promis-
ing data, several studies have produced disappointing
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results. Because of the slow elimination (biological half-
life of 48 hours) of NSE from the plasma, quantification
of the amount of brain injury and distinction between
primary and secondary insult remains difficult using
plasma NSE [78]. Furthermore, NSE can be released into
the plasma from red blood cell haemolysis, resulting in
possible confounding factors [79].

Ubiquitin C-terminal hydrolase-L-1
UCH-L1 is highly and specifically expressed in neurons.
UCH-L1 represents approximately 1 to 5% of the total sol-
uble proteins within the brain [80]. This protein is in-
volved in the addition and deletion of ubiquitin-dependent
protein (via the ATP-dependent proteasome pathway),
playing an important role in the removal of excessive, oxi-
dised or abnormal proteins during normal and neuro-
pathological conditions [81]. One study reports higher
concentrations of UCH-L1 in the CSF of patients with
severe TBI (44.2 ng/ml) compared with a control group
(2.7 ng/ml) [60]. UCH-L1 is released within 6 hours after
trauma and peaks in the first 24 hours in the CSF. This
study reported an area under the curve (AUC) of 0.88
(95% CI = 0.68 to 1.00) using UCH-L1 CSF levels within
the first 6 hours versus control patients.
UCH-L1 appears to be able to distinguish TBI and un-

injured control patients at 6 hours when the mental sta-
tus can be confounded by drugs, alcohol or other
pathology. Recently, Papa and colleagues [82] compared
early UCH-L1 plasma levels (within 4 hours of injury) of
patients with mild and moderate TBI with uninjured and
injured control patients in a prospective cohort study.
They reported a significant difference between UCH-L1
levels in CT-negative patients versus CT-positive pa-
tients (0.62 ng/ml vs. 1.61 ng/ml, respectively) with an
AUC of 0.73 (95% CI = 0.62 to 0.84). Moreover, UCH-L1
levels allow one to distinguish mild and moderate TBI
from uninjured control patients with an AUC of 0.87
(95% CI = 0.82 to 0.92) and to distinguish TBI with GCS
15 from controls with an AUC of 0.87 (95% CI = 0.81 to
0.93) [82].

Glial fibrillary acidic protein
GFAP is a protein involved in astrocyte cytoskeletons by
forming networks with filaments that provide support and
strength to cells. Glial cells specifically express GFAP,
which is involved in several neurological processes such as
BBB integrity. An increase in the plasma concentrations of
GFAP in patients with severe TBI (0.10 ± 0.18 μg/l on
admission, 0.012 ± 0.026 μg/l 24 hours after injury and
0.017 ± 0.052 μg/l 48 hours after injury) has been reported
compared with healthy volunteers (0.004 μg/l) [83].
Moreover, critically injured trauma patients without

TBI had significantly lower levels of plasmatic GFAP
compared with patients with TBI documented on head
CT scan [84]. In addition, the plasma concentration of
GFAP is not affected by multiple traumas without brain
injury [85]. GFAP has recently been reported as highly
vulnerable to proteolytic modifications in vitro and
in vivo. Breakdown products of GFAP are therefore
likely to be present in biofluids. GFAP breakdown prod-
uct levels are able to differentiate TBI patients from un-
injured controls with an AUC of 0.90 (95% CI = 0.86 to
0.94) and differentiate TBI patients with a GCS of 15
from normal controls with an AUC of 0.88 (95% CI =
0.82 to 0.93) [86]. More recently, the prospective Trans-
forming Research and Clinical Knowledge in TBI study
evaluated the diagnosis accuracy of elevated levels of
GFAP breakdown products in TBI patients. This study
confirms the good correlation between GFAP breakdown
product levels and CT scan findings in TBI patients [87].

α2-spectrin breakdown products
Pineda and colleagues reported an increase in SBDP
concentration in the CSF after severe TBI [66]. More re-
cently, Mondello and colleagues [67] studied 40 severe
TBI patients using SBDP measurement in the CSF from
ventriculostomy catheters every 6 hours for a maximum
of 7 days following TBI, comparing them with control
patients. Compared with control patients, both SBDP145
(14.42 ± 0.91 ng/ml vs. 0.52 ± 0.22 ng/ml) and SBDP120
(6.05 ± 0.28 ng/ml vs. 1.21 ± 0.48 ng/ml) CSF concentra-
tions were increased in severe TBI. The degradation of
products appears to be different, with an earlier peak for
SBDP145 (29.56 ng/ml at 6 hours) compared with a late
peak for SBDP120 (11.96 ng/ml at 138 hours). These ob-
servations suggest that cell death via necrosis or apop-
tosis is activated with a different time course after severe
TBI. In addition, patients who died after TBI exhibited
higher concentrations of SBDP145 and SBDP120 than
survivors within 7 days post-trauma [67].
In clinical practice, only S100β protein may be used to

