
López-Collazo and del Fresno Critical Care 2013, 17:242
http://ccforum.com/content/17/6/242
REVIEW
Pathophysiology of endotoxin tolerance:
mechanisms and clinical consequences
Eduardo López-Collazo1* and Carlos del Fresno2
Abstract

Endotoxin tolerance was first described in a study that
exposed animals to a sublethal dose of bacterial
endotoxin. The animals subsequently survived a lethal
injection of endotoxin. This refractory state is
associated with the innate immune system and, in
particular, with monocytes and macrophages, which
act as the main participants. Several mechanisms are
involved in the control of endotoxin tolerance;
however, a full understanding of this phenomenon
remains elusive. A number of recent reports indicate
that clinical examples of endotoxin tolerance include
not only sepsis but also diseases such as cystic fibrosis
and acute coronary syndrome. In these pathologies,
the risk of new infections correlates with a refractory
state. This review integrates the molecular basis and
clinical implications of endotoxin tolerance in various
pathologies.
posure to low concentrations of endotoxins reprograms
Introduction
The mammalian innate immune system (IIS) is able to
detect and respond to danger signals from various
sources such as bacteria, tumor processes, and tissue
damage [1]. The IIS constitutes the first line of defense
for preventing pathogen colonization and tumor growth.
The principal players in this system are the innate im-
mune cells: monocytes/macrophages (MΦs), neutro-
phils, and natural killers. Although the IIS was initially
believed to be nonspecific, the discovery of Toll-like re-
ceptors (TLRs) in drosophila, and subsequently in mam-
malian innate immune cells, changed the paradigm of
the scarce specificity of the IIS [2]. The expression of
different receptor families in IIS cells accounts for the
finely tuned specificity of the IIS. Kumar and colleagues
[3] conducted an in-depth review of a number of these
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families, including membrane-bound receptors (for ex-
ample, TLRs and C-type lectin receptors) and intracellu-
lar receptors such as RIG-like and NOD-like receptors
[4]. The most studied among these receptors are TLRs,
particularly TLR4, which is involved in the recognition
of Gram-negative bacteria and their associated endo-
toxins such as lipopolysaccharide (LPS).
Upon detecting danger signals, IIS cells trigger a ro-

bust inflammatory response. However, this reaction must
be closely regulated because uncontrolled inflammation
leads to clinical complications (for example, septic
shock, cancer, and autoimmune diseases). In the event
of bacterial colonization, a number of mechanisms regu-
late the inflammation and protect against shock. One of
the most important mechanisms for protecting the host
is endotoxin tolerance (ET). Under ET, cells and organ-
isms exhibit a transient state in which they are unable to
respond to endotoxin challenges [5]. The phenomenon
has been described as a type of tolerance in which ex-

IIS cells. In other words, the innate response to further
endotoxin challenges is compromised. However, this
does not constitute an ‘immunoparalysis’ but rather an
alternative activation that triggers other mechanisms
that have yet to be described. The presence of ET has
been studied and reported in several pathologies such as
sepsis [6] cystic fibrosis (CF) [7], acute coronary syn-
drome (ACS) [8], and trauma and pancreatitis [9,10]
(Figure 1). In the past few years, a growing number of
studies have focused on the main characteristics of ET,
revealing much about its mechanisms. This review dis-
cusses the main characteristics of ET, ET models, and
the molecules involved in this process and its clinical
significance.
From the clinic to the bench
The first reported observation of ET was made by Paul
Beeson in 1946. He reported that the repeated inocula-
tion of rabbits with typhoid shots caused a significant re-
duction in the vaccine-induced fever [11]. This
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Figure 1 Endotoxin tolerance has been reported in several pathologies such as sepsis, cystic fibrosis, acute coronary syndrome,
trauma, and pancreatitis. Cells from the innate immune system develop a refractory state after infection or tissue damage.
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phenomenon also occurred in humans who were recov-
ering from malaria; when rechallenged with endotoxins,
the patients also presented reduced fever [12]. This re-
sponse suggested that inoculation with live Salmonella
typhosa led to reduced symptoms in response to the
endotoxin or killed bacteria [13]. A similar observation
was reported in volunteers inoculated with Plasmodium
cynomolgi through mosquito bites [14]. This finding in-
dicates that there is also a cross-tolerization among vari-
ous stimuli. Other early examples of ET were found in
patients with pyelonephritis [15] and in patients recover-
ing from typhoid and paratyphoid fever [16]. These re-
ports indicated the widespread existence of this
phenomenon in the clinical setting.
Later experiments in mice showed that once the ani-

