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Abstract

Introduction: Sepsis is a syndromic illness that has traditionally been defined by a set of broad, highly sensitive
clinical parameters. As a result, numerous distinct pathophysiologic states may meet diagnostic criteria for sepsis,
leading to syndrome heterogeneity. The existence of biologically distinct sepsis subtypes may in part explain the
lack of actionable evidence from clinical trials of sepsis therapies. We used microarray-based gene expression data
from adult patients with sepsis in order to identify molecularly distinct sepsis subtypes.

Methods: We used partitioning around medoids (PAM) and hierarchical clustering of gene expression profiles
from neutrophils taken from a cohort of septic patients in order to identify distinct subtypes. Using the medoids
learned from this cohort, we then clustered a second independent cohort of septic patients, and used the
resulting class labels to evaluate differences in clinical parameters, as well as the expression of relevant
pharmacogenes.

Results: We identified two sepsis subtypes based on gene expression patterns. Subtype 1 was characterized by
increased expression of genes involved in inflammatory and Toll receptor mediated signaling pathways, as well as
a higher prevalence of severe sepsis. There were differences between subtypes in the expression of
pharmacogenes related to hydrocortisone, vasopressin, norepinephrine, and drotrecogin alpha.

Conclusions: Sepsis subtypes can be identified based on different gene expression patterns. These patterns may
generate hypotheses about the underlying pathophysiology of sepsis and suggest new ways of classifying septic
patients both in clinical practice, and in the design of clinical trials.

Keywords: Sepsis, severe sepsis, septic shock, gene expression profiling, microarray analysis, biomedical informatics,
critical care, intensive care

Introduction
The protean illnesses of the ICU are syndromic in nat-
ure, defined by a number of clinical, laboratory and
radiologic criteria, rather than specific pathologic find-
ings. Examples of this include acute respiratory distress
syndrome (ARDS), acute kidney injury (AKI) and sepsis.
In such cases, the lack of specificity of the diagnostic
criteria may lead to the inadvertent grouping together of
physiologically disparate disease states under the same
rubric [1,2]. By failing to account for the existence of
subtypes, such syndromic definitions may have an aver-
aging effect, which could account for negative or

conflicting results from clinical trials [3]. Identifying
syndrome subtypes is, therefore, an important objective,
with the potential to significantly refine enrollment in
randomized controlled trials, and tailor therapies in
practice [2].
Gene expression microarray data may be useful in

identifying sepsis subtypes based on differential expres-
sion of key genes [4]. In pediatric patients, unsupervised
clustering methods have been used to identify sepsis
subtypes based on gene expression profiles from whole
blood, and have been shown to correlate with outcomes
[5-7]. No such analysis, however, has been applied to
adult cases. In this study, we present an analysis of gene
expression profiles from adult patients with sepsis, in
which subtypes are identified using bioinformatics
techniques.

* Correspondence: dmaslove@stanford.edu
1Center for Clinical Informatics, Stanford University School of Medicine,
Stanford, CA, USA
Full list of author information is available at the end of the article

Maslove et al. Critical Care 2012, 16:R183
http://ccforum.com/content/16/5/R183

© 2012 Maslove et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:dmaslove@stanford.edu
http://creativecommons.org/licenses/by/2.0


Materials and methods
Microarray data
Microarray data were obtained from two previously
published, prospectively designed studies of gene expres-
sion in sepsis. Patient enrollment, data collection, RNA
extraction and gene-expression profiling were carried
out in the same manner for both studies, and are
described in detail elsewhere [8,9]. Briefly, patients were
recruited from the intensive care unit (ICU) of Nepean
Hospital, Sydney, Australia. Neutrophils were isolated
from blood samples taken within 24 hours of admission,
and RNA extracted using guanidinium thiocyanate was
converted to cDNA. Complimentary DNA derived from
the RNA was fluorescently labeled, and hybridized to
human oligonucleotide arrays consisting of 18,664
genes. Expression levels were determined by intensity of
fluorescence captured by a laser scanner. The experi-
mental design, RNA extraction and microarray experi-
ments were all MIAME (minimum information about a
microarray experiment)-compliant, and complete raw
and normalized microarray data are available through
the Gene Expression Omnibus (GEO) of the National
Centre for Biotechnology Information (accession num-
bers GSE6535, and GSE5772) [10].
Data from two separate studies conducted using the

