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Treatment with echinocandins during continuous
renal replacement therapy
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Abstract

Echinocandins are indicated as first-line treatment for
invasive candidiasis in moderate to severe illness.
As sepsis is the main cause of acute kidney injury,
the combination of echinocandin treatment and
continuous renal replacement therapy (CRRT) is
common. Optimizing antibiotic dosage in critically
ill patients receiving CRRT is challenging. The
pharmacokinetics of echinocandins have been studied
under various clinical conditions; however, data for CRRT
patients are scarce. Classically, drugs like echinocandins
with high protein binding and predominantly non-renal
elimination are not removed by CRRT, indicating that no
dosage adjustment is required. However, recent studies
report different proportions of echinocandins lost by
filter adsorption. Nevertheless, the clinical significance
of these findings remains unclear.
taneously [24,25]. Antimicrobial pharmacokinetics are af-
Review
Introduction
Echinocandins are the first systemic antifungal agents that
selectively target the fungal cell [1]. Three echinocandins
are currently available: caspofungin, anidulafungin, and
micafungin [2]. Echinocandins are cyclic hexapeptides
with N-linked acyl lipid side chains. These lipophilic side
chains predominantly differentiate the three echinocan-
dins, resulting in variations in solubility, microbiological
potency, and pharmacokinetic disposition [3-5]. Echino-
candins are indicated as first-line antifungal treatment for
invasive candidiasis in patients with moderately severe to
severe illness [6].
The mechanism of action of the echinocandins is the

non-competitive inhibition of β-(1,3)-D-glucan synthase
[7], an essential component of many fungal cell walls,
leading to osmotic instability and cell death [5,8].
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Echinocandins exhibit fungistatic activity against Aspergillus
species and concentration-dependent fungicidal activity
against Candida species with a prolonged post-antifungal
effect [9-11]. Acquired resistance to the echinocandins
remains sporadic [12]. Both maximum concentration/mini-
mum inhibitory concentration (Cmax/MIC) and AUC0-24/
MIC (area under the curve over 24-hour dosing interval/
MIC) have been associated with efficacy [13-15]. All echi-
nocandins are highly protein-bound and have a low to
moderate volume of distribution and very low excretion as
unchanged drug in the urine [14,16]. Echinocandins have
an excellent safety profile and low potential for pharmaco-
logical interactions [17,18].
Acute renal failure is a common complication of critical

illness and carries a high mortality [19,20]. It affects up to
20% of critically ill patients with severe sepsis or septic
shock [21-23]. These patients usually receive continuous
renal replacement therapy (CRRT) and antibiotics simul-

fected by CRRT and may be altered by acute renal failure
and critical illness [26]. Several factors should be consid-
ered in antibiotic prescription under CRRT: pharmacokin-
etics, causative microorganism, MIC, renal replacement
therapy mode, membrane and surface area, sieving coeffi-
cient, effluent and dialysate rates, and others. Only the un-
bound fraction of a drug is available for filtration, and
drugs with high protein binding are largely unaffected by
CRRT. The degree of protein binding is the most import-
ant factor influencing whether a drug needs dose adjust-
ment during CRRT. Drugs that are more than 90% bound
to plasma proteins are unlikely to be removed by
hemodialysis and hemofiltration [27-31], but the adsorp-
tion on the membrane in the filter could result in a signifi-
cant clearance [32-35].
Drug adsorption clearance in continuous renal
replacement therapy
Adsorption of antibiotics onto CRRT filters may result
in drug elimination [36-44]. Most research on adsorp-
tion to CRRT filters has focused on the cytokines
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[45-52]. Few studies have investigated the adsorption of
antibiotics onto CRRT filters, so the clinical importance
of this phenomenon is unknown and is not taken into
account in drug guidelines [27,30,31,53,54] or in clinical
pharmacokinetic/pharmacodynamic (pK/pD) studies [55].
Adsorptive clearances depend on the selective or non-

selective binding of molecules to the filter membrane.
The adsorptive capacity for low-molecular-weight
plasma proteins varies among different hemofilter mem-
brane materials [35,56,57]. Adsorptive clearances for
middle molecules are time-dependent, with maximum
values occurring in the first few hours of therapy [58].
Adsorption onto filters is a saturable process that varies
according to the timing of the filter changes, so that ad-
sorption immediately after a filter change will be greater
than 48 hours after a filter change. Thus, measuring
drug concentrations close to the time of a filter change
may alter estimates of clearance and should be avoided.
If adsorption is reversible when circulating drug concen-
trations fall, the maximum adsorption during CRRT will
be underestimated.

