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Abstract

Introduction: Prolonged ventilation and failed extubation are associated with increased harm and cost. The added
value of heart and respiratory rate variability (HRV and RRV) during spontaneous breathing trials (SBTs) to predict
extubation failure remains unknown.

Methods: We enrolled 721 patients in a multicenter (12 sites), prospective, observational study, evaluating clinical
estimates of risk of extubation failure, physiologic measures recorded during SBTs, HRV and RRV recorded before
and during the last SBT prior to extubation, and extubation outcomes. We excluded 287 patients because of
protocol or technical violations, or poor data quality. Measures of variability (97 HRV, 82 RRV) were calculated from
electrocardiogram and capnography waveforms followed by automated cleaning and variability analysis using
Continuous Individualized Multiorgan Variability Analysis (CIMVA™) software. Repeated randomized subsampling
with training, validation, and testing were used to derive and compare predictive models.

Results: Of 434 patients with high-quality data, 51 (12%) failed extubation. Two HRV and eight RRV measures showed
statistically significant association with extubation failure (P <0.0041, 5% false discovery rate). An ensemble average of
five univariate logistic regression models using RRV during SBT, yielding a probability of extubation failure (called WAVE
score), demonstrated optimal predictive capacity. With repeated random subsampling and testing, the model showed
mean receiver operating characteristic area under the curve (ROC AUC) of 0.69, higher than heart rate (0.51), rapid
shallow breathing index (RBSI; 0.61) and respiratory rate (0.63). After deriving a WAVE model based on all data,
training-set performance demonstrated that the model increased its predictive power when applied to patients
conventionally considered high risk: a WAVE score >0.5 in patients with RSBI >105 and perceived high risk of
failure yielded a fold increase in risk of extubation failure of 3.0 (95% confidence interval (CI) 1.2 to 5.2) and 3.5
(95% CI 1.9 to 5.4), respectively.

Conclusions: Altered HRV and RRV (during the SBT prior to extubation) are significantly associated with extubation
failure. A predictive model using RRV during the last SBT provided optimal accuracy of prediction in all patients, with
improved accuracy when combined with clinical impression or RSBI. This model requires a validation cohort to
evaluate accuracy and generalizability.
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Introduction
The clinical decision to extubate an intensive care unit
(ICU) patient is critical to both the quality and efficiency
of care. Early extubation is desirable to decrease the risks
of prolonged intubation, including progressive respiratory
muscle weakness [1], risk of ventilator-associated pneu-
monia [2], and increased health-care expenditures [3].
Conversely, clinicians aim to limit or avoid failed extu-
bation (usually defined as reintubation within 48 hours
of extubation), as it is associated with increased mortality,
length of stay, and cost, as well as greater need for long-
term rehabilitative care [4,5]. Failed extubation can lead
to worse outcomes because of complications that occur at
the time of reintubation, especially if performed emergently,
including an adverse impact of prolonged intubation,
and deterioration prior to reintubation [6]. The mortality
risk associated with failed extubation is variable and
dependent on the reason for reintubation, with airway
obstruction, aspiration, or secretions carrying a lower
risk than pneumonia or heart failure [7]. Further com-
pounded by projected increasing costs for care of the
critically ill [8], there is a need for improved strategies
to reducing the duration of mechanical ventilation while
simultaneously avoiding failed extubation [9].
Spontaneous breathing trials (SBTs) - short-duration

trials of reduced ventilatory support to simulate the in-
creased work of breathing after extubation - are widely
used to evaluate readiness for extubation [10]. A variety
of parameters including respiratory rate (RR), tidal vol-
ume (TV), rapid shallow breathing index (RSBI = RR/
TV or ‘Tobin Index’ [11]), airway pressure during the first
100 ms of inspiration (P0.1), partial pressure of arterial
oxygen to fraction of inspired oxygen ratio (P/F), maximal
inspiratory or expiratory pressure (MIP or MEP), and
cough strength have been evaluated as indicators of extu-
bation readiness [11-13]. In the largest multicenter study
of this question, factors that independently increased risk
of extubation failure included an elevated RSBI during
spontaneous breathing trial (SBT), positive fluid balance
and history of pneumonia [13]. Current recommendations
for extubation include a 30 to 120 minute SBT during
which multiple physiological parameters are used to assess
whether the SBT is a pass, fail or equivocal [14]. However,
multiple international studies demonstrate that 10 to 15%
of ICU patients fail extubation and require reintubation
within 48 to 72 hours, with rates between 25 and 30% in
high-risk patients [5,11,15,16].
Complex systems analysis has been increasingly used