mals had received a sublethal dose of LPS, they were
protected from a subsequent lethal dose of the endo-
toxin. These studies also demonstrated the crucial role
of MΦs in ET in vivo [6]. Murine macrophages and hu-
man monocytes are unable to mount a standard inflam-
matory response after an endotoxin challenge if they
have been previously exposed to the endotoxin [5].

In vitro and in vivo models
Several models have been established to study the ET
phenomenon in depth (Figure 2). The majority attempt
to reproduce the effect of two consecutive pathogen in-
fections, either in vitro or in vivo.
The classic in vitro human ET models are based on a

culture of human blood cells stimulated twice with LPS
[17]. First, a low dose of endotoxin is administered
(0.001 to 0.01 μg/mL); the cells are washed, and a sec-
ond high dose of LPS (0.1 to 1 μg/mL) is administered
[18,19]. This experimental approach has been applied to
myeloid cell lines such as the promonocytic THP-1 [2],
circulating MΦs [6], and total peripheral blood mono-
nuclear cells [4]. However, a number of these models do
not adequately approximate the clinical situation. For
example, patients who experience bacteremia subse-
quently develop an endotoxin tolerance episode during
which their IIS does not respond to new pathogens as it
did prior to the bacteremia [20]. This situation can be
modeled by two consecutive LPS treatments, with the
first and the second challenge separated in time. Data
from a study that used this type of model indicated that
only 1 hour of LPS exposure was required to induce an
ET. However, this refractory state is not permanent, and
after 5 days, the cells reverted to a proinflammatory
phenotype in response to endotoxin stimulation [17].
These findings imply that IIS cells possess a type of
‘memory’ that may be governed by epigenetic changes
[21]. Other characteristics of ET, such as high phagocyt-
osis activity of ET monocytes and their inability to step
up the adaptive response, have been discovered by using
the abovementioned model [17,22]. Both characteristics
were verified in patients experiencing a patent endotoxin
tolerance such as CF [17].
Mouse in vivo models have been developed to further

confirm the physiological relevance of the tolerance
process and have helped confirm in vitro-obtained data
[23,24] and address the contribution of various cell types
to the overall ET outcome [25]. However, an elegant
work based on genomics has pointed out how mouse
models reproduce weakly inflammatory responses in
humans [26]. It does not mean that results obtained
from murine models are not useful; rather, it means that
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Figure 2 Models established to study the endotoxin tolerance phenomenon. LPS, lipopolysaccharide.
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these very models should fit the symptoms and etiology
of human diseases, in order to provide pathophysio-
logical relevant data [27].
Perhaps the most relevant data, especially in regard to

specific gene expression patterns, resulted from human
in vivo ET studies, in which volunteers were injected
with defined doses of LPS (approximately 1 ng/kg of
body weight) and their response monitored [28-30].
These studies observed reductions in proinflammatory
cytokines (TNF-α and IL-6) and anti-inflammatory cyto-
kines (IL-10 and IL-1RA), suggesting that, under in vivo
ET conditions, the overall response is much more com-
plex than indicated by in vitro studies. In vivo data reveal
the relevance of antimicrobial mechanisms displayed by
cells that are not commonly studied in vitro in an ET
context, such as neutrophils [25].
The ex vivo approach is an intermediate experimental