screen patients with minor TBI (GCS 13 to 15) and
exclude CT-scan lesions when the plasma level is below
0.12 μg/l at admission. UCH-L1 may have the same util-
ity but prospective studies with larger samples are re-
quired. GFAP has the advantage of not being influenced
by peripheral injuries, contrary to S100β protein and
NSE, and is therefore probably more specific for brain
injury [88]. The use of biomarkers for classification of
TBI is certainly of major interest, but large clinical stud-
ies validating strategies based on biomarkers use in TBI
are still lacking, particularly in severe TBI patients.

Stroke
The use of biomarkers to diagnose stroke very early and
the precise extent of brain damage may be useful in the
application of specific therapeutic strategies. The diffi-
culty with this approach relates to the heterogeneity of
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the brain cell population, different tolerances to ischae-
mia and distribution in the central nervous system, com-
plexity of the ischaemic cascade and integrity of the
BBB. Biomarkers may also reflect the different steps of
cerebral ischaemia, such as inflammation, glial activation
and neuronal injury.

S100β protein
Several studies have described a significant increase in
plasma levels of S100β protein within the first 3 days
after cerebral infarction [89,90]. In stroke, high levels of
adenosine occur in the core of the infarct, not perfused
with blood. S100β protein accumulated in this region
cannot be released into the bloodstream and thus does
not contribute to any observed increase in plasma levels.
The pattern of reactive astrogliosis observed in animals
and human studies explains the plasma S100β protein
temporal profiles in stroke patients, with plasma S100β
protein peaking later than in TBI patients. A recent re-
view described the serum S100β temporal profile after
stroke onset. There is a gradual concentration increase
starting 8 to 10 hours after onset of symptoms, followed
by a peak at 72 hours and then a drop at 96 hours [91].
Lower plasma concentrations of S100β have been re-
ported in only one study, in patients with transient is-
chaemic attack (TIA) or normal brain CT on admission
in comparison with individuals with neurological deficits
or abnormal brain imaging displaying cortical infarcts
[73]. A correlation has been observed between plasma
levels of S100β protein and the size of cerebral infarction
[92,93]. An association has been described between
S100β protein plasma levels and the National Institutes
of Health Stroke Score [89,94]. However, the delayed
kinetics and low specificity preclude this association for
diagnostic use in acute stroke situations. The increase in
plasma S100β is not specific for cerebral infarction and
can be observed with other neurological conditions such
as TBI and extracranial malignancies, possibly leading to
biased interpretations of results. The clinical perform-
ance of S100β protein therefore does not appear to be
robust enough to differentiate ischaemic stroke, haemor-
rhagic stroke and stroke mimics.
Despite these factors, S100β concentrations could be

an additional tool for the identification of patients at
high risk of specific early neurological complications in
clinical practice. Indeed, a plasmatic S100β level
>1.03 μg/l at 24 hours after the onset of stroke predicts
malignant infarction in patients with proximal middle
cerebral artery occlusion, with a sensitivity of 94% and a
specificity of 83% [95]. Another study has reported
higher S100β prethrombolysis concentrations in patients
who developed haemorrhagic transformation after
thrombolysis treatment compared with patients who did
not (0.14 vs. 0.11 μg/l) [96]. A recent study examined
458 patients with ischaemic stroke who were not treated
with thrombolytic drugs. At admission, patients with
clinical deterioration caused by haemorrhagic transform-
ation had higher concentrations of S100β and tight-
junction proteins, which are markers of BBB breakdown.
An analysis of these proteins levels could be used to
screen for and predict the risk of haemorrhagic trans-
formation [97].

Asymmetric dimethylarginine
Methylarginines are synthesised by post-translational
methylation of l-arginine and are released as free dimethy-
larginines after proteolysis. Asymmetric dimethylarginine
(ADMA) and symmetric dimethylarginine are detectable
in blood, urine and CSF. Whereas symmetric dimethylar-
ginine is inactive, ADMA is a potential inhibitor of nitric
oxide synthase, which is involved in endothelial dysfunc-
tion [98]. An increase in the ADMA plasma concentration
is thus assumed to be a surrogate marker for the risk of is-
chaemic stroke.
Yoo and Lee reported a significant difference between

ADMA plasma concentrations in healthy control pa-
tients (0.93 ± 0.32 μmol/l), ischaemic stroke patients
(1.46 ± 0.77 μmol/l) and patients with initial recurrence
of ischaemic stroke (2.28 ± 1.63 μmol/l) [99]. Another
study that included 880 women revealed that an increase
of 0.15 μmol/l ADMA in plasma leads to a 30% in-
creased risk of ischaemic stroke and myocardial infarc-
tion [100]. In addition, the Framingham Offspring Study
evaluated plasma ADMA concentrations from 2,013 in-
dividuals for whom simultaneous neuroimaging studies
were available. The ADMA concentration was independ-
ently associated with an increased prevalence of mag-
netic resonance imaging abnormalities in the absence of
clinical symptoms, which is a well-known risk factor for
pre-emptive stroke [101].