same tissue and the same microarray platform were used.
In both studies, sepsis was defined as the presence of sys-
temic inflammatory response syndrome (SIRS) and infec-
tion, where the diagnosis of infection required the
presence of clinical, as well as laboratory or pathological,
evidence of infection. The first study included 72 critically
ill patients, 55 of whom met diagnostic criteria for sepsis
(derivation cohort). The second study included 94 criti-
cally ill patients, 71 of whom met diagnostic criteria for
sepsis (validation cohort). The latter study included a lar-
ger number of missing values from gene expression profil-
ing, and one patient from the sepsis group with > 80%
missing data was removed.

Identification of genetic subtypes
We used partitioning around medoids (PAM) clustering
based on Euclidean distance, in order to identify sepsis
subtypes within the gene expression profiles. From the
derivation cohort, we identified the set of genes with the
greatest differences in expression levels between subtypes
and evaluated these as the gene signature.
In order to reduce the dimensionality of the dataset

and improve the likelihood of discovering stable clusters,
we used a multi-stage approach to feature selection. First,
we searched Genbank for relevant genes using the terms
“sepsis”, “severe sepsis” and “septic shock”. We then
reduced the candidate genes to the intersection of the
complete set of genes and the sepsis-specific set. Next,
we carried out an enrichment step to identify the most

discriminatory genes from within this subset, as well as
the optimal number of clusters (k).
For the choice of cluster number, we randomly

selected one-third of the candidate genes, and used
these as the basis for PAM clustering over the range k =
2 to k = 10. We used the average silhouette width to
evaluate the cohesiveness of the various clustering solu-
tions [11]. The silhouette width is a combination of
intra-cluster homogeneity and inter-cluster separation,
for which higher values indicate better clustering. This
procedure was repeated 100 times, and each time the
value of k that generated the highest average silhouette
width was recorded.
In order to increase the robustness of the cluster iden-

tification process and account for any inherent bias in
the PAM clustering algorithm, this process was repeated
using a hierarchical clustering algorithm based on a dif-
ferent similarity measure (Minkowski distance). We
chose the value of k that most frequently produced the
best result. The procedure to select the number of clus-
ters was also repeated independently on the validation
cohort, to determine whether the expression data in this
group supported the same number of clusters as in the
derivation group.
To identify a specific gene signature, we again used a

process of randomly selecting one-third of the sepsis-
specific genes, and used these as the basis for PAM clus-
tering. One hundred cluster solutions based on random
thirds were carried out. Each time the gene set producing
the highest average silhouette width was added to a list
of high-value genes. This process was repeated 100 times,
after which we created a tally of the number of times
each gene had been included in the high-value list. The
100 most frequently identified genes were taken as the
enriched subset.
We used PAM clustering with the enriched subset of

sepsis-specific genes to determine class labels for each of
the patients in the derivation cohort. Using these labels,
we then returned to the complete set of genes, and used
significance analysis of microarrays (SAM) to identify
genes that showed differential expression between groups
[12]. This procedure assigns a score to each gene, based
on the relationship for each observation between expres-
sion level, and that observation’s class label. Genes with a
q-value of 0, representing a very low likelihood of false
discovery, were selected as the final gene set, and were
used as the basis for an additional clustering step to
determine the final class assignments.