solution that improves researcher control over the sec-
ondary endotoxin stimulus. In these models, cells of
interest are re-exposed to LPS in vitro after an initial
challenge with the endotoxin in vivo [31,32]. Data
obtained from this approach are important for highlight-
ing the differences between the more common in vitro
data and the complex full in vivo findings [11]. This type
of assay is also useful for determining whether patients’
blood cells exhibit ET [6,7,17]. As Kox and colleagues
[11] have pointed out, there is, however, a difference be-
tween ex vivo and in vivo that needs to be taken into ac-
count. Although a patient’s circulatory cells may exhibit
an inflammatory phenotype ex vivo, the patient may be
in a tolerant status [11]. These authors demonstrated
that when volunteers were injected with endotoxin, their
cells exhibited an inflammatory profile when isolated for
1 week and then challenged ex vivo with LPS. In con-
trast, the cells showed significant attenuation of inflam-
mation in vivo when the volunteers were re-injected
with the endotoxin 1 week after the first treatment.
In any case, the approach based on using clinically

relevant samples from patients ‘locked’ into an ET state
seemingly provides highly valuable data, especially re-
garding the description of molecular mechanisms (for
example, in CF [7], ACS [8], and tumoral processes
[33,34]).
In Table 1, we have reviewed the main ET characteris-

tics found in various tissues according to the models
used.

Mechanism implicated: main controllers and pathways
involved
Relevant information on a number of mechanisms in-
volved in ET development has been obtained from the
previously mentioned models. Initially, the soluble
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Table 1 Main endotoxin tolerance features found in different tissues according to the models used

Tissue/cell type Model Stimulia Most relevant phenotype Reference
bPeritoneal
macrophage

In vitro LPS + LPS TNF-α, IL-1β, GMCSF, CCL2, CCL4, CXCL10, CXCL2 [35]

bPeritoneal
macrophage

In vitro LPS + LPS ↓ TNF-α, IL-1β, IL-12p40, COX2, CXCL10, ↓ TNF-α, IL-1β, IL-12p40, COX2, CXCL10 =
TNF-α, IL-1β, ↓ IL-12p40, COX2, CXCL10, ↓ TNF-α, IL-1β, IL-12p40, COX2, ↑CXCL10
= TNF-α, ↓ CXCL10, ↓ TNF-α, ↑ CXCL10

[36]

MALP2 + MALP2

LPS + MALP2

MALP2 + LPS

Poli(I:C) + LPS

R848 + LPS
bPeritoneal
macrophage

In vitro LPS + LPS ↓ TNF-α, IFN-β [37]

Pam3Cys + Pam3Cys ↓ TNF-α , = TNF-α

LPS + Pam3Cys ↑ TNF-α, = IFN-β

Pam3Cys + LPS
bBMMs In vitro LPS + LPS ↓ inflammatory genes (IL-6, IL-1β, MMP3) [28]c

↑ antimicrobial genes (Fpr1, Oasl1)
bBMMs In vitro LipidA + LipidA ↓ TNF-α, CCL3, ↑ IFN-β, IL-10 [38]

Pam3Cys + Pam3Cys ↓ TNF-α, CCL3

LipidA + Pam3Cys = TNF-α, CCL3, IFN-β

= TNF-α, CCL3, IFN-β

Pam3Cys + LipidA ↓ TNF-α, CCL3, ↑ IFN-β, IL-10

Poli(I:C) + LipidA
dMonocytes In vitro LPS + LPS ↓ inflammatory cytokines/chemokines [17]c

↑ IFN-β, TGF-β

↑ Scavenger receptors

↑ Phagocytic capacity

↓ Antigen presentation potential
dPBMCs In vitro LPS + LPS ↓ TNF-α, ΙL−12, ↑ IL-10, COX2 [19]
ePBMCs In vitro LPS + LPS ↓ TNF-α, IL-12, ↑ IL-10 [39]
dSeptic
monocytes

