
In a recent issue of Critical Care, Van de Louw and 

Haouzi report on the eff ects of lethal hemorrhage on 

blood and tissue levels of hydrogen sulfi de (H
2
S) [1]. Th e 

role of H
2
S during hemorrhage is a matter of debate: 

while both inhaled H
2
S and intravenous sodium sulfi de 

and sodium hydrosulfi de improved survival [2-4], other 

authors reported that sodium sulfi de did not exert any 

benefi cial eff ects [5]. Moreover, blocking H
2
S biosynthesis 

by inhibiting cystathione-γ-lyase attenuated circulatory 

failure and organ injury [6,7]. Since hypoxic conditions 

decrease [8,9] and supplemental vitamin B12 (hydroxo-

co balamin) increases (due to the rise in oxidative 

capacity) the rate of H
2
S metabolism, the authors 

hypothesized that hemor rhage would increase plasma 

and tissue H
2
S levels, and that vitamin B12 would 

improve survival. Rats were hemorrhaged by fi ve times 

withdrawal of 5 ml/kg blood (that is, approxi mately 30% 

of the calculated blood volume). Th e total H
2
S content 

was measured in the fi rst and last blood samples, using 

the methylene blue assay [10]. Indirect calorimetry for 

oxygen uptake and carbon dioxide production before and 

at the end of the hemorrhage period allowed deter mi-

nation of the shock-induced oxygen defi cit. Th e major 

fi nding was that, despite a severe cumulative oxygen debt 

(100 to 140 ml/kg), H
2
S blood and tissue concentrations 

did not change, rendering them useless as markers of 

shock severity. In line with this fi nding, vitamin B12 

failed to exert any therapeutic eff ects despite an increased 

capacity to oxidize H
2
S.

What do we learn from this study? According to the 

authors’ standard curve for the methylene blue assay, the 

plasma light absorbance peak at 670  nm would corres-

pond to ~8  μM H
2
S [1]. Th is absorbance, however, was 

due to turbidity rather than the presence of the blue dye. 

Th e true H
2
S concentrations were most probably there-

fore much lower, possibly even below the detection limit 

of 1.5 μM.

Th ere is considerable discrepancy in the literature on 

blood H
2
S concentrations. In rats, baseline values of 25 to 

50 μM have been reported, which increased up to 80 μM 

after hemorrhage, endotoxin exposure and injection of 

sulfi de donors [6,11,12]. However, bolus (4  mg/kg) or 

continuous intravenous (20 mg/kg/hour) sodium sulfi de 

only increased blood H
2
S levels from 0.4 to 0.9 μM to 4.0 

to 4.5  μM when the monobromobamine assay [10] was 

used to determine H
2
S concentrations [13]. In mice, 

10  mg/kg endotoxin either decreased (from ~2.3 to 
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the blood and tissue H
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increased capacity to oxidize H
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aff ect any parameter of shock severity. The authors 

concluded that H
2
S concentrations cannot be used as 

a marker of shock, most probably as a result of tissue’s 

capacity to oxidize H
2
S even under conditions of severe 

oxygen debt. This research paper elegantly re-adjusts 

the currently available data on blood and tissue H
2
S 

levels, and thereby adds an important piece to the 

puzzle of whether H
2
S release should be enhanced or 

lowered during stress conditions associated with tissue 

hypoxia.
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~1.8  μM [14]) or increased (from ~34 to ~65  μM [15]) 

the blood sulfi de content. Finally, inhaling up to 200 ppm 

gaseous H
2
S in mice increased the sulfi de content by 

<1.5 μM [13,16,17].

