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Abstract

Introduction: Glycemic variability as a marker of endogenous and exogenous factors, and glucose complexity as a
marker of endogenous glucose regulation are independent predictors of mortality in critically ill patients. We
evaluated the impact of real time continuous glucose monitoring (CGM) on glycemic variability in critically ill
patients on intensive insulin therapy (IIT), and investigated glucose complexity - calculated using detrended
fluctuation analysis (DFA) - in ICU survivors and non-survivors.

Methods: Retrospective analysis were conducted of two prospective, randomized, controlled trials in which 174
critically ill patients either received IIT according to a real-time CGM system (n = 63) or according to an algorithm
(n = 111) guided by selective arterial blood glucose measurements with simultaneously blinded CGM for 72 hours.
Standard deviation, glucose lability index and mean daily delta glucose as markers of glycemic variability, as well as
glucose complexity and mean glucose were calculated.

Results: Glycemic variability measures were comparable between the real time CGM group (n = 63) and the
controls (n = 111). Glucose complexity was significantly lower (higher DFA) in ICU non-survivors (n = 36) compared
to survivors (n = 138) (DFA: 1.61 (1.46 to 1.68) versus 1.52 (1.44 to 1.58); P = 0.003). Diabetes mellitus was
significantly associated with a loss of complexity (diabetic (n = 33) versus non-diabetic patients (n = 141) (DFA:
1.58 (1.48 to 1.65) versus 1.53 (1.44 to 1.59); P = 0.01).

Conclusions: IIT guided by real time CGM did not result in significantly reduced glycemic variability. Loss of
glucose complexity was significantly associated with mortality and with the presence of diabetes mellitus.

Introduction
Glucose control in critically ill patients has been a highly
disputed topic since 2001, when van den Berghe et al.
showed that intensive insulin therapy (IIT) (mean glucose
levels ≤6.11 mmol/L) could reduce the morbidity and
mortality of patients in surgical ICUs by 42% [1]. However,
subsequent studies came to inconclusive findings [2].
Recently, several retrospective trials found glycemic varia-
bility per se to be associated with mortality in critically ill
patients, independent of mean glucose concentration [3-9].
The measure glycemic variability describes fluctuations

of blood glucose over time. As glucose fluctuations are not

covered by mean glucose, glycemic variability has been
suggested as an additional measure for glucose control.
Glycemic variability is represented by standard deviation
(SD), mean daily δ blood glucose or glucose lability index
(GLI). SD is the most commonly used parameter and is
calculated as the square-root of the average of the squared
differences between individual glucose values and the
mean. Mean daily δ blood glucose describes the mean of
the daily difference between minimum and maximum
blood glucose. These two measures do not take order and
timing of measurements into account. GLI is the squared
difference between consecutive blood glucose levels per
unit of actual time between the samples. GLI considers
the time between and the order of measurements.
Although no gold standard of measuring glycemic variabil-
ity has been established yet, SD seems to be the best pre-
dictor of mortality [10].
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In a prospective study of septic critically ill patients a
significant association between high glycemic variability
and mortality was found [11]. These results are consis-
tent with in vitro data showing that short-time fluctua-
tions of glucose levels induce endothelial cell damage
and apoptosis [12]. Moreover, a significant association
between glycemic variability and 8-iso prostaglandin F2a,
a marker of oxidative stress and potential mediator of
organ dysfunction, has been shown in diabetic type 2
patients [13]. Minimal glycemic variability has been pro-
posed to become the gold standard of glycemic control
in diabetic patients [14].
Glycemic variability depends on both endogenous