Effect of membrane characteristics
The membranes used in CRRT are high-flux synthetic
membranes, mainly made of polysulfone, polyamide,
polyacrylonitrile (PAN), or polymethyl methacrylate.
These membranes can be asymmetric or symmetric, and
their thickness ranges from 40 to 100 μm. Hemofilter
membranes made of PAN or polymethyl methacrylate
are symmetric in structure, whereas those made from
polysulfone or polyamide are asymmetric [59,60]. All
these synthetic membranes are hydrophobic, and their
pores allow passage of molecules ranging from 10 to
30,000 daltons. This pore size allows a high rate of
ultrafiltration under relatively small pressures. These
membranes have high sieving coefficient/saturation coef-
ficients (Sc/Sd) for solutes in a wide range of molecular
weights (0 to 20,000 daltons), and this further contrib-
utes to high drug and metabolite clearance [59,61].
Another aspect that influences adsorption is the mem-
brane’s electrical charge [57]. Whereas polysulfone and
polyamine hemofilters have no net charge, PAN filters
have a negative charge. This last characteristic of hemo-
filters may influence adsorption and retention of drugs
to negatively charged hemodialyzer membranes [62,63].
Moreover, if adsorption is due to ion interaction be-
tween the antibiotic and hemofilter, pH can affect drug
adsorption to some filter membranes; for example, ami-
noglycosides and levofloxacin are significantly adsorbed
by PAN membranes [38-40]. The extent of drug adsorp-
tion also depends on hemofilter surface area. It is rea-
sonable to think that increasing surface area will
increase the amount of drug adsorbed and may also in-
crease the time to maximum adsorption. Adsorption to
hemofilters varies with the materials used in their mem-
branes. Different hollow fibers have different adsorptive
capacities. Some filter membranes, such as those made
from the commonly used PAN, may adsorb a substantial
amount of drug to their surface compared with poly-
amine filter membranes [37,64].

Effect of albumin on drug adsorption
Antibiotics vary largely in protein binding [65,66]. While
aminoglycosides bind poorly to proteins, the percentage
of echinocandins bound to proteins in serum exceeds
90%. The binding capacity of albumin is decreased not
only in chronic kidney disease but also in acute renal
failure. Other unknown factors include the effect of in-
creased volume of distribution because of edema in
critically ill patients and the possible impact of albumin
concentration and protein binding on adsorption.

Effect of continuous renal replacement therapy
mode and flows
Transmembrane pressure may be an important deter-
minant of adsorption. Membrane pores are structured
like ‘water channels’. When the transmembrane pressure
increases, the channels may open, resulting in an in-
crease in the number of potential adsorptive sites
[67,68]. Finally, the effects on adsorption of possible in-
teractions between drugs and acute-phase proteins such
as α1-acid glycoprotein, cytokines, and complement fac-
tors are unknown.

Studies on echinocandins and continuous renal
replacement therapy
Caspofungin
Weiler and colleagues [42] have recently investigated
the influence of continuous venovenous hemofiltration
(CVVHF) and continuous venovenous hemodialysis
(CVVHD) on the pharmacokinetics of caspofungin in
critically ill patients in order to assess the appropriate-
ness of standard dosage during CRRT (Table 1). The ef-
fects of CVVHD and CVVHF on caspofungin clearance,
in order to detect an eventual adsorption, were assessed
by determination of Sc, Sd, and the difference between
caspofungin concentrations in the hemofilter/dialyzer in-
let and outlet (Cin −Cout). CRRT was performed with
polysulfone hemofilters (0.71 m2 for CVVHF and 1.8 m2

for CVVHD). Sampling was performed on day 1 of cas-
pofungin treatment (single dose) and at steady state on
day 4 or later. Blood samples were drawn from an arter-
ial line at 1, 2, 4, 8, 12, and 24 hours after the start of
caspofungin infusion. For patients on CRRT, ultrafil-
trate/dialysate samples were taken simultaneously. In
addition, blood samples from the Cin − Cout were col-
lected at 1 and 24 hours. Caspofungin was quantified
in plasma samples by a liquid chromatography/mass