to characterize biological phenomena. The manifestation
of complex systems behavior is evident in the high degree
and complexity of variability in the time series of inter-beat
intervals (that is. interval between successive R-peaks),
called heart rate variability (HRV), or interbreath intervals
(that is interval between successive breaths (IBIs)), called
respiratory rate variability (RRV). Numerous methods have
been developed to characterize variability mathematically.
These methods have been applied in diverse clinical studies,
demonstrating that healthy biological systems possess
innate and highly complex patterns of variability, and
illness is associated with altered variability and reduced
complexity [17-20]. A decrease in variability is indicative
of reduced adaptability, reflects a ‘stressed’ system [21,22],
and has been described as a marker of outcome in mul-
tiple pathological states, for example sepsis [22]. We
and others have hypothesized that cardiorespiratory
variability might be used as a marker of the ability of
the cardiopulmonary system to tolerate the increased
workload associated with both an SBT, and subsequently,
extubation. In several single-center studies, both HRV
[23] and RRV [24,25] during SBTs have been shown to be
associated with failed SBTs or extubation failure; however,
the added predictive value of variability measures over
and above existing methods has not yet been evaluated.
The two goals of our study were: (1) to compare vari-

ability in patients who passed and failed extubation using
a wide array of HRV and RRV measures, and (2) to inves-
tigate the added value of HRV and RRV in the prediction
of extubation outcomes, both individually and in combin-
ation, as compared to commonly used clinical variables,
namely heart rate (HR), respiratory rate (RR), tidal volume
(TV), and RSBI.

Methods
The weaning and variability evaluation (WAVE) research
study was a prospective, blinded observational multicenter
cohort study conducted in 12 centers. Research ethics
boards at each site waived consent for enrolment in this
strictly observational study (Ottawa - Ottawa Health Sci-
ence Network Research Ethics Board (OHSN-REB)). The
study was powered based on preliminary data from a
single-center pilot (n = 60), to estimate the fold increase of
extubation failure (respect to average failure rate - that is
12% in this population) within a margin of error of 10% or
less with two-sided α = 0.05.
Patients were considered for enrolment when an SBT

was planned in anticipation of extubation. Inclusion cri-
teria were: invasive mechanical ventilation for >48 hours,
at least partial reversal of the condition precipitating
mechanical ventilation, stabilization of other organ systems,
toleration of pressure support ventilation ≤14 cm H2O
(oxygen saturation (SpO2) ≥90% with fraction of inspired
oxygen (FiO2) ≤40% and positive end-expiratory pressure
(PEEP) ≤10 cm H2O), hemodynamic stability (low - phenyl-
ephrine <50 ug/min; norepinephrine <5 ug/min; dobuta-
mine <5 ug/kg/min; milrinone <0.4 ug/kg/min - or no
vasopressors), stable neurological status (no deterioration
in Glasgow coma score during prior 24 hours and, if mea-
sured, intracranial pressure (ICP) <20 mmHg), and intact
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airway reflexes (cough and gag). Exclusion criteria were:
order not to reintubate should the patient fail extubation,
anticipated withdrawal of life support, known or suspected
severe weakness (myopathy, neuropathy or quadriplegia),
tracheostomy, atrial fibrillation, and prior extubation during
ICU stay.

Case report forms (CRF)
Research teams at each site screened daily to identify
study participants, and completed clinical case report
forms (CRFs). Respiratory therapists (RTs) performed
the SBTs and completed the SBT and Extubation CRFs.
The SBT CRF (one per SBT) included ventilator settings
(pressure support, PEEP prior to and during the SBT,
FiO2, average TV, and minute ventilation), RR, HR, blood
pressure, SpO2 and RSBI at the 2 minutes, 15 minutes,
30 minutes, and end time of the SBT. The Clinical CRF
(one per patient) included patient demographics, ICU
admission diagnosis, comorbidities, acute physiology and
chronic health evaluation II (APACHE II) on the day of
admission, date and time of extubation, survival status
30 days after ICU admission, need for tracheostomy, and
the need and etiology for reintubation (along with reintu-
bation date and time). Immediately prior to extubation
and following a decision to extubate, research personnel
completed an Extubation CRF. This form recorded the
treating team’s clinical perception of risk of extubation
failure (high >15%, average 5 to 15%, low <5%), as well as
factors assessed in considering the patient’s readiness for
extubation. Failed extubation was defined as reintubation
within 48 hours of extubation.