patient-specific factors such as severity of disease and
diabetes status [15], as well as exogenous factors such as
type and quality of glucose monitoring, the glucose algo-
rithm used for the calculation of the insulin rate, compli-
ance of the nursing staff with the recommendations of
the protocol and application of medication including ent-
eral and parenteral nutrition. As the endogenous glucose
regulation system can hardly be influenced, glycemic
variability needs to be improved by acting on the exogen-
ous factors. Besides well-trained nursing staff and contin-
uous application of medication, appropriate glucose
monitoring is suggested to minimize blood glycemic
variability. Therefore, the need for real time continuous
glucose level reporting has been emphasized numerous
times [16,17]. Subcutaneous continuous glucose monitor-
ing (CGM) systems provide both real time capability and
adequate accuracy in medical critically ill patients includ-
ing those requiring vasopressors [18].
Although IIT may be associated with increased glyce-

mic variability [7] we hypothesized that IIT guided by
real time glucose monitoring would decrease glycemic
variability. Thus, we aimed to evaluate the impact of
real time CGM on glycemic variability in critically ill
patients.
More importantly, by using CGM devices valuable

insights into glucose regulation are possible. While glu-
cose variability can be calculated using conventional
blood glucose measurements every four to six hours,
glucose complexity calculation requires the availability
of continuous glucose data. Recently, in critically ill
patients glucose complexity has been proposed as a
marker of endogenous glucose regulation [19].
Glucose complexity is a dynamic measure of glucose

time series and, therefore, seems to provide more power-
ful information on endogenous glucose regulation than
does conventional glycemic variability analysis. In con-
trast to glycemic variability that describes the magnitude
of glucose fluctuations over several hours, glucose com-
plexity is proposed as a measure of short-term glucose
oscillations. Glycemic variability depends on endogenous
and exogenous factors, whereas glucose complexity is

proposed as a description of the endogenous glucose reg-
ulation system that is independent from exogenous fac-
tors. Lundelin et al. hypothesized that in a healthy
regulatory system, glucose levels are corrected frequently
and result in a ‘complex’ glucose profile [19]. However,
in critically ill patients a decomplexification of glucose
regulation was suggested [20]. Low complexity represents
the inability of the patient to correct glucose fluctuations
frequently and quickly.
In a small number of patients glycemic profile was

shown to be more complex in ICU survivors than in ICU
non-survivors [19]. However, this has not been confirmed
in a large group of critically ill patients. Therefore, we
investigated the role of glucose complexity in a large
group of critically ill patients.
The primary hypothesis is that real-time CGM gui-

dance of IIT is associated with decreased glycemic varia-
bility in critically ill patients. The secondary hypothesis of
the study is that glucose complexity is independently
associated with increased mortality.

Materials and methods
Data analysis was approved by the ethics committee of
the Medical University of Vienna. Because of the retro-
spective character of the analysis the need for informed
consent was waived by the institutional review board.

Patients and setting
This is a post-hoc analysis of two prospective, randomized
controlled trials conducted in an eight-bed closed medi-
cal ICU at the University Hospital of Vienna, Austria
[21,22]. During the period from April 2005 to August
2008 a total of 983 critically ill patients were admitted,
728 of whom were ventilated. A total of 174 consecutive,
mechanically ventilated and sedated patients fulfilling the
inclusion criteria (age ≥18, expected to stay ≥48 hours in
the ICU after initiation of IIT) were enrolled in the study
within 48 hours after ICU admission. Patients were not
enrolled in the study if any of the following criteria were
present: ICU stay expected to be <48 hours, mechanical
ventilation not expected for >48 hours, inclusion in
another study, no CGM device available during the
screening phase or glucose values in the normal range
without insulin therapy.
The original objectives of the two studies were to evaluate

the impact of circulatory shock requiring norepinephrine
therapy on the accuracy and reliability of a subcutaneous
CGM sensor in critically ill patients [21] and to evaluate the
impact of real-time CGM on glycemic control and risk of
hypoglycemia in critically ill patients [22].