Ex vivo Monocytes from
patients with sepsis +
LPS

↓ TNF-α, IL6, IL-1β [6]

dWhole blood Ex vivo LPS injection + ex vivo
restimulation

↓ TNF-α, ΙL6, IL-10 [11]

bPeritoneal/
splenic
macrophage

Ex vivo LPS injection + ex vivo
restimulation

↓ TNF-α, IL6, CXCL8 = IL-10, IL-1RA [40]

fMammary tissue In vivo LPS + E. coli injection ↓ TNF-α, IL6, CXCL8, CCL20, ↑ IL-10 [41]
dSerum In vivo 5 consecutive LPS

injections
↓ elastase, TNF-α, IL-6, IL-10, IL-1RA = TGF-β [42]

dPlasma In vivo 2 consecutive LPS
inoculations

↓ TNF-α, IL6, IL-10, IL-1RA, TGF-β [11]

aLipopolysaccharide (LPS) – TLR4 ligand; MALP2 – TLR2 ligand; Poli(I:C) – TLR3 ligand; R848 – TLR7/8 ligand; LipidA – TLR4 ligand; bmurine; cgenome-wide analysis;
dhuman; eequine; fbovine. BMM, bone marrow-derived macrophage; IL, interleukin; MALP2, macrophage-activating lipopeptide-2; PBMC, peripheral blood
mononuclear cell; TGF-β, transforming growth factor-beta; TLR, Toll-like receptor; TNF, tumor necrosis factor.
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mediators generated during the first endotoxin challenge
were considered essential for ET. Therefore, we can state
that the role of the immunomodulatory cytokine IL-10
was paradigmatic [43]. The neutralization of IL-10 by
blocking antibodies during the first LPS stimulation in-
duced non-tolerant TNF-α production in response to a
second endotoxin challenge [44]. However, IL-10-
deficient mice still developed ET [45], suggesting the
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existence of alternative mechanisms involved in this
process.
In-depth studies of ET development in gene-deficient

mice have analyzed the participation of intracellular mole-
cules in this process and have established the roles of
SHIP-1, A20, and IRAK-M, roles that have been observed
occasionally in different models [22,40]. The pseudokinase
IRAK-M could be considered a ‘master regulator’ of ET be-
cause it is one of the genes that is consistently induced into
ET [46,47] and has been implicated in a number of human
pathologies – such as sepsis [6], cancer [34], ACS [8], and
asthma [48] – during which ET manifests. This protein be-
longs to the four-member interleukin-1 receptor-associated
kinase (IRAK) family. Its systematic nomenclature (IRAK-
3) is usually substituted with the more common one
(IRAK-M) because of its restricted expression pattern in
the myeloid cell compartment [49]. Owing to a mutation in
its kinase domain, IRAK-M is unable to exert a kinase ac-
tivity [50]. Kobayashi and colleagues [30] reported the first
link between ET and IRAK-M; they described IRAK-M-
deficient mice as unable to develop ET in vivo. As indicated
by genome-wide data, IRAK-M is not expressed in myeloid
cells under steady-state conditions, and its expression is
rapidly induced by the first LPS challenge [6]. Both struc-
tural analysis and indirect evidence suggest that the mech-
anism by which IRAK-M regulates the LPS response is
related to the inhibition of the signaling pathway down-
stream of TLR4 [51,52].
A number of studies have supported the importance of

IRAK-M induction during ET development. In a human
in vitro model of ET, rapid IRAK-M upregulation was de-
scribed, as was its expression in freshly isolated monocytes
from patients with sepsis [6]. Similar results were obtained
with LPS from Porphyromonas gingivalis in THP-1
promonocytic cells [53] and in Kupffer cells [54]. More im-
portantly, IRAK-M upregulation was associated with higher
mortality after Gram-negative-induced sepsis [47]. We
reviewed the role of IRAK-M in ET in detail in an earlier
study [52].
Other molecules – such as the orphan immunoreceptor

TREM-1 (triggering receptor expressed on myeloid cells 1),
which sustains cell surface expression in human monocytes
– have been identified as important participants in ET de-
velopment. Through metalloproteinase inhibition, TREM-1
counteracts the well-characterized downregulation of sev-
eral proinflammatory cytokines during the ET time frame
[55]. Moreover, its expression is notably downregulated in
monocytes that are isolated from patients with ET, in con-
trast to those extracted from healthy volunteers, as
discussed below [7]. This orphan immunoreceptor magni-
fies inflammation after TLR activation in myeloid cells and
is implicated in a number of inflammatory pathologies [56].
Given that microRNAs (miRNAs) are able to regulate

gene expression at the pro-transcriptional level, these
factors have been studied in the context of ET. Several
authors have described the activation of a number of
miRNAs during ET, including miR-146a, miR-221, miR-
579, miR-125b, miR-155, let-7e, and miR-98 [57]. These
molecules represent new targets for modulating the de-
velopment of ET.
Other pathways and molecules are involved in control-

ling ET [22,58] and a number of them require in-depth
study to verify their potential role in this phenomenon.
Figure 3 summarizes the main ET mechanisms reported
in MΦs.