According to the available literature, the blood H
2
S 

content may vary by three orders of magnitude  – so 

which H
2
S concentrations are real? At physiological pH, 

dissolved H
2
S gas represents 20 to 50% of the total sulfi de 

[9,10,17], which can of course escape into the headspace 

[9,10]. Van de Louw and Haouzi carefully avoided any 

H
2
S loss related to volatilization. Furthermore, blood-

borne H
2
S is rapidly bound and/or metabolized: using a 

polarographic sensor with a detection limit for H
2
S gas 

corresponding to 100 nM total sulfi de in blood at pH 7.4, 

a 10 μM sodium sulfi de spike only transiently increased 

sulfi de from undetectable levels to about 0.5  μM [18]. 

Finally, the odor threshold of H
2
S is 0.01 to 0.3  ppm 

[9,10], and simply smelling the blood allows one to verify 

that plasma H
2
S concentrations are at, or below, 1 μM: in 

a phosphate buff er, the human nose can detect as little as 

1 μM H
2
S [9,19]. Th e gas/water coeffi  cient of distribution 

for H
2
S is 0.39 [9,10]. Assuming that only 20% of the 

dissolved gas (that is, 4 to 10% of the total free sulfi de) 

disappears from the blood sample due to volatilization 

during the 2 or 3 seconds of sniffi  ng [10], a 10 ml blood 

sample would have a total free sulfi de concentration of 20 

to 50 μM. Th is is within the range reported for rat blood, 

but clearly rat blood does not smell like rotten eggs!

Based on the results of their study, the authors con-

clude that ‘H
2
S in the blood cannot be used as a marker 

of hemorrhagic shock’, because any H
2
S accumulation 

resulting from ‘tissue hypoxia must be reconciled with 

the ability of tissues to oxidize H
2
S’ [1]. Clearly, H

2
S 

consumption via the sulfi de quinone reductase system 

[20] is reduced under hypoxic conditions, which in turn 

would cause H
2
S accumulation: in lung tissue homo ge-

nates and pulmo nary artery smooth muscle cells [8,9], 

H
2
S consumption dropped at oxygen concentrations of 

10  μM (that is, ~8  mmHg)  – a 50% drop occurring at 

oxygen partial pressure values of ~4  mmHg. In the 

present study, at the end of the hemorrhage the arterial 

oxygen partial pressure was still normal and, despite a 

50% reduction of minute ventilation, the arterial carbon 

dioxide partial pressure was reduced to 31  mmHg. Th e 

hypoxia was probably therefore not suffi  ciently low to 

signifi cantly impair H
2
S oxidization. Unfortunately, the 

authors only reported lactatemia, and not pH, so the 

severity of lactic acidosis cannot be defi nitively estimated. 

Finally, core temperature was maintained at 35 to 36°C. 

Mild hypothermia of 34°C is well established to attenuate 

lactic acidosis and better preserve tissue oxygenation. 

Consequently, albeit ultimately lethal, the authors’ model 

might have been unable to detect the hypoxia threshold 

necessary to cause H
2
S accumulation. In this context, it is 

tempting to speculate whether any local H
2
S accumu-

lation might decrease energy expenditure and thereby 

oxygen
 
consumption due to inhibition of cytochrome c 

oxidase, which in turn would restore the oxygen partial 

pressure and thereby at least partially resume H
2
S 

oxidation. Furthermore, it is noteworthy that H
2
S can 

even sustain ATP synthesis during mild hypoxia [21], and 

thus presumably attenuate tissue lactic acidosis.

Van de Louw and Haouzi meticulously conducted a 

study in a “hot” fi eld. Th e authors have the merit of re-

adjusting the data available on blood H
2
S concentrations. 

Moreover, lacking any observable increase in H
2
S levels 

during hemorrhage coupled with the currently available 

knowledge on the role of cystathione-γ-lyase for oxygen 

sensing and vascular homeostasis [8,9,22], blocking 

endo genous H
2
S production most probably has little 

thera peutic benefi t and may actually prove to be contra-

indicated. Additional studies are mandatory on the 

exogenous H
2
S supplementation during hemorrhagic 

shock, in order to answer the question of whether H
2
S is 

an innocent bystander or a central player under these 

conditions.
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