Research design
To evaluate the impact of real time CGM on glucose
variability, data on patients allocated to two groups (real
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time CGM, n = 63 and controls, n = 111) were
analyzed.
All included patients were treated with IIT to main-

tain glucose levels between 4.44 and 6.11 mmol/L.
In the control group insulin infusion rates were guided

by selective arterial blood glucose measurements,
obtained using an automated blood gas analyzer (Radio-
meter ABL 700®, Copenhagen, Denmark). IIT was per-
formed by the nursing staff according to a previously
described dynamic paper-based insulin titration algo-
rithm [23] based on the algorithm used in the Leuven
studies [1,24]. This algorithm prescribes the insulin infu-
sion rate, time of next glucose measurement (between
one and six hours), and, in the case of hypoglycemia, dex-
trose administration depending on glucose levels and glu-
cose trends. Consequently, it defines nine different states
requiring different actions, although leaving space for
interpretation by the responsible nurse [22]. In the con-
trol group glucose levels were additionally recorded con-
tinuously using the Continuous Glucose Monitoring
System® (CGMS, Medtronic MiniMed, Northridge, CA,
USA), but were blinded and available only in retrospect.
In the real time CGM group, IIT was performed by

the nursing staff and insulin infusion rates were guided
by continuously available glucose levels using the Guar-
dian® real time CGMS (Medtronic MiniMed) according
to the algorithm used in the control group. In contrast
to the control group, nurses were requested to take real
time glucose readings in close intervals according to
clinical necessity at personal discretion, however at least
every two hours [22].
To investigate glucose complexity detrended fluctua-

tion analysis (DFA) [19] was calculated for ICU survivors
(n = 138) and ICU non-survivors (n = 36). Furthermore,
we evaluated glucose complexity in diabetic (n = 33) and
non-diabetic (n = 141) patients.

Real time continuous glucose monitoring system
(real time CGMS)
The Guardian® real time CGMS has been described in
detail previously [22]. Briefly, it displays a mean of 30
glucose measurements over the last five minutes on a
monitor, allowing glucose monitoring in real time. The
real time CGMS was calibrated against blood glucose
measurements, obtained using an automated blood gas
analyzer, at least four times per day (every five to six
hours). Sensors were planned to stay in place for
72 hours.

Continuous glucose monitoring system (CGMS)
The CGMS has been described in detail previously [22].
Briefly, it is equivalent to the Guardian® real time CGMS,
except it is lacking the capability to display glucose con-
centration in real time. Glucose concentrations were

recorded continuously in an internal monitor blinded to
the study team and obtained after the trial for further
analysis.

Statistical analysis
To evaluate the impact of real time CGM on glucose
variability as a marker of exogenous glucose regulation,
we used linear regression analyses with glycemic variabil-
ity, represented as SD (GluSD), glucose lability index
({∑(Glun - Glun+1 (mmol/L))2*(hn+1 - hn)

-1)*(number of
readings)-1 or mean daily delta (difference between mini-
mum and maximum) glucose as primary outcome and
real time versus concealed CGMS (controls) as predictor.
Secondary endpoints were coefficient of variation (CV)

of glucose (GluSD/Glucose mean (%)), variability or
mean of glucose during the first 24 hours, maximum
glucose during ICU stay.
To investigate glycemic dynamics and its relation with

mortality in critically ill patients we used glucose complex-
ity as the main risk factor and ICU mortality as outcome.
Glucose complexity is proposed as the representation of
the endogenous glucoregulatory process. Although it is
similar to glucose variability it is able to detect minor sys-
temic alterations in endogenous glucose regulation. In a
healthy regulatory system, glucose levels are corrected fre-
quently and result in a ‘complex’ glucose profile. However,
in critically ill patients a decomplexification of glucose reg-
ulation was suggested [20].
Glucose complexity was calculated using DFA. DFA is

a unitless metric that estimates the degree of long-range
correlations within a signal, analyzing how the time series
and its linear regression diverge as the ‘time window’
considered increases. As a rule of thumb, higher com-
plexities are displayed as lower DFA (until a minimum of
0.5). Details on DFA can be found elsewhere [19].
Glucose complexity was normally distributed as