Table 1 Comparison of pharmacokinetic parameters of echinocandins in patients receiving and not receiving
continuous renal replacement therapy

Pharmacokinetic parameter

Cmax, μg/mL AUC0-24h,
μg·hour/mL

t1/2,
hours

CLT Vd

PK studies in patients not
receiving CRRT

Caspofungin [69]a 12.04 96.01 9.29 0.59 L/hour N/A

Anidulafungin [70]b 7.2 110.3 24-26 1.0 L/hour 34.5 L

Micafungin [71]c 7.1 59.9 13.0 1.25 L/hour 23.0 L

PK studies in patients receiving
CRRT

Weiler et al. [42]d

Single doses (CVVHF) 8.4 91 11.7 7.8 mL/hour
per kg

138 mL/
kg

Single doses (CVVHD) 8.2 76 12.4 9.8 mL/hour
per kg

175 mL/
kg

Single doses in patients not
receiving CRRT

7.3 58 9.5 10.8 mL/hour
per kg

135 mL/
kg

Steady-state (CVVHF) 11.0 107 12.4 5.3 mL/hour per
kg

97 mL/kg

Steady-state (CVVHD) 10.8 141 15.2 4.2 mL/hour
per kg

89 mL/kg

Steady-state in patients not
receiving CRRT

8.8 100 12.6 4.9 mL/hour
per kg

104 mL/
kg

Leitner et al. [36]e 8.5 109.9 28.8 NR 42 L

De Rosa et al. [72]f 5.68-9.04 67.48-98.18 15.34-
31.99

1.48-2.6 L/hour 32.81-
48.48 L

Kishino et al. [73]g 6.31 50.04 13.63 0.59 L/hour 11.53 L

Hirata et al. [43]h

Patients receiving CRRT N/A N/A N/A 1.4 L/hour 17.5 L

Patients not receiving CRRT N/A N/A N/A 1.4 (L/hour 16.2 L

Data are derived from different sources and trials and therefore are not always directly comparable. aPharmacokinetic data following single doses of 70 mg of
caspofungin. bPharmacokinetic data following loading dose of 200 mg and maintenance dose of 100 mg of anidulafungin. cPharmacokinetic data following single
doses of 100 mg of micafungin. dPharmacokinetics of caspofungin (single doses and steady-state) in critically ill patients on continuous venovenous hemofiltration
(CVVHF), continuous venovenous hemodialysis (CVVHD), and control group not on continuous renal replacement therapy (CRRT). ePharmacokinetics of anidulafun-
gin during CVVHF. fPharmacokinetics of anidulafungin in two critically ill patients with septic shock undergoing CVVHF. gPharmacokinetics of 50 mg of micafungin
(steady-state) in living donor liver recipients receiving CVVHF. hPharmacokinetics of micafungin (150-300 mg) in patients on continuous venovenous hemodiafiltra-
tion and not receiving CRRT. AUC0–24, area under the curve over 24-hour dosing interval; CLT, total clearance (L/h or mL/hour per kg); Cmax, maximum concentra-
tion; N/A, not available; NR, not reported; PK, pharmacokinetic; t1/2, elimination half-life; Vd, volume of distribution (L or mL/kg).
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spectroscopy method (online SPE-LC-MS/MS). Thirty-
six plasma sample sets were obtained from 27 patients
(14 patients on CRRT and 13 patients off CRRT). As-
sessment under both single-dose and steady-state condi-
tions was possible for only eight patients. Six sets of
ultrafiltrate samples were drawn from patients on
CVVHF. Ultrafiltrate concentrations amounted to only
0.33% of the respective plasma levels; that is, the median
(range) Sc was 0.0033 (0.0157). The hemofiltration clear-
ance (CLHF) calculated from Sc was as low as 8.0 (37.8)
mL/hour (1.8% (9.6%) of total clearance). When esti-
mated from Cin − Cout, the CLHF was higher (61.0
(10,712.2) mL/hour). Dialysate sampling was performed
during all 11 sampling periods in patients on CVVHD.
The Sd was 0.0027 (0.2470), yielding a hemodialysis
clearance (CLHD) of 5.9 (530.5) mL/hour (2.5% (66.5%)
of the total caspofungin clearance). The CLHD calcu-
lated from Cin −Cout amounted to 5.5 (1,550.5) mL/
hour. The authors concluded that the influence of CRRT
on caspofungin elimination appears to be negligible, and
the standard dosage is probably appropriate for ICU pa-
tients on CRRT.