From the bench to the clinic
At the bedside
By the end of the 20th century, ET had been described
in patients, and research on ET moved from the clinic
to the laboratory. As we mentioned earlier, a number of
models were constructed and data on ET began to
emerge. The use of these models, however, revealed
other previously unreported characteristics, and re-
searchers had to return to the clinic to verify the models.
In addition, important innate immune response occurred
not only in sepsis but also in several other pathologies in
which the ET phenotype had been reported.

Sepsis: where endotoxin tolerance was first described
A clinically relevant example of ET was observed in pa-
tients with sepsis [59]. This complex pathology results from
a deregulated inflammatory response by the IIS following a
systemic bacterial infection. The evolution of the ET in-
cludes two phases. First, patients suffer from an overt in-
flammation that leads to an immunocompromised phase
[60,61]. During the second stage, the patients’ innate im-
mune cells show a patent ET [6,18]. Clinically, this state is
correlated with a high risk of secondary infection and mor-
tality [62]. Monocytes from patients with sepsis exhibit nu-
merous characteristics of ET. For example, after an ex vivo
challenge with LPS, the monocytes fail to produce
proinflammatory cytokines, such as TNF-α, IL-12, IL-23,
and IL-6 [42,62-64], in contrast to monocytes from healthy
volunteers. Downregulation of major histocompatibility
(MHC) class II, CD86, and class II transactivator (CIITA)
has also been observed in circulating cells from patients
with sepsis [65,66]. However, the expression of anti-
inflammatory factors such as IL-10 is controversial in this
context. Several authors have pointed out that IL-10 plays a
crucial role in the control of ET [19,67], whereas others
have reported a weak effect for IL-10 in sepsis-induced tol-
erance [68]. Studies have validated IL-10 as a predictor of
poor prognosis in sepsis and have shown that IL-10
upregulation was correlated with higher mortality in pa-
tients with sepsis [69]. In addition, it has been reported that
IL-10 induces miR-187, which is a negative regulator of
TNF-α, IL-6, and IL-12 expression in TLR4-stimulated
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Figure 3 Molecular mechanisms implicated in endotoxin tolerance. DAP12, DNAX activation protein of 12 kDa; IFNβ, interferon-beta; IL,
interleukin; IKK, IκB kinase; IRAK, interleukin-1 receptor-associated kinase; IRF3, interferon regulatory transcription factor 3; ITAM, immunoreceptor
tyrosine-based activation motif; JAK, Janus kinase; miRNA, microRNA; MMP, matrix metalloproteinase; MyD88, myeloid differentiation primary
response gene 88; NF-κB, nuclear factor-kappa-B; SOCS3, suppressor of cytokine signaling proteins 3; STAT1, signal transducer and activator of
transcription 1; sTREM1, soluble triggering receptor expressed on myeloid cells 1; SyK, Spleen tyrosine kinase; TBK1, TANK-binding kinase 1; TGF-β,
transforming growth factor-beta; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-alpha; TRAF6, TNF receptor associated factor (TRAF)
protein family 6; TREM1, triggering receptor expressed on myeloid cells 1; TRIF, TIR-domain-containing adapter-inducing interferon-β.
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monocytes [70]. However, as we mentioned earlier, IL-10
knockout mice reproduced an ET phenotype when they
were twice exposed to LPS [45]. Expression of other anti-
inflammatory factors, such as transforming growth factor-
beta, IL-1RA, SLPI, and glucocorticoids, was reported in
septic cells and is believed to contribute to ET [5,62,71].
The failure of anti-inflammatory therapies in sepsis and the
high mortality of immunocompromised patients indicate
the importance of the immunosuppressive phase of sepsis
and, consequently, the ET phenotype of IIS cells.