assessed by visual inspection of a histogram but not line-
arly related with mortality as assessed with a test for
deviation from linearity in a logistic regression model.
We found a good fit with a quadratic function and
entered a quadratic term into the model as a conse-
quence. We assessed whether this association was modi-
fied by diabetes by testing the significance of the
interaction term in such a model using a Wald test. To
allow for the influence of other variables on the effect of
glucose complexity we entered SAPS II (Simplified Acute
Physiology Score) score, age (years), sex, and diabetes
(yes versus no) as covariables into our model. These cov-
ariables were selected a priori. As we merged patients
from two studies into this database we used a multivari-
ate mixed effects logistic regression model to additionally
allow for potential clustering within each of the two stu-
dies. As sensitivity analyses we used robust estimations
instead which yielded virtually the same results.
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We assessed the impact of the method of glucose
determination (CGMS versus blood gas analyzer (BGA))
on the glucose variability measures SD, CV, GLI and
mean daily delta glucose by calculating them from
CGMS and BGA values in all patients.
Data are presented as mean ± standard deviation,

median (25th to 75th percentile) or absolute count and
relative frequency. For bivariate comparisons we tabu-
lated data and used simple one-way analysis of variance
(ANOVA), Mann-Whitney rank sum test or a chi2-
test as appropriate to test the null hypothesis of no
difference.
For data management and analyses we used Excel for

Mac 2011 and STATA 11.0 for Mac (Stata Corp., Col-
lege Station, TX, USA). Generally a two-sided P-value
<0.05 was considered statistically significant.

Results
Baseline characteristics
Baseline characteristics of 174 critically ill patients
receiving IIT either guided by a real time CGM system
or by selective arterial blood glucose measurements with
simultaneously blinded CGM can be found in Table 1.
Mean CGM time was 59.2 ± 14.7 hours (RT CGM
group); 7.0 ± 1.6 BGA readings per patient in 24 hours
were taken in the control group.

Differences in glycemic metrics between patients using
real time CGM and controls
The use of real time CGM did not have any impact on
the measures of glycemic variability, glucose complexity
and maximum glucose (Table 2).

Differences in glycemic metrics between ICU survivors
and non-survivors
Measures of glycemic variability, mean glucose and hypo-
glycemia were similar between ICU survivors and ICU
non-survivors, whereas glucose complexity was signifi-
cantly lower in non-survivors (Table 3).
These measures were similar in hospital survivors and

non-survivors (data not shown).

Diabetic status and glucose complexity
The presence of diabetes was significantly associated with
a loss of complexity (higher DFA) (diabetic (n = 33) versus
non-diabetic patients (n = 141): DFA 1.58 (1.48 to 1.65)
versus 1.53 (1.44 to 1.59); P = 0.01). This difference per-
sisted even after correcting for survival (P = 0.027).

Multivariate analysis of glucose complexity and mortality
Although glucose complexity was significantly lower in
non-survivors, relation between glucose complexity and
mortality was not linear but can be described best with a
quadratic function: logodds (ICU survival) = (-0.09 *
DFA decile)2 + 0.64 * DFA decile + 1.07, where DFA dec-
ile (from 0 to 9) represents one tenth of DFA values in
increasing sequence (Figure 1).
The difference of glucose complexity between survivors

and non-survivors was confirmed in a binary logistic
regression analysis with ICU mortality as outcome and
glucose complexity, as well as age, BMI, gender, diabetes
status and SAPS II as co-factors. In this model only DFA
was significantly associated with mortality.
The glycemic variability measures SD, CV and GLI

were significantly higher while mean daily delta glucose

Table 1 Admission reason and baseline characteristics.