Cluster verification
As an additional verification step, we performed hier-
archical clustering using Minkowski distance as a mea-
sure of similarity and Ward’s method for agglomeration,
and compared the cluster results to those obtained by
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PAM. We also carried out a number of statistical
analyses to assess the internal validity of the clustering
solutions derived from the above procedures. At each
stage of enrichment, we evaluated the silhouette width
of each cluster. We also carried out a bootstrapping
cluster analysis to see how stable the solutions were,
given the value of k identified in the preceding steps.
We examined the distribution of individual gene expres-
sion values between cluster pairs, to determine whether
these were bimodal, as would be expected if the clusters
were distinct. This was done using the bimodality index
[13], which yields a value representing the extent to
which a distribution has two modes that are sufficiently
separate. A bimodality index > 1.1 corresponds roughly
to a distribution in which two modes are evident by
visual inspection of a density plot. We also used princi-
pal components analysis (PCA) of the final clustering
solution, and determined the bimodality index for the
first principal component.

Analysis of gene signature
For both the derivation and validation cohort, we used
hierarchical clustering to identify the subset of genes
that were differentially co-expressed between groups.
We conducted a pathways analysis of this gene signature
using the PANTHER classification system [14], with the
entire human genome as background.

Analysis of subtypes
We used the clustering solution derived from the method
described above to identify sepsis subtypes within a sec-
ond, independent dataset (validation cohort) that was
based on the same microarray platform as the first. We
limited the genes in this dataset to those that were
included in the gene signature. To classify the patients in
the validation cohort, we determined which of the deriva-
tion medoids they were closest to, and assigned them to
the corresponding subtype.
Using these labels, we evaluated a limited number of

clinical attributes using Fisher’s exact test and Student’s
t-test. To investigate the potential role of genetic differ-
ences in accounting for some of the negative or conflict-
ing clinical evidence for sepsis therapies, we looked at
genes implicated in the action of a select group of drugs
that have been studied in large-scale randomized con-
trolled trials (RCTs) in sepsis. Using the Pharmacoge-
nomics Knowledge Base (PharmGKB) [15], we identified
genes that play a role in the action or metabolism of
hydrocortisone, vasopressin, norepinephrine and drotre-
cogin alpha. We used GeneMania [16] to expand each of
these gene sets by including up to 20 other genes that
shared protein domains, physical interactions, pathways,
or expression patterns with the original query set. We
then used the results of SAM to determine if these genes

showed differential expression between sepsis subtypes,
reporting those with a high degree of statistical signifi-
cance, indicated by a q-value of 0.
All analyses were performed using the R software

environment for statistical computing and graphics, with
functions from the samr, clValid, cluster, e1071 and
ClassDiscovery libraries [17].

Results
The Genbank search returned a total of 450 unique
genes, 365 of which were included in the microarray
platform. Using this subset of genes, the best silhouette
values were achieved with a value of k = 2, regardless of
whether PAM or hierarchical clustering was used.
Results for the validation cohort were similar.
Graphical representations of the derivation clusters

through successive stages of enrichment are shown in
Figure 1. Initially, there were 19 patients in cluster 1
and 36 patients in cluster 2, with an average silhouette
width of 0.1. After the 100-fold enrichment step, the
average silhouette width increased to 0.2, with 20
patients in cluster 1 and 35 patients in cluster 2. After
SAM enrichment, there were 21 patients in cluster 1
and 34 patients in cluster 2, with an average silhouette
width of 0.3.
The results of hierarchical clustering (Figure 2) reveal a

difference in class assignment between the two clustering
methods for two patients. Bootstrapping cluster analysis
showed that clustering with k = 2 was stable (Additional
file 1). As expected, this was seen for the final cluster
solution that was based in part on genes known to have
differential expression between groups. However, this
was also seen for the clusters derived from the genes
identified by the Genbank search, prior to their subset-
ting based on expression differences. Bimodal indices
were greater than 1.1 for approximately 28% of the 1,256
genes identified in the SAM enrichment step (Additional
file 2). PCA showed that the two subtypes were separable
in the first principal component, which accounted for
45% of the variance (Figure 3). The distribution of values
yielded a bimodal index of 1.85, suggesting the presence
of two distinct modes.
Using the clustering medoids derived in the first step,

the observations in the validation cohort were assigned
class labels based on the closest medoid (Euclidean dis-
tance). Internal measures showed cluster stability similar
to that achieved with the derivation cohort, including an
average silhouette width of 0.26 (Figure 4).
Hierarchical clustering revealed 178 co-expressed genes