Cystic fibrosis: a ‘marriage’ of convenience
CF is another complex disease in which ET has been de-
scribed. CF essentially affects all exocrine epithelia [72]
and results from abnormalities in the gene that codifies
the chloride channel known as the CF transmembrane
conductance regulator, which belongs to the family of
ATP-binding cassette transporter ATPases [72]. The
clinical features of CF include primary organ damage
(pancreas, sinus, liver, intestines, and exocrine pancreas)
and secondary complications such as malnutrition and
diabetes. However, the morbidity and mortality of pa-
tients with CF are usually the result of chronic lower air-
way bacterial infections and inflammation of the lungs
[73]. Repeated episodes of polymicrobial infection in
these patients cause a progressive deterioration of lung
tissue, a decline in pulmonary function, and, ultimately,
respiratory failure and death in 90% of patients with CF
[74]. The high frequency of pathogen colonization ob-
served in these patients points to a significant deficiency
in their IIS [75,76]. In previous studies, we have reported
a patent ET status in circulating monocytes isolated

http://ccforum.com/content/17/6/242


López-Collazo and del Fresno Critical Care Page 7 of 112013, 17:242
http://ccforum.com/content/17/6/242
from patients with CF [7,17]. In addition to the inability
of these cells to mount a standard inflammatory re-
sponse after an ex vivo endotoxin challenge, other pri-
mary features of ET were observed (for example, high
phagocytosis ability, downregulation of MHC-II and
CIITA, and poor antigen presentation) [7,17]. Low ex-
pression of TREM-1 at the cell surface has also been
detected in circulating CF-MΦs [7]. The low levels of
TREM-1 expression in circulating CF-MΦs partially ex-
plain the non-responsive state in patients with CF.
Moreover, high LPS concentrations have been detected
in CF plasma [76]. The amount of endotoxin in plasma
is correlated to the inability of the patients’ monocytes
to generate inflammation ex vivo. This contributes de-
cisively to the permanent ET status in patients with CF.
These data indicate that patients with CF are ‘locked’
into an ET state, which results from an endotoxin diffu-
sion in the bloodstream. This condition could be benefi-
cial for the lifespan of patients with CF because it allows
them to mount a moderate innate response against
pathogen colonization. In this context, patients with CF
avoid a permanent ‘cytokine storm’ that could com-
promise their lives.

Acute coronary syndrome: an example of heterotolerance
ACS includes a range of thrombotic coronary artery dis-
eases such as unstable angina, ST-elevation myocardial
infarction (STEMI), and non-ST-elevation myocardial
infarction (NSTEMI). The IIS plays a key role in the
progression of the atherosclerotic lesions and in the re-
modeling process after myocardial infarction (MI)
[77-79]. In this context, the activation of the innate im-
mune response mediated by MΦs leads to the release of
factors that cause inflammation [80], tissue damage, and
plaque instability [78]. Circulating MΦs in patients with
ACS after 1 to 3 hours of MI (STEMI and NSTEMI)
showed a proinflammatory phenotype, with upregulation
of TNF-α [8]. These MΦs had high levels of IRAK-M,
thus providing negative feedback regulation for the
proinflammatory response. This is a classic paradigm of
ET producing a hyporesponsive state following an LPS
challenge [6,52]. Moreover, when MΦs were analyzed
several hours after MI, a shift from its initial
proinflammatory response to its anti-inflammatory
phenotype had occurred. Despite the absence of any pre-
vious infection, the MΦs showed a diminished response
ex vivo to a subsequent endotoxin challenge in addition
to other main characteristics of an ET status (for ex-
ample, low expression of MHC-II and poor antigen pres-
entation). In addition, patients with a marked ET
phenotype were rehospitalized with infection over the
course of the 3 months following enrolment.
This is an example of heterotolerance, a concept that