Matrix metalloproteinase-9
Matrix metalloproteinases are a family of zinc-dependent
and calcium-dependent endopeptidases responsible for
turnover and degradation of extracellular matrix proteins.
The expression of MMP-9 in brain tissue under normal
conditions is very low, but increases in MMP-9 expression
have been demonstrated in ischaemic brain tissue [102].
The upregulation of MMP-9 occurs in brain tissue in
response to injury and is believed to play a central role
in the pathophysiology of ischaemic stroke by degrad-
ation of extracellular matrix proteins. After the onset
of cerebral ischaemia, the uncontrolled expression and
activity of MMP-9 mediate proteolysis and lead to BBB
leakage and cell death.
Increases of MMP-9 plasma concentrations have been

demonstrated in both ischaemic (149.6 ± 99 ng/ml) and
haemorrhagic stroke patients upon presentation to the
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emergency department compared with healthy individ-
uals (<97 ng/ml), suggesting a relatively short time
period (within hours) from release to detection in the
plasma [103,104]. Plasma concentrations of MMP-9 are
also related to cerebral infarction size, neurological out-
comes and haemorrhagic transformation, especially after
fibrinolysis [104-106]. At patient admission to the hos-
pital, plasma concentrations of MMP-9 are predictive of
cerebral infarct volume on magnetic resonance imaging
and are correlated with stroke lesion growth, even after
thrombolysis administration [107].

N-methyl-d-aspartic acid receptor antibodies and
peptides
Receptors for N-methyl-D-aspartic acid bind the glutam-
ate neurotransmitter and are expressed mainly by neur-
onal cells. The receptors contain four subunits (two NR1
and two NR2 subunits), and fragmentation of NR2 into
NR2A and NR2B peptides is thought to occur during
cerebral ischaemia or neurotoxicity [108,109]. The gen-
eration of N-methyl-D-aspartic acid receptor antibodies
(NR2Abs) is mediated by the immune response follow-
ing ischaemic events. The NR2Abs and NR2 peptides
can be assayed in blood and CSF.
Several studies have examined the potential usefulness

of NR2Abs and NR2 peptides as markers of ischaemic
stroke. Dambinova and colleagues reported an increase
in NR2Ab plasma concentrations during ischaemic
stroke (5.01 ± 1.23 μg/l) and TIA (4.02 ± 2.04 μg/l) in
105 patients compared with 255 control subjects (1.49 ±
0.22 μg/l) [110]. NR2Abs are not able to discriminate
stroke from TIA. Moreover, the NR2Ab increase is not
observed after haemorrhagic stroke, suggesting that a
negative NR2Ab result could be used to rule out haem-
orrhagic stroke. A threshold ≥2 μg/l has a sensitivity of
97% and a specificity of 98% in the diagnosis of ischae-
mic stroke or TIA within 3 hours after symptom onset.
An increase of antibodies can be observed in hyperten-
sive patients and in patients with a history of ischaemic
stroke or atherosclerosis [110]. Thus, it is unclear whether
the increase in antibody level reflects an acute episode of
cerebral ischaemia or is a potential predictor of cerebro-
vascular events. A prospective multicentre study of 557
patients undergoing coronary surgery reported that 24 of
25 patients with a preoperative concentration NR2Ab
≥2 μg/l revealed neurologic complication within 48 hours
after surgery [111].