Signal acquisition and processing
RTs attached CO2 modules to the bedside monitor
and affixed CO2 tubing to the ventilator circuit at least
30 minutes prior to SBT. Waveform data collection
included electrocardiogram (ECG) lead II and CO2 data
from 30 minutes prior to the SBT until 30 minutes follow-
ing its conclusion (encompassing the entire SBT).
R-peak to R-peak interval (RRI) time series were

extracted from the ECG waveform using a well-known
R-peak detection algorithm [26]. Ectopic beats were
excluded using beat annotations as well as a threshold-
based detection algorithm [27]. Similarly, the time interval
between two successive breaths, that is IBI time series,
was extracted from CO2 waveforms (125 Hz) through
standard zero-crossing detection.

Waveform quality and variability analyses
Using Continuous Individualized Multiorgan Variability
Analysis (CIMVA™) software, a set of 97 measures of
HRV and 82 measures of RRV (listed in the electronic
supplement [28]) was calculated and tracked over time
through a windowed analysis of data collected before
and during the SBT prior to extubation (that is the last
SBT). This analysis consisted of (1) taking a window of
the RRI/IBI data (5 minutes for HRV and 15 minutes for
RRV), (2) computing all variability measures for the given
window, and (3) repeating the computation on successive
windows with a step size of 2.5 minutes for both HRV and
RRV. Waveform quality was assessed in an automated
fashion for each window; briefly, the quality filtering was
based on the morphology of the ECG/CO2 waveforms, the
level of noise/artefacts and the proportion of discon-
nected/saturated periods [29,30]; this information was
used to exclude patients without high-quality ECG/CO2

and RRI/IBI data (see Figure 1 for exclusions due to poor
data quality). The outcome of the variability analysis was
summarized over two intervals (30 minutes immediately
prior to SBT start and the first 30 minutes of the SBT), by
computing the median of each variability time series
within these intervals (excluding windows that contained
the SBT start time). The change in variability (defined as
the median variability during the SBT minus the median
variability prior to the SBT (that is delta = during to pre),
was also computed.

Statistical analysis
In addition to the HRV and RRV measures, study subjects
were compared for gender, age, APACHE II score, ICU
admission diagnosis, comorbidities and clinician-perceived
risk of extubation failure. The chi-square test was used to
compare patient proportions, and the Wilcoxon rank-sum
test to compare medians, which were reported with 95%
confidence intervals (CIs). The robust false discovery rate
[31] was used for multiple comparison correction (fixing
the rate of false positives to 5%).

Predictive modelling
Because of its simplicity and robustness [32], we utilized
an ensemble averaging of univariate logistic regressions.
A univariate logistic regression is a model that takes as
input a single measure of variability, and provides as
output the risk of failing extubation as a number between
0 and 1. The ensemble averaging consists of taking mul-
tiple univariate logistic regressions and averaging their
outputs, so as to get a more robust estimate of the risk.
The output of our predictive model is called the WAVE
score and it represents an estimate of the probability of
extubation failure, with values closer to zero indicating
lower probability and values closer to one indicating
higher probability. The selection of the variables to be
included in the model and the unbiased estimation of its
performance required the division of the dataset in three
sets - training (creation of decision thresholds), validation
(for identification of the best performing set of variables)
and test (for unbiased performance estimation), with the
use of two validation loops (repeated random subsampling),



Figure 1 Flow diagram of selection of patients. Beside standard exclusions due to protocol and technical violations, the diagram shows how
the dataset was reduced to ensure proper variability computation. In particular, patients were excluded when (1) having less than two windows
of both heart rate and respiratory rate variability to analyze prior and during the spontaneous breathing trial, and (2) variability was extracted
from waveforms deemed to be poor quality.
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to ensure robustness of the results [33]. The identification
of the best performing variables (that is feature selection)
was based on a greedy optimization on the validation set.
In particular, we kept those variables maximizing the sum
of two specific measures: the area under the receiver oper-
ating characteristic (ROC AUC - used to select measures
with high sensitivity and specificity), and the positive pre-
dictive value (PPV - used to maximize predictive accuracy
of failed extubation). The greedy optimization started from
the single univariate logistic regression showing the highest
(ROC AUC+ PPV) on the validation set. Then, we added
to the model, one by one, the univariate logistic regression
improving the performance on the validation set, until five
variables were selected. We imposed to use five variables
following the rule of thumb that log(n) variables should be
used with a dataset of n samples. Ideally, we should have
run a cross-validation loop to optimize the number of var-
iables, however, that was not suitable because of the low
number of patients who failed extubation. The model was
then evaluated on the test data for unbiased estimation of
its performance. The described process was repeated 500
times to yield a robust estimate of the average perform-
ance of the predictive model. Please see Additional file 1
for additional information.
Subsequently, we trained the ensemble average of uni-

variate logistic regressions on all the data and evaluated
how it performed on subgroups of patients. Although the
results of the model on the same data used to create it
(that is training-set results) are biased, they enable the
comparison of the performance across subgroups. In par-
ticular, we characterized the risk/fold increase in risk of
failing extubation in four subgroups: low vs. high RSBI
(threshold of 105 breaths/min/L, consistent with prior
studies [11,34]), and low or average vs. high clinician-
perceived risk of failure.