in the derivation cohort, and 171 co-expressed genes in
the validation cohort. All but one of the validation genes
was also found in the derivation set, and the 170-gene
intersection was taken as the gene signature (Additional
file 3). Pathway analysis (Table 1) revealed this signature
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to be enriched for two cellular processes relevant to sep-
sis and shock, namely inflammation mediated by chemo-
kine and cytokine signaling pathways, and Toll receptor
signaling pathway. The subtype 1 pattern showed
increased expression of these genes relative to subtype 2.
The clinical differences between subtypes within the

validation cohort dataset are shown in Table 2 and
Figure 5. There were more patients diagnosed with
severe sepsis in subtype 1 (36%) than in subtype 2 (9%).
The proportions of patients with septic shock were similar.
Analysis of expression levels of relevant pharmacogenes
revealed a number of statistically significant differences
between subtypes, ranging from 1.3- to 3-fold differences
in expression (Table 3). These included genes were impli-
cated in pathways important to drotrecogin alpha, vaso-
pressin, hydrocortisone and norepinephrine.

Discussion
Sepsis continues to be a major public health concern.
With only supportive measures showing benefit in clini-
cal trials and no specific syndromic therapies available,
mortality from this condition remains high. Although
sepsis is a multifaceted pathophysiologic state involving
multiple organ and cellular systems, it is most often diag-
nosed, treated and studied based on a clinical definition
incommensurate with its complexity.
Subtypes of disease can be defined in many ways,

including by epidemiologic, clinical, pathological, genetic
and molecular characteristics. In this study, we used
microarray data derived from the neutrophils of patients

diagnosed with sepsis in order to determine if more than
one distinct gene expression pattern exists among them.
Related approaches have been used previously, most
notably in cancer biology, to identify subtypes of diffuse
large B-cell lymphoma [18], breast cancer [19], lung can-
cer [20] and melanoma [21]. We chose to examine the
genetic underpinnings of sepsis because it is a highly
complex, multi-organ process that may defy reduction to
traditional clinical parameters. Moreover, the differences
in clinical course and response to therapy in sepsis are
not fully explained by clinical characteristics alone.
We identified two sepsis subtypes based on gene

expression profiles among patients meeting traditional
diagnostic criteria for sepsis. We used multiple objective
measures with two different clustering algorithms, to
validate the number of clusters in the cohort, as well as a
multifaceted approach to identify the subset of genes that
were most discriminatory for classification purposes.
This method combines domain knowledge derived from
Genbank with an iterative approach designed to produce
a subset of genes that was enriched for use in cluster
identification. Importantly, we then returned to the com-
plete set of genes and identified a larger subset based on
differential expression, thus maximizing the opportunity
to derive new knowledge about the role in sepsis of genes
not previously associated with this disease. Our results
show increasing cluster stability with each successive step
of the gene signature discovery process. Moreover, we
observed excellent agreement between clustering
methods.
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Figure 1 Results of PAM clustering through successive enrichment stages. In each plot, the patients are plotted within a two-dimensional
space representing the greatest proportion of the variation in the dataset. The points in the first plot are colored according to the cluster
assignments from the initial solution based on 365 sepsis-related genes found in Genbank. The colors in the second and third plots reflect the
clustering from the preceding step. The symbols in each plot are determined by the results of the clustering at that stage. (A) Initial clustering
based on the sepsis-specific genes found in Genbank. (B) Results of clustering following the 100-fold gene enrichment step. (C) Clustering based
on the genes that were found to show differential expression after the SAM enrichment step.
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The subtype 1 gene expression profile was character-
ized by significantly increased expression of genes
involved in inflammatory and Toll receptor mediated
signaling pathways, and was associated with a higher
prevalence of severe sepsis. These signaling pathways
have been shown previously to be dynamically expressed
in the course of sepsis, and to correlate with sepsis

severity [22-24]. Other clinical attributes, including age,
severity of illness scores, mortality and need for organ
support, were similar between the two subtypes.
Expression differed significantly for a number of phar-