Glial fibrillary acidic protein
Clinical studies have demonstrated an increase in GFAP
plasma levels after ischaemic stroke compared with con-
trol subjects, with a peak between day 2 and day 4 after
onset of symptoms [112]. A prospective study involving
135 patients admitted 6 hours after onset of stroke
symptoms reported detection of serum GFAP in 81% of
patients with haemorrhagic stroke but in only 5% of
those with ischaemic stroke [113]. Furthermore, plasma
levels of GFAP were significantly higher in haemorrhagic
stroke patients (mean value 111.6 ng/l) than in ischae-
mic stroke patients (mean value 0.4 ng/l). With a thresh-
old value of 2.9 ng/l, the sensitivity was 79% and the
specificity was 98% for differentiating ischaemic stroke
from haemorrhagic stroke. In a study by the same team,
the optimal timing to differentiate cerebral ischaemia
from haemorrhage with GFAP was 2 to 6 hours after
symptom onset [114]. A multicentre study focusing
on S100β protein, NSE, GFAP and activated protein
C–protein C inhibitor complex demonstrated the ability
of GFAP to differentiate haemorrhagic stroke from is-
chaemic stroke, which has not been observed for other
proteins [115]. Moreover, the combination of GFAP with
activated protein C–protein C inhibitor complex and the
National Institutes of Health Stroke Score led to a diag-
nostic sensitivity and negative predictive value of 100%,
allowing exclusion of haemorrhagic stroke, which is po-
tentially useful for early initiating fibrinolysis.

Neuropeptide proenkephalin A and protachykinin
Stroke has been characterised by biomarkers of infarct
size and damage to the BBB. Recent studies have re-
ported stable precursor fragments of the neuropeptides
encephalin (proenkephalin A (PENK-A)) and substance
P (protachykinin A) as potent markers of BBB integrity
[116]. Both neuropeptides are active as neurotransmit-
ters and are involved in nociception and immune stimu-
lation. Doehner and colleagues [117] recently evaluated
PENK-A and protachykinin A in 189 patients presenting
with symptoms of acute cerebrovascular disease. Plasma
concentrations of PENK-A were significantly increased
in acute stroke patients (123.8 pmol/l) compared with
patients with TIA (114.5 pmol/l) or nonischaemic events
(102.8 pmol/l). The elevation of PENK-A was correlated
with stroke severity (National Institutes of Health Stroke
Score) and with CT infarct size. Moreover, increased
PENK-A concentrations predicted 3-month outcomes
for mortality, stroke recurrence and myocardial infarc-
tion. Protachykinin A concentrations did not demon-
strate any discriminative power [117].

Other biomarkers and biomarker combinations
Several other biomarkers, mostly nonspecific, were stud-
ied either alone or in combination in the context of
stroke. Combinations of several biomarkers have been
developed to increase the sensitivity and specificity of
the diagnosis [118-121].
In clinical practice, the main interest for stroke bio-

markers is probably in the ability to discriminate ischae-
mic strokes from haemorrhagic strokes or TIA, allowing
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Figure 1 Main biomarkers used in subarachnoid haemorrhage,
traumatic brain injury and stroke. Biomarkers can be classified
according to their role in brain injuries: inflammation and activation;
protein degradation; necrosis and apoptosis; cytoskeleton damage;
functional alteration; and endothelial alteration. BBB, blood–brain
barrier; ET-1, endothelin-1; GFAP, glial fibrillary acidic protein; ICAM-1,
intercellular adhesion molecule-1; IL, interleukin; MBP, myelin basic
protein; MMP-9, matrix metalloproteinase-9; NF, neurofilament; NSE,
neuron-specific enolase; S100β, S100β protein; SBDP, α2-spectrin
breakdown product; TNF, tumour necrosis factor; UCH-L1, ubiquitin
C-terminal hydrolase-L-1; VCAM-1, vascular cell adhesion molecule-1;
VEGF, vascular endothelial growth factor; vWF, von Willebrand factor.
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an early initiation of fibrinolysis. When taking into con-
sideration the specificity for ischaemic event detection
and the kinetics for biomarker increase, plasma PENK-A
seems to be one of the most interesting biomarkers for
acute ischaemic stroke detection.
Figure 1 summarises the main biomarkers examined

in SAH, TBI and stroke. They are classified according to
their significance in brain injury dynamics.

Conclusion
The use of biomarkers in the treatment of brain injuries
and brain diseases is of considerable interest for improving
diagnosis and prognostication. These surrogate markers
must nevertheless be used with caution. Stricto sensu, their
performance at predicting an event can be applied only to
populations in which they have been validated. The overuse
of biomarkers for brain injuries could induce both
expensive and counterproductive strategies. However, it ap-
pears reasonable to limit their use for clinical research.
Research on biomarkers of brain injury should remain

a strong priority, as biomarkers could be a key factor in
personalised medicine. New developments such as omics
tools should be used in stroke treatment and therapy,
similar to how they have been used recently in cardio-
vascular disease [122]. In parallel with the discovery of
new biomarkers of brain injury, the economic perform-
ance of these biomarkers needs to be evaluated in both
large cohorts of patients and in selected and targeted
populations with complicated clinical situations and high
uncertainty.
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