could be defined as the induction of a tolerogenic
response to a determined stimulus by a different one.
For instance, TLR2 agonists induce heterotolerance to
TLR4 ligands [37]. In the context of ACS, the IIS fails to
respond to an external pathogen but with no prior ex-
posure to infection, thus indicating that a stimulus quite
different from that of the pathogen has induced the tol-
erant state. Several internal factors could act as initial
stimuli in this respect; molecules known as danger-
associated molecular patterns (DAMPs) [81] such as
hyaluronic acid, high-mobility group box 1 (HMGB1),
and heat shock protein are candidates. However, in the
case of MI, there is a correlation between plasma mito-
chondrial DNA concentrations and ET grading [82]. MI
may be recognized by the patient’s IIS by using its pat-
tern recognition receptors that detect bacteria. Note that
mitochondria are evolutionary endosymbionts derived
from bacteria and contain DNA similar to bacterial
DNA [83]. This may explain why responses to these
mitochondrial DAMPs can mimic sepsis and also sub-
stantiate MΦs, developing ET under sterile conditions.

The cancer paradigm and others pathologies: open
questions
Situations similar to ET have been described in other
pathologies such as cancer. Several authors have
reported that IIS cells that infiltrate into solid tumor
such as tumor-associated macrophages (TAMs) exhibit
the same characteristics of ET-MΦs in vivo [29,84].
Moreover, the exposure of monocytes to tumor cells in-
duces a transient state in which these cells are refractory
to further contact to cancer in vitro [34,85]. This
phenomenon, termed ‘tumor tolerance’, reminds us of
ET and is characterized by a decreased production of
proinflammatory cytokines mediated by IRAK-M
upregulation and TLR4 and CD44 activation [34]. In
addition, these cells show a marked downregulation of
MHC-II molecules as well as the MHC-II master regula-
tor, CIITA, and combine an impaired capability for anti-
gen presentation with potent phagocytic activity [86]. All
of these features were found in circulating monocytes
isolated from patients with chronic lymphocytic
leukemia (CLL) [86]. Note that CLL-MΦs are in contact
with tumor cells and the patients enrolled did not ex-
perience a prior infection. These data lead to the follow-
ing question: could the interaction between tumor and
IIS cells induce endotoxin tolerance? This would not be
the first time that a ‘sterile’ pathology induces ET (see
the ACS case discussed earlier). This possibility might
explain the high risk of infections found in patients with
CCL [87]. Besides, the correlation between the presence
and functionality of TAM and a worse prognosis of
many different cancers has been reported [88-90]. In-
deed, targeting TAM is proposed as a feasible anti-
tumor strategy [91,92].
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Other pathologies might be candidates to study the ET
phenomenon. In particular, stroke and Alzheimer’s dis-
ease are illnesses in which patients show a significant
risk of pathogen colonization [93,94]. As far as stroke is
concerned, one-third of patients die as a result of no dir-
ect factors, including infections [95]; this fact points to
an impaired host defense in the context of strokes [96].
This pathology is characterized by severe tissue damage
that increases the presence of DAMPs (for example, the
nuclear protein HMGB1) [97]. Interestingly, HMGB1
has been described as an inducer of ET [98]. Conse-
quently, this protein could be regulating the IIS by
boosting an ET state that would dampen the antibacter-
ial responses. In this line, different therapeutic strategies
are being proposed for stroke treatment that is based on
HMGB1 blockade or inhibition [99,100].
In addition, the immunosuppressive effects of some

anesthetics such as morphine are gaining much atten-
tion. Its administration has been described as having a
regulatory impact on LPS-induced responses [101]. In
addition, chronic morphine administration is a boosting
event for sepsis [102,103]. Some of the mechanisms in-
volved in this process, it should be highlighted, are be-
ginning to be elucidated and concur with some of the
processes described as being responsible for ET, such as
modulation of miR-146a expression [57,104]. All of these
findings suggest that those diverse pathological contexts
that generate a regulation IIS response might be
revisited under the light of a putative tolerant process.

Conclusions
An endotoxin-tolerant state is a clinical phenomenon
not restricted to sepsis but has been observed for a
number of pathologies such as ACS, CF, and even can-
cer. Although ET has been thought of as a protective
mechanism against septic shock and ischemia, its inci-
dence is associated with high risks of secondary infec-
tions. Several studies have also shown some common
mechanistic paradigms in ET across different diseases.
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