Results
We enrolled 721 patients, 60 patients between November
2007 and April 2009 in a run-in pilot, and the remaining
661 between November 2009 and December 2012. See
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Figure 1 for a flow diagram of the patient selection
process. After exclusions, 434 subjects remained (51
(approximately 12%) failed and 383 passed). These 434
subjects constituted the cohort undergoing CIMVA
analysis. The ‘failed’ and ‘passed’ included and excluded
populations were similar, other than the proportion of
patients assessed as having low/average/high risk of
failing extubation and the values of RSBI and RR at
30 minutes during the SBT (Table 1).
None of the variability measures computed prior to

the SBT, nor the difference between variability measures
during and prior the SBT, were found to be statistically
significant, when adjusted for multiple comparisons
using a false discovery rate of 5%. Only the variability
measures calculated during the SBT were found signifi-
cantly associated with extubation failure. As a result, only
during SBT variability measures were considered in the
subsequent predictive model analysis. Ten measures of
variability (two HRV and eight RRV) during the SBT were
statistically significant (P <0.0041 - threshold with 5% false
positives), as summarized in Table 2. A visual representa-
tion of the distributions for RR, RSBI and the measure of
variability with the lowest P value (that is RRV recurrence
quantification analysis: maximal diagonal line) is provided
in Figure 2. Despite the low P values associated with
univariate comparisons, the distributions manifest sub-
stantial overlap between the passed and failed categories,
highlighting the need for a multivariate predictive model.
The comparison of WAVE score (unbiased test set per-

formance results) with logistic regression models based on
clinical parameters commonly used to predict extubation
outcome is reported in Table 3, showing that RRV vari-
ables achieved the highest ROC AUC, demonstrating
improved sensitivity (+25%), without substantial changes in
PPV (identical) or negative predictive value (NPV) (+3%).
We further characterized the WAVE score by assessing

its training-set performances (1) in the whole population
stratified in quartiles, and (2) in association with RSBI
and clinical impression of perceived extubation risk,
using a decision threshold of 0.5 on the WAVE score.
The risk of failure was defined as the number of patients
who failed divided by the total number of patients in a
given group. The fold increase in risk is the risk divided
by the average risk of failure of the dataset (approximately
12%). The training set performances on the entire dataset
(that is no data left in the test set) stratified in quartiles
are shown in Figure 3, where we see that for higher
WAVE scores there is a corresponding higher risk of
failing extubation. Similarly using a binary cutoff, we
found a fold increase in risk for WAVE score above 0.5
of 1.59 (95% CI: 1.16, 2.02). In Figure 4, we observed
that the higher the RSBI, or the clinician-perceived risk of
failure, the stronger the ability of the model to identify
extubation failure. In particular, the fold increase in risk
for WAVE score above 0.5 moved from 1.5 (CI: 1.05, 2.04)
for patients with RSBI <105 to 3.00 (CI: 1.21, 5.24) for
patients with RSBI >105. Similarly, the risk increased
from 1.21 (CI: 0.77, 1.78) for patients with a low/average
perceived risk of failure to 3.54 (CI: 1.88, 5.38) for those
having a high perceived risk of failure. We performed the
same comparison on the ROC AUCs. The ROC AUC of
the WAVE score on the entire dataset was 0.72. For the
subgroups we achieved instead (in order): 0.67 for patients
with low/average perceived risk of failure, 0.69 for those
with low RSBI, 0.82 for patients with high perceived
risk of failure, 0.87 for those with high RSBI (P <0.01
and P = 0.09, respectively).

Discussion
This multicenter observational study demonstrates that
in a broadly heterogeneous population of critically ill
patients requiring mechanical ventilation, both HRV and
RRV during the last SBT prior to extubation are associ-
ated with subsequent extubation failure. Two measures of
HRV and eight measures of RRV recorded during the last
SBT prior to extubation showed statistically significant
differences with respect to extubation outcome, and to a
greater degree than HR, RR or RSBI.
Using a machine learning analysis with randomized