Anidulafungin
In 2011, Leitner and colleagues [36] provided data on
the adsorptive capacity of hemofilters for echinocandins
from a study of 10 patients undergoing CVVHF for
acute kidney injury by using a 1.2 m2 polysulfone hemo-
filter. The ultrafiltration rate was 25 mL/min. Anidula-
fungin was infused on 3 consecutive days, starting with a
loading dose of 200 mg on day 1, followed by doses of
100 mg/day. On days 1, 2, and 3, blood samples were
taken from the arterial and venous lines of the extracor-
poreal circuit before the start and at the end of the infu-
sion as well as at 2, 4, 6, 8, and 24 hours after infusion;
at the same time points, ultrafiltrate samples were
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collected. The concentration of anidulafungin in plasma
and ultrafiltrate was assessed by high-performance liquid
chromatography. Eight patients completed the scheduled
3-day CVVHF treatment. Pre-filter Cmax (8.5 ± 3.6 mg/L)
was reached 3 hours after the start of infusion. After the
100 mg dose on days 2 and 3, Cmax values were 6.5 ± 3.1
mg/L and 5.9 ± 2.0 mg/L, respectively. Mean minimum
concentration (Cmin) values were 3.1 ± 1.5, 3.0 ± 1.0, and
2.9 ± 1.1 mg/L at 24, 48, and 72 hours, respectively.
Maximal differences in anidulafungin concentrations be-
tween the venous and arterial port (AV differences) were
measured at 2 hours (19% ± 6%); AV differences steadily
decreased to 14% ± 4% at 24 hours, 10% ± 2% at 48 hours,
and 9% ± 2% at 72 hours. The mean arterial AUC0-24 was
109.9 ± 49.82 mg · h/L, the total clearance was 1.08 ± 0.41
L/hour, the volume of distribution was 41.97 ± 22.64 L,
and the elimination half-life was 28.78 ± 10.40 hours.
Serum concentrations remained high at all times

(Cmin = 1.54 mg/L) and were similar to those in healthy
adult subjects and in patients with fungal infections.
The authors concluded that pharmacokinetics of ani-

dulafungin during CVVHF resembled findings in healthy
adults and in adults with fungal infections and they rec-
ommend loading doses of 200 mg intravenous anidula-
fungin on the first day and 100 mg on consecutive
treatment days in patients during CVVHF.
Similar results were obtained by De Rosa and col-

leagues [72]. In this study, the pharmacokinetics of
standard doses of anidulafungin were studied in two
ICU patients with candidemia and septic shock undergo-
ing CVVHF. Both patients had satisfactory parameters
of Cmax (9.04 and 5.68 mg/L, respectively), area under
the curve (AUC; 95.18 and 67.48 mg/L hour), and Cmin

(2.61 and 1.43 mg/L). AUC/MIC ratio and Cmax/MIC
values were 11,887 and 8,435 (patient 1) and 1,130.25 and
710 (patient 2), respectively. According to these data, the
authors concluded that anidulafungin presents only mild
pharmacokinetic changes in septic shock patients under-
going CVVHF and no dose changes are needed.