macogenes of drugs found to have inconsistent effects
in severe sepsis and septic shock. This heterogeneity of
pharmacogene expression may have contributed to the
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Figure 2 Heatmap showing the results of hierarchical clustering of the derivation dataset. Clustering is based on the genes identified by
the enrichment process described. Results are based on Minkowski distance and Ward’s method of agglomeration. The color bars at the top of
the heatmap represent the cluster assignments determined by PAM clustering. The colored bar next to the row dendrogram shows the co-
expressed genes that were used as the final gene signature.
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negative results of large-scale RCTs, as only a subgroup
of the participants may have responded to the treatment
under investigation. In particular, the two-fold difference
between subtypes in the expression of Factor V could
have a significant impact on the efficacy of drotrecogin
alpha, which targets this protein specifically.
We also observed a three-fold difference in the

expression of ALOX5, a key component in the metabo-
lism of leukotrienes that has been shown in mouse
knockout models to worsen sepsis-induced multiple
organ injury, and that is also mediated by glucocorticoid
activity [25]. More recently, the combined COX-2 and
ALOX5 inhibitor flavocoxid has shown significant effi-
cacy in a mouse cecal ligation and puncture model of
sepsis [26]. This compound, already used in the United
States for the treatment of osteoarthritis, therefore
shows promise as a potential therapy for sepsis. Our
results suggest that patients may respond differently to
this agent depending on their gene expression pattern.
Stratifying patients according to gene expression subtype
might, therefore, be one way of increasing the likelihood
of obtaining meaningful results from future clinical trials
of this agent.
Analysis of the gene signature also revealed significant

differences between subtypes in the levels of gene
expression for key pathways, including cytokine and
Toll receptor mediated signaling pathways, that play
central roles in the pathogenesis of sepsis [27,28]. This
result may also be of therapeutic importance, as novel
agents targeting Toll-like receptor pathways are being

investigated for the treatment of sepsis [29]. Differential
expression of genes in the target pathway among
patients meeting clinical enrollment criteria could theo-
retically predispose such trials to heterogeneous treat-
ment effects.
A study similar to ours by Wong et al. identified three

molecularly distinct subtypes in pediatric sepsis, one of
which was associated with higher severity of illness
scores, and increased mortality [5]. Our study differs
from this work in a few important ways. First, there are
important differences in the pathophysiology of sepsis
between children and adults that could lead to differ-
ences in gene expression profiles between these two
groups [30]. Second, our method for determining the
optimal number of subtypes was based on internal
metrics of clustering success, rather than an a priori deci-
sion. Third, we used both PAM and hierarchical cluster-
ing, rather than K-means clustering, which may have
different performance characteristics depending on the
nature of the dataset in question. Fourth, we used gene
expression data derived from neutrophils, while the study
by Wong et al. used whole blood, which reflects expres-
sion from all leukocyte subtypes, weighted by their rela-
tive abundance at the time of sampling [31]. Lastly, our
initial clustering was based on a subset of genes known
from the literature to have relevance to sepsis, with sub-
sequent clustering based on refinements of this gene sig-
nature by an iterative enrichment process. In the case of
Wong et al., clustering was carried out on a subset of
genes chosen based on differences in expression levels
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between patients with sepsis and non-sepsis controls.
This latter approach has the potential to exclude genes
that may be important in differentiating sepsis subtypes,
rather than differentiating sepsis from controls.
Our results highlight the complexity and heterogeneity

of sepsis at the molecular level, a finding in keeping with
those of a recent systematic review on the subject [32].
Its strengths include the use of separate derivation and
validation cohorts, the use of objective measures of inter-
nal cluster validity, and the use of two different clustering
algorithms. Linkage to clinical data helped to characterize
the validation cohort in terms of demographic character-
istics and outcomes. We also used an approach with both
knowledge-based and algorithmic components in order
to reduce the feature space within which observations
were clustered.
There are a number of limitations that must be