repeated subsampling and cross-validation, the average
predictive capacity of RRV during the last SBT was
superior to all other measures. The use of several mea-
sures of RRV to derive the WAVE score showed a higher
ROC AUC, outperforming RR, HR and RSBI. Standard
choices for the parameters of the repeated random
subsampling validation (80% training, 10% validation,
10% test) [33] and the decision threshold to compute
sensitivity, specificity, negative/positive predictive value
(threshold = 0.5) were chosen to reduce bias. The training-
set performances of the WAVE score were used to evaluate
subgroup performances to get a sense of the way the model
might be used clinically. The ROC AUC was 0.87 and 0.82
in the high-risk patients, based on RSBI >105 and high
perceived risk of extubation failure, respectively. In con-
trast to the average unbiased model performance, these
performances are biased because they are tested on the
entire dataset from which the WAVE score was derived
(that is trained and validated). Taken together, the results
demonstrate that RRV during the last SBT outperforms
any other measure(s) to predict extubation outcomes, and
the subgroup analyses highlight the potential utility
and complementarity of the WAVE model for extubation
decision making.
The study was inclusive of a highly heterogeneous

group of patients (including a wide variation in age, ICU
admission diagnosis and comorbidities) in an observa-
tional study with absence of strict protocolization of
SBT performance (for example type, pressure support



Table 1 Patient demographics

Passed extubation Failed extubation P value*

(N = 383)^ (N = 51)^

Gender:

Males, n (%) 186 (48.6) 29 (56.7) 0.27

Females, n (%) 191 (49.9) 21 (41.2) 0.24

Age (95% CI) 63 (61, 64) 65 (58, 69) 0.86

APACHE II score (95% CI) 19 (19, 20) 20 (18, 23) 0.21

Level of sedationx (95% CI) 0 (0, 0) 0 (−1, 0) 0.78

ICU admission diagnoses

Cardiovascular, n (%) 112 (25.4) 12 (20.0) 0.40

Respiratory, n (%) 87 (19.7) 18 (30.0) 0.05

Infections, n (%) 62 (14.1) 10 (16.7) 0.54

Gastrointestinal, n (%) 34 (7.7) 3 (5.0) -

Surgery, n (%) 33 (7.5) 3 (5.0) -

Head, n (%) 36 (8.2) 1 (1.7) -

Renal, n (%) 18 (4.1) 2 (3.3) -

Trauma, n (%) 8 (1.8) 1 (1.7) -

Overdose, n (%) 9 (2.0) 1 (1.7) -

Pancreatitis, n (%) 3 (0.7) 1 (1.7) -

Hepatobiliar, n (%) 5 (1.1) 0 (0.0) -

Other, n (%) 34 (7.7) 8 (13.3) 0.12

Comorbidities+:

None, n (%) 237 (61.9) 28 (54.9) 0.34

Lung, n (%) 90 (23.5) 15 (29.4) 0.35

Heart, n (%) 81 (21.1) 13 (25.5) 0.48

Both, n (%) 25 (6.5) 5 (9.8) 0.39

Ventilation settings pre-SBT:

PEEP (95% CI) (cm H2O) 10 (8 10) 8 (8 10) 0.90

PS (95% CI) (cm H2O) 10 (10 10) 10 (10 10) 0.14

FiO2, (95% CI) 30 (30 30) 30 (30 30) 0.04

Ventilation settings during SBT:

PEEP (95% CI) (cm H2O) 5 (5 5) 5 (5 5) 0.46

PS (95% CI) (cm H2O) 5 (5 5) 5 (5 5) 0.01

FiO2, (95% CI) 30 (30 30) 30 (30 30) 0.11

Perceived risk of failure:

N/A, n (%) 53 (13.8) 7 (13.7) 0.98

Low, n (%) 117 (30.5) 6 (11.7) 0.005

Average, n (%) 180 (47.0) 26 (51.1) 0.59

High, n (%) 33 (8.7) 12 (23.5) 0.001

Respiratory rate: [breaths/min]

Pre-SBT (95% CI) 16.0 (16.0, 18.0) 18.0 (15.0, 22.0) 0.09

During SBT (95% CI) 18.4 (17.9, 19.0) 21.7 (18.7, 25.0) 0.005

Seely et al. Critical Care 2014, 18:R65 Page 6 of 12
http://ccforum.com/content/18/2/R65



Table 1 Patient demographics (Continued)

RSBI: [breaths/min/L]