Micafungin
In 2004, Kishino and colleagues [73] reported the first
data on the use of micafungin and CRRT. These authors
studied six living donor liver recipients, four of whom
underwent CVVHF. Micafungin (40 to 50 mg) was ad-
ministered once daily for 3 weeks after liver transplant-
ation. On the third day after the start of the infusion,
several blood samples were taken from points located
proximal and distal to the hemofilter. Ultradiafiltrate
samples were also collected. CVVHF was performed by
using a 1.5-m2 cellulose dialyzer. The ultrafiltrate was
constantly obtained at 2,000 mL/hour by the post-
dilutional method. The mean Cmax and Cmin (trough)
values of micafungin in plasma were 6.31 ± 1.08 and
1.65 ± 0.54 μg/mL, respectively. The mean micafungin
Cin −Cout were very similar. The mean micafungin Cin −
Cout and the clearance of micafungin were 0.96 ± 0.04
and 0.054 ± 0.04 mL/min per kg, respectively, with 1.0
mg of the drug in the ultrafiltrate. The authors con-
cluded that CVVHF had little effect on micafungin
kinetics, and no dose adjustment or modification of
dosing interval was needed during CVVHF.
Hirata and colleagues [43] evaluated the influence of

continuous hemodiafiltration (CHDF) on the pharmaco-
kinetics of micafungin in ICU patients. The authors
studied four ICU patients receiving CHDF and nine ICU
patients not receiving CHDF. CHDF was performed
using a polymethyl methacrylate hollow-fiber membrane.
Replacement fluid was delivered after the membrane
into the venous limb of the circuit at a rate appropriate
for the requirements of each patient. Standard dialysate
was delivered at a rate of between 500 and 1,000 mL/
hour. Blood samples were obtained before and after fil-
tering, and urine samples and ultradiafiltrate samples
were also collected for a steady-state assay of micafun-
gin. The concentration of micafungin in serum was de-
termined by high-performance liquid chromatography.
Micafungin (dosage range, 150 to 300 mg/day) was ad-
ministered to patients regardless of whether they were
receiving CHDF. Finally, micafungin concentrations
were available in three of the patients undergoing
CHDF. In these three patients, mean micafungin con-
centrations at the inlet and outlet of the CHDF circuit
were 12.7 ± 10.2 and 12.3 ± 10.1 mg/mL, respectively. Mica-
fungin was not detected in the ultradiafiltrate, and urine
concentration was 0.2 ± 0.1 mg/mL. The authors concluded
that CHDF does not affect the pharmacokinetics of mica-
fungin, so it is not necessary to adjust the micafungin dose
in patients undergoing CHDF.

Clinical significance of echinocandin drug
adsorption
In an assessment of the clinical significance of drug ad-
sorption, five points must be considered.
First, it is essential to know the pK/pD of the anti-

biotic [74,75]. For drugs that demonstrate time-
dependent activity, the antimicrobial effect is related to
the length of time that plasma concentrations are above
a threshold MIC. For those that exhibit concentration-
dependent activity, the antimicrobial effect is related to
the post-distribution Cmax or the area under the
concentration-time curve. If the area under the inhibitory
curve is the most important parameter and the adsorption
is completely reversible, adsorption should not affect anti-
microbial activity. In contrast, when the Cmax/MIC ratio is
the best pK/pD parameter for this antibiotic, even if the
adsorption is reversible, the Cmax will be lower and anti-
microbial activity could be compromised.
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Second, to predict the clinical significance, it is im-
portant to know the time course of adsorption and
whether this adsorption is reversible. The length of time
that a filter has been used may affect its adsorption. We
should determine the extent of adsorption at first dose
of antibiotic given to the patient when starting CRRT
with a new filter and the effect of repeated doses over an
already-saturated filter when the steady-state drug con-
centration has been reached.
Third, the absorption of a drug could differ signifi-

cantly depending on the filter membrane material and
surface area. In general, adsorption onto PAN filters is
higher than onto other synthetic membranes [59,60].
Fourth, the mode of CRRT could affect filter absorp-

tion capacity. A transmembrane pressure increase due to
convection during hemofiltration would increase the
hollow-fiber membrane’s adsorption capacity compared
with the capacity observed in hemodialysis. This is espe-
cially relevant in high-flux convection [67,68].
Fifth, it is unclear whether differences in plasma pH and

albumin concentration could affect drug adsorption. Anti-
microbial activity depends on the fraction of unbound
drug, and this fraction can be altered by many factors,
such as systemic pH, heparin therapy, hyperbilirubinemia,
concentration of free fatty acids, relative concentration of
drug and protein, and the presence of uremic products
and other drugs with competitive mechanisms [66].
In light of the points discussed above, some comments