addressed. First, the microarray data used in this analysis

were obtained from neutrophils collected within
24 hours of admission to the ICU. While it has been sug-
gested that the tissue used and timing of microarray ana-
lysis could have a significant impact on gene expression
studies in sepsis [33], the experimental conditions were
similar for all patients and for both cohorts, so that dif-
ferences between individual patients should be mini-
mized. Nonetheless, gene expression profiles are known
to change rapidly in the early stages of injury and sepsis,
and may in fact follow a trajectory between different
states of immunostimulation [33,34]. Though the sub-
types identified in our study showed good separation,
they were not perfectly distinct. One possible interpreta-
tion of this result is that the overlap reflects sampling of
patients in transitional states.
Second, the initial gene subset selection based on the

Genbank search may have diminished the opportunity
to discover expression differences among genes not

−40 −20 0 20 40

−
20

−
10

0
10

Validation cohort clustering

Component 1

C
om

po
ne

nt
 2

Figure 4 Validation cohort clustering. Clusters resulting from assignment of the validation cohort samples to the closest derivation medoid.

Maslove et al. Critical Care 2012, 16:R183
http://ccforum.com/content/16/5/R183

Page 7 of 11



otherwise known to be related to sepsis. We aimed to
mitigate this effect by returning to the complete gene
set prior to the final enrichment step, so as to allow the
inclusion of any gene represented in the array.
Third, we did not collect data regarding ethnicity,

which might affect gene expression levels and act as a
confounding factor [35], or drug exposure, which would
have been valuable in further exploring the differences
in pharmacogene expression between subtypes.

Lastly, we note that clustering algorithms applied to
microarray data must be used with caution, as these will
invariably identify clusters [36]. Knowing whether such
clusters reflect truly distinct subtypes, rather than arti-
facts of the datasets, remains a challenge to unsupervised
machine learning methodologies in general. Nonetheless,
an approach similar to ours has been used successfully in
the past in other domains, including cancer [18-21,37]
and Parkinson’s disease [38], as well as in pediatric sepsis
[5-7]. To guard against false cluster discovery, we
employed an objective measure of cluster validity, and
reproduced the result using two different clustering algo-
rithms, in two independent datasets. Furthermore, we
believe the existence of two separate clusters to be biolo-
gically plausible, insofar as the gene signature used to dis-
tinguish them includes a number of genes and pathways
known to be important in the pathophysiology of sepsis
and inflammation.
Our results are based on retrospective data and explora-

tory data analyses and, as such, cannot definitively prove
the existence of non-overlapping genetic subtypes, nor
define a gene signature for clinical use in the treatment of
sepsis. Rather, our study is preliminary in nature and
intended to be hypothesis generating.
Further gene expression studies of sepsis should focus

not only on differentiating sepsis from controls, but sepsis
subtypes as well. In this endeavor, a rich clinical database
that includes information regarding patient ethnicity,
drug exposure, and status at the time of sample collection,
will assist in the interpretation of findings, and the

Table 1 Pathway analysis using the gene signature discovered during the identification of sepsis subtypes

Pathway P-value Bonferonni

Inflammation mediated by chemokine and cytokine signaling pathway 2.70E-08 0.0000048

Toll receptor signaling pathway 7.66E-05 0.0135

T cell activation 4.75E-03 0.835

p38 MAPK pathway 5.38E-03 0.946

JAK/STAT signaling pathway 7.59E-03 1

Beta3 adrenergic receptor signaling pathway 0.02 1

Integrin signalling pathway 0.02 1

B cell activation 0.02 1

Interferon-gamma signaling pathway 0.02 1

Opioid prodynorphin pathway 0.02 1

Opioid proenkephalin pathway 0.02 1

5HT4 type receptor mediated signaling pathway 0.02 1

Opioid proopiomelanocortin pathway 0.03 1

Salvage pyrimidine deoxyribonucleotides 0.03 1

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway 0.04 1

Nicotinic acetylcholine receptor signaling pathway 0.04 1

Parkinson disease 0.04 1

Beta2 adrenergic receptor signaling pathway 0.04 1

Beta1 adrenergic receptor signaling pathway 0.04 1

5HT1 type receptor mediated signaling pathway 0.04 1

Table 2 Comparison of clinical attributes between the
two sepsis subtypes defined by gene expression profiles