Pre-SBT (95% CI) 34.1 (31.8, 36.4) 40.0 (32.5, 50.0) 0.16

During SBT (95% CI) 42.7 (39.3, 45.6) 46.6 (40.0, 67.5) 0.005

Low, average and high-risk categories were based on clinical impression. ^There is a maximum amount of 2% of missing values in each category, due to clinical
data not recorded (for example males and females in the failed population add up to 50, instead of 51); *comparison between passed and failed using Wilcoxon
rank-sum test to compare the medians, or chi-square test to compare the proportions (no P value was provided for those variables with less than five samples);
xcomputed through Richmond agitation-sedation scale (RASS) score; +heart comorbidities are coronary artery bypass graft, dilated cardiomyopathy, congestive
heart failure, and coronary artery disease; lung comorbidities are pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), asthma; ‘None’ corresponds
to no lung or heart comorbidities. APACHE II, acute physiology and chronic health evaluation II; ICU, intensive care unit; SBT, spontaneous breathing trial; PEEP,
positive end-expiratory pressure; PS, pressure support; FiO2, fraction of inspired oxygen.
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levels, duration) or extubation decision making; thus, the
variation in patients and practice may have diluted the
observed signal.
As extubation is associated with an increase in work of

breathing [35], and extubation failure is commonly due to
the inability of the cardiorespiratory system to tolerate this
increased workload, it is not surprising that the commonly
utilized quantitative tests for predicting failed extubation
[12] (for example RSBI) are markers of inability of the
cardiorespiratory system to respond to an increased
workload. We hypothesized that variability monitoring
would improve the ability to detect stress and inability
to tolerate the increased workload of breathing associated
with an SBT, and subsequently, extubation. Our findings
support this hypothesis, and are consistent with prior
studies that have demonstrated that HRV and RRV
help to predict SBT or extubation outcomes. In 2001,
El-Khatib et al. showed that during the SBT, 13 patients
who failed extubation (defined as reintubation within
24 hours) had lower complexity than 39 patients who
were successfully extubated [36]. In 2003 Shen et al.
[23] showed that spectral measures of HRV were reduced
in 12 patients who failed the weaning trial (either failing
Table 2 Statistically significant comparisons of during sponta

Variability domain Measure name

Statistical HRV Mean of the differences

Geometric RRV Recurrence quantification analysis: average
diagonal line

RRV Recurrence quantification analysis: maximum
diagonal line

RRV Recurrence quantification analysis: maximum
vertical line

RRV Recurrence quantification analysis: trapping time

Informational RRV Fano factor distance from a Poisson distribution

Energetic RRV Hjorth parameters: activity

Invariant HRV Power Law (based on frequency) x intercept

RRV Largest Lyapunov exponent

RRV Power Law (based on histogram) y intercept

For specific details about each measure, refer to [28]. HRV, heart rate variability; RRV
extubation or not being ready for extubation). Bien et al.
[24] showed in 78 postoperative patients (57 passed
weaning, 21 failed) that four measures of RRV, along with
RR and RSBI, exhibited significant differences between
the two groups. Work by Wysocki et al. in 2006 [25]
confirmed the results of Bien in 46 ICU patients (32
passed and 14 failed). Papaioannou et al. [37] published
a study on 42 postoperative patients (24 passed wean-
ing, 18 failed), showing that a set of nonlinear measures
of HRV and RRV provided added value to a predictive
model based on RSBI.
The understanding of altered respiratory rate dynamics

in association with extubation failure remains an area of
active investigation. Of note, the recurrence quantification
analysis (RQA) of RRV emerged as highly significantly as-
sociated with extubation failure (Table 1). The recurrence
plot is a technique that projects a time series (in this case
the IBI time series) in a higher dimensional space, called
phase space. In that space, the pairwise Euclidean distance
between all points is computed, creating a matrix where
each row and each column is a point in the phase space,
and each element of the matrix is the respective distance.
When this distance is smaller than a given threshold,
neous breathing trial (SBT) variability

Passed (n = 383) Failed (n = 51) P value

1.4 10−6 (−9.4 10−7, 3.7 10−6) −8.4 10−6 (−1.5 10−5, −1.9 10−6) 0.00278

0.0057 (0.0054, 0.0060) 0.0044 (0.0038, 0.0053) 0.00011

0.021 (0.020, 0.022) 0.016 (0.015, 0.018) 0.00004

0.017 (0.016, 0.018) 0.012 (0.011, 0.014) 0.00017

0.0048 (0.0046, 0.0050) 0.0038 (0.0030, 0.0042) 0.00009

−0.12 (−0.12, −0.11) −0.15 (−0.17, −0.12) 0.00166

11.1 (10.4, 11.8) 7.8 (6.0, 10.7) 0.00406

15.8 (14.8, 17.3) 10.0 (4.5, 13.9) 0.00255

1.02 (1.00, 1.02) 1.07 (1.03, 1.14) 0.00151

−2.17 (−2.21, −2.10) −2.35 (−2.59, −2.15) 0.00259

, respiratory rate variability.