about these studies follow. From the study on caspofun-
gin [42], as the authors noted, the different extracorpor-
eal clearances obtained by estimation from Cin −Cout

and from Sc suggest some adsorption of caspofungin by
the hemofilter membrane. However, this adsorption ap-
pears to have no detectable effect on caspofungin plasma
pharmacokinetics.
The study by Leitner and colleagues [36] demonstrates

that anidulafungin adsorption reaches a plateau phase
within 2 hours after first dosing. As a result, Cmax is likely
to be reduced. A mean total amount of 19% ± 6% of the ani-
dulafungin in the arterial line was retained by absorption at
the hollow-fiber dialyzer 2 hours after the first drug infu-
sion. This adsorption to the polyethylene sulfone hemofilter
seems to be saturable, and adsorption decreased over time.
The authors concluded that there is no significant anidula-
fungin adsorption during CVVHF, so a standard dose can
be recommended for patients on hemofiltration.
Some factors in the study by Kishino and colleagues

[73] might influence the validity of their results with re-
spect to the adsorption of micafungin. Micafungin con-
centrations were determined on the third day after the
start of the infusion, when drug concentrations had
already reached the steady state. Although the authors
do not report whether the filter had been changed be-
tween the start of infusion and determinations, it is
likely that it had not, so the membrane may very well
have been completely saturated on the third day. More-
over, the cellulose membrane used has a low adsorptive
capacity, and owing to poor biocompatibility in critically
ill patients, cellulose membranes are no longer used in
acute kidney injury. Finally, blood and ultrafiltration
flows were low. All these factors could help explain why
they found no drug loss due to adsorption.
The study by Hirata and colleagues [43] also has some

methodological flaws. First, their data came from only
three patients, and each of these apparently received dif-
ferent doses of micafungin. Moreover, replacement and
dialysis flow varied based on the requirements of each pa-
tient. Finally and most importantly, the authors do not re-
port how long the filters had been in use at the time of
micafungin infusion or the number of doses administered
before the concentration of the drug was determined.

Final considerations
The differences reported by the studies in the amount of
adsorption of echinocandins onto the hemofilter mem-
brane could result in controversy about the clinical sig-
nificance of echinocandin adsorption. However, the
discrepant results are most likely due to the disparate
conditions and methodologies of the studies rather than
to the differences between echinocandin molecules.
Given the great similarities in the structure and protein
binding of the echinocandins, it is highly likely that these
three molecules would interact identically with the dif-
ferent hemofilter membranes. If comparative studies
among the three echinocandins were done under the
same circumstances (same mode of renal replacement,
same membrane and surface area, same flows, and same
times of determination with respect to the infusion of
the drug and the hemofilter life), the amount of drug
lost by adsorption would very probably be nearly identi-
cal. This proportion of drug (possibly up to 20% in the
first dose) does not seem to be clinically relevant, at least
not for anidulafungin and caspofungin, because these
two drugs are administered in a loading dose to reach
steady-state concentrations on the first day. However, in
micafungin, the proportion of drug lost may be clinically
relevant because, unlike the other two echinocandins,
micafungin is not administered in a loading dose [2].
Thus, the plasmatic levels on the first day might be com-
promised by drug loss due to adsorption in a hemofilter
that is not yet saturated, especially when high-adsorptive
capacity membranes and medium- to high-volume con-
vection flows are used, as is recommended in critically
unstable patients with severe sepsis and multiorgan dys-
function. Given the above, the removal of echinocandins
by adsorption to the synthetic surfaces of hemofilters is
unlikely to have clinical relevance once the steady-state
concentration is reached.
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For all echinocandins, it is unknown whether repeated
hemofilter clotting and filter half-life of less than 24
hours could affect the fungicidal activity of echinocan-
dins, so further studies are required. One major limita-
tion in all of the studies referred to is the small size and
the heterogeneity of the study population. Moreover, it
is essential to use a validated technique to measure drug
concentrations because the difference between pre- and
post-filter concentrations may be very small, so caution
is warranted in all studies.

Conclusions
The removal of echinocandins by adsorption to the syn-
thetic surfaces of hemofilters is unlikely to have clinical
relevance once the steady-state concentration is reached.
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