Clinical attribute Subtype 1 Subtype 2 P-value

Mortality (%) 36 33 1

Male (%) 60 64 0.80

Severe sepsis (%) 36 9 0.009

Septic shock (%) 44 64 0.13

Ventilated (%) 60 56 0.80

Dialysis (%) 8 18 0.31

Vasopressors (%) 28 49 0.13

Gram positive (%)* 62 42 0.26

Gram negative (%)* 57 71 0.38

Length of stay (days) 45 31 0.23

Age 63 66 0.56

APACHE II 19 19 0.78

SAPS II 39 45 0.10

APACHE III 70 70 0.93

*Percentage of patients who were culture positive. Four patients from each
subtype had both Gram positive and Gram negative organisms isolated.
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conceptualization of subtypes in clinical practice. Further-
more, the results of pharmacogene expression analysis may
be important in planning future RCTs of sepsis therapies,
and in guiding treatment for patients with severe sepsis and
septic shock.

Conclusions
We present a novel method for the identification of
molecularly distinct sepsis subtypes based on gene

expression profiling in critically ill adults. We identified
two subtypes that showed significant differences in the
expression of genes related to well known sepsis path-
ways and therapeutics, and were associated with sepsis
severity. Our results may help to explain negative or
conflicting results in clinical trials of sepsis therapies, in
which patients with heterogeneous genetic responses to
the treatment in question may be inadvertently grouped
together. As the availability of microarray-based diag-
nostics increases, their use in stratifying patients
enrolled in sepsis trials should be explored.

Key messages
• A lack of specificity of the diagnostic criteria for
sepsis may lead to the inadvertent grouping together
of physiologically disparate disease states into the
same category.
• We used novel bioinformatics methods that com-
bine domain knowledge and cluster analysis to iden-
tify two subtypes of sepsis based on gene expression
profiles in critically ill adults.
• There were a number of significant differences
between subtypes, including the prevalence of
severe sepsis, as well as differences in the level of
expression of genes relating to known sepsis path-
ways, and pharmacogenes relevant to sepsis
therapies.
• These differences may explain in part the inconsis-
tent results seen in sepsis clinical trials, and suggest
new ways of stratifying patients in the future.

Additional material

Additional file 1: Bootstrapping cluster analysis. Bootstrapping
analysis of the derivation cohort with k=2, and 200-fold re-sampling.
Hierarchical clustering was used, with Euclidean distance and Ward’s
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Figure 5 Clinical features of the validation cohort. Differences in clinical features between the two subtypes. Asterix signifies P < 0.05. LOS,
length of stay.

Table 3 Differences in expression of relevant
pharmacogenes between the two sepsis subtypes

Gene ID Fold change

drotrecogin alpha

TFPI 1.74

SERPINB2 1.61

CP 1.52

GGCX 1.49

SERPIND1 1.58

SERPINB6 1.82

SERPINE1 1.43

THBD 0.53

F5 0.48

Vasopressin

GNG11 1.73

GNG5 1.43

GNAQ 0.58

Hydrocortisone

ALOX5 0.34

ANXA1 0.64

Norepinephrine

NNMT 1.32

MOXD1 1.42

Fold change based on significance analysis of microarrays (SAM), with q-value
for each gene listed equal to 0. Values shown represent expression ratio of
type 2 relative to type 1.
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method for agglomeration. Color map values range from pure blue
(the samples are in the same branch 0% of the time) to pure yellow (the
samples are in the same branch 100% of the time). (A) Result using
the initial gene set derived from Genbank. (B) Results following the gene
enrichment stages. Analysis carried out in R using the ClassDiscovery
package.

Additional file 2: Distributions of gene expression values. Density
plots for the 50 genes with highest bimodal index.

Additional file 3: Sepsis subtype gene signature . Gene signature
derived from the overlap of co-expressed genes in the derivation and
validation cohorts.
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