Figure 2 Distributions of respiratory rate (RR), rapid shallow breathing index (RSBI) and variability. This figure shows the distribution of
values for passed and failed of three different measures (from the left: respiratory rate, rapid shallow breathing index, and respiratory rate variability
recurrence quantification analysis: maximal diagonal line). Each grey circle represents a subject. The black box with a white line in between represents
the median with its 95% confidence interval.
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that is two points are close in the phase space, a ‘recur-
rence’ occurs. RQA consists in the study of the number
and types of recurrences that appear in a recurrence
plot. Failed extubation appeared to show slightly higher
degree of chaotic dynamics, given by the shorter length
of diagonal and vertical lines, as compared to passed
extubation. This result is supported by an increase in
the largest Lyapunov exponent, a measure of chaoticity
of a system. These findings are in keeping with shorter
RQA diagonal lines demonstrated during 39 failed SBTs
compared to 92 successful SBTs (albeit with no study of
extubation) [38]. For more details on these measures,
refer to [17].
Given that prior studies utilized visual inspection of

waveform data to ensure adequate waveform quality, an
important strength of this study was the use of automated
quality filters. No visual inspection or hand-selected meth-
odology was utilized to choose waveforms or patients
for variability analyses. It is well known that artifact,
ectopy and nonstationarity can dramatically alter vari-
ability measures [39]. Our quality filters were developed
based on published ECG-quality algorithms [29,40], as
well as proprietary capnography-quality filters trained
with separate datasets. We verified a posteriori that the
predictive performance of the model described in this
Table 3 Prognostic accuracy comparison

Model ROC AUC S

Single logistic regression: heart rate 0.51

Single logistic regression: RSBI 0.61

Single logistic regression: respiratory rate 0.63

Ensemble of three univariate logistic regressions: 0.62

Heart rate, respiratory rate, RSBI

WAVE score 0.69

*Positive test for probability of failure equal or above 0.5. ROC AUC, area under the
negative predictive value; NRI, net reclassification improvement; RSBI, rapid shallow
study was significantly lower when including poor quality
waveform data.
There are several important limitations to this study,

the most significant being its observational derivational
design. As such, there was no strict protocolization regard-
ing the way SBTs were performed, nor regarding decisions
about extubation. This was a pragmatic observation of a
heterogeneous group of patients being considered for extu-
bation. The majority of patients (75.4%) had a ventilator
setting of 5 cm H2O pressure support and 5 cm H2O PEEP
during the SBT, which may diminish the variability signal
(compared to T-piece SBT), reducing specificity [41] and
dampening the observed signal within this study. By limit-
ing our analysis to the last SBT preceding extubation, we
have utilized the information available to clinicians making
the decision to extubate; however there may be information
utilized by physicians in following SBT results from day to
day, which were not captured in this study. Just over half of
all patients were enrolled in a single center, limiting exter-
nal generalizability; although no significant differences were
observed in SBT ventilator settings or model performance
of the single site (ROC AUC 0.72) compared to all others
(ROC AUC 0.74), a more even distribution of enrolment in
a validation cohort is required. A large number of patients
were excluded from the analyses, highlighting the challenge
ensitivity* Specificity* PPV* NPV* NRI*

0.5 0.55 0.11 0.87 0.22

0.5 0.72 0.18 0.91 0.04

0.5 0.66 0.17 0.91 0.04

0.5 0.69 0.17 0.90 0.07

0.75 0.59 0.18 0.94 -

receiver operating characteristic curve; PPV, positive predictive value; NPV,
breathing index; WAVE, weaning and variability evaluation.



Figure 3 Weaning and variability evaluation (WAVE) score
quartile. This figure shows the risk/fold increase in risk of failing
extubation associated with each quartile of the population. The risk
is defined as the number of patients who failed divided by the total
number of patients in a given quartile. The fold increase in risk is the
risk divided by the average risk of failure of the dataset (approximately
12%). The total number of patients is 434, therefore each quartile is
representative of 108 patients.
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in obtaining waveform data, and the potential for a patient
to deviate from expected planned extubation. The exclu-
sions appeared random, occurred throughout the study,
and equally from all sites; we did not detect any systematic
pattern to the exclusions, either technical or protocol viola-
tions, or poor waveform quality. Lastly, although to create
the WAVE score we made multiple choices to maximize
its generalizability - such as using an ensemble of logistic
regressions rather a single multivariate, using stratified
cross-validation, choosing a nonoptimized number of fea-
tures (that is five measures of variability), and using the
generic decision threshold of 0.5 - there is no guarantee
that we did not overfit the predictive model to our popula-
tion, particularly because of the small number of patients
who failed extubation. External validation of the WAVE
score is required.
The question of the incremental value of the WAVE

score is critically important and complex. Clinical experi-
ence and the data shown in this manuscript highlight that
extubation outcome prediction is difficult, and no test in
isolation is capable of determining extubation outcomes.
It is a fully integrated assessment made by ICU clinicians
that determines the optimal timing of extubation, based
on the assessment of SBT performance, clinical trajectory,
comorbidities that affect the risk of harm of extubation
failure, patient/family wishes/goals of care and other
potential factors. No clinician evaluates a single score
to make this complex decision, and the WAVE score is
not intended to be used in isolation as a determinant of
extubation outcomes. Nonetheless, we believe, that the
WAVE score, when used in conjunction with existing
measures (for example RSBI) provides optimal prediction
of extubation outcomes that will be beneficial to the
decision-making process. For example, the 75% sensi-
tivity of the WAVE score model is higher than the 50%
sensitivity of RSBI that we observed in our study. The
augmented ROC AUC in high-risk patients suggest the
complementary utility of avoiding unnecessary delays in
extubation when the WAVE score is less than 0.5 or
considering alternatives to extubation if the WAVE score
is greater than 0.5 in patients deemed high risk based on
traditional measures. The patients conventionally identi-
fied as high risk may well be the ones who benefit most
from the additional WAVE test. In general, we showed
that the WAVE score can stratify patients in multiple cat-
egories of risk (Figure 4), thereby providing clinicians with
a more representative picture of the status of a patient.
The ultimate aim of this research program is to introduce
extubation clinical decision support immediately following
SBT completion. We anticipate that combining (1) a stan-
dardized method of performing and assessing an SBT,
(2) conventional predictive measures, and (3) a novel
score like WAVE, will optimally assist the clinician in
the decision to extubate. Following a validation study,
the true incremental value of this approach would be
assessable in a randomized controlled trial.

Conclusions
The determination of optimal timing for extubation of
critically ill patients remains an integrated clinical evalu-
ation and assessment made by a clinician at the bedside,
with the full understanding of that patient’s goals of care,
past medical history, etiology of respiratory failure, clinical
course in the ICU, as well as their performance on their
last SBT prior to extubation. In the largest multicenter
study to evaluate the potential and added value of variabil-
ity in assisting with assessing extubation readiness, we
have found that altered HRV and RRV during the last SBT
prior to extubation are significantly associated with extu-
bation failure, and a predictive model derived from RRV
during SBT provides added prognostic accuracy in pre-
dicting extubation failure when compared to physiological
variables used in clinical practice, particularly in high-risk
patients. This model requires validation in an independent
cohort to verify its generalizability, and a randomized trial
to assess its clinical utility.

Key messages

� No single measure drawn from SBT performance is
capable of accurately predicting extubation outcomes;
extubation outcome prediction is challenging.

� Altered HRV and RRV during the last SBT prior to
extubation are associated with subsequent
extubation failure.



Figure 4 Weaning and variability evaluation (WAVE) score, rapid shallow breathing index (RBSI) and clinical impression. These figures
show how the risk/fold increase in risk of failing extubation associated with positive WAVE score (that is above 0.5) increases with increasing RSBI
during SBT (above), or the clinical impression of the physician at the end of the SBT (below). The risk is defined as the number of patients who
failed divided by the total number of patients in a given group (for example, above 0.5). The fold increase in risk is the risk divided by the
average risk of failure of the dataset (approximately 12%). There are 396 patients with low RSBI (45 failed, 351 passed), and 26 patients with high
RSBI (6 failed, 20 passed), while 12 passed had no RSBI reported. There is no statistically significant difference between the number of failed and
passed that had no RSBI reported (P value = 0.2, chi-squared test for proportions). There are 330 patients with low/average risk of failure (32 failed,
298 passed), and 45 with high risk of failure (12 failed, 33 passed), while 7 failed and 52 passed have no perceived risk of failure reported. There is
no statistically significant difference between the number of failed and passed that had no perceived risk of failure reported (P value = 0.98,
chi-squared test for proportions).
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� A multivariate predictive model based on RRV
during the last SBT offers improved predictive
accuracy of extubation outcomes compared to
physiological variables commonly used in clinical
practice, particularly in patients deemed high risk of
failure based on traditional measures.

� A multicenter validation study is merited and
necessary to evaluate the accuracy of the derived
predictive model.
Consent
Written informed consent was obtained from the patients
for the publication of this report and any accompanying
images.
Additional file

Additional file 1: This file describes in great detail how the
predictive model was developed and how unbiased performance
was estimated.
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