Real time CGM [21] Controls [21,22] Total [21,22]

Included Patients 63 111 174

Admission reason Number of patients (% of patients in the category)

Respiratory failure 15 (24) 23 (21) 38 (22)

CPR 12 (19) 27 (24) 39 (22)

Sepsis/Septic shock 13 (20) 24 (22) 37 (21)

Heart failure 8 (13) 21 (19) 29 (17)

Neurologic disease/Coma 9 (14) 10 (9) 19 (11)

Pulmonary embolism 3 (5) 3 (3) 6 (3)

GI-bleeding/ALF 3 (5) 2 (2) 5 (3)

Necrotising pancreatitis 0 (0) 1 (1) 1 (1)

History of diabetes 12 (19) 21 (19) 33 (19)

Age (years) 59 ± 15 62 ± 16 61 ± 16

Gender (male/female) 41/22 64/47 105/69

BMI (kg/m²) 27.1 ± 5.1 26.4 ± 3.9 26.7 ± 4.4

SAPS II 60 ± 16 58 ± 16 59 ± 16

SOFA on admission day 11.5 ± 3.8 10.9 ± 3.5 11 ± 4

Data are means ± SD, unless otherwise stated. ALF, acute liver failure; BMI, body mass index; CPR, Cardiopulmonary resuscitation; SAPSII, Simplified Acute
Physiology Score; SD, standard deviation; SOFA, Sequential Organ Failure Assessment.
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was significantly lower when calculated from BGA com-
pared to CGMS values (Table 4).

Discussion
In this post-hoc analysis of CGM data the use of a real
time CGM did not have an impact on measures of gly-
cemic variability, glucose complexity and maximum

glucose. The loss of glucose complexity was found to be
independently associated with mortality and with the
presence of diabetes mellitus.

Glucose variability
Glycemic variability describes fluctuations of blood glu-
cose over time and is influenced by endogenous and

Table 2 Glycemic metrics in the real time CGM and control group.

Real time CGM
(number = 63) [21]

Controls
(number = 111) [21,22]

P-value

Measures of glycemic variability

Variability of glucose (SD) (mmol/L) 1.19 ± 0.49 1.27 ± 0.54 0.330

Variability of glucose (GLI) 81 (43 to 197) 126 (64 to 222) 0.247

Variability of glucose (δ) (mmol/L) 4.47 ± 2.02 4.76 ± 2.07 0.336

Coefficient of variation (%) 20 ± 7 21 ± 8 0.547

Variability of glucose during first 24 hours (SD) (mmol/L) 0.84 (0.65 to 1.33) 1.04 (0.66 to 1.40) 0.395

Variability of glucose during first 24 hours (GLI) 85 (38 to 190) 118 (60 to 207) 0.348

Variability of glucose during first 24 hours (δ) (mmol/L) 5.72 ± 2.42 5.73 ± 2.40 0.966

Measures of glucose

Mean of glucose during first 24 hours (mmol/L) 5.70 (5.19 to 6.47) 5.96 (5.48 to 6.36) 0.099

Maximum glucose (mmol/L) 9.43 ± 2.12 9.77 ± 2.26 0.329

Glucose complexity 1.54 ± 0.11 1.52 ± 0.11 0.210

Measures of IIT

Cumulative daily dose of insulin (I.U.) 45 ± 27 40 ± 23 0.239

Number of changes of the insulin infusion/24 hours 3.8 ± 1.5 3.6 ± 1.3 0.573

Extent of insulin change (%) 57 ± 19 62 ± 23 0.150

Number of BGA measurements/24 hours 7.4 ± 2.1 7.0 ± 1.6 0.217

Number of BGA not required by the algorithm/24 ha 0 (0 to 0) 0 (0 to 1) 0.238
asafety/double check BGA measurements. Data are shown as mean ± SD or median (25th to 75th percentile). BGA, blood gas analyzer; CGM, continuous glucose
monitoring; GLI, glucose lability index; IIT, intensive insulin therapy.

Table 3 Glycemic metrics in ICU survivors and non-survivors.

Real Time CGM and controls [21,22]

Survivors (number = 138) Non-survivors (number = 36) P-value

Measures of glycemic variability

Variability of glucose (SD) (mmol/L) 1.21 ± 0.49 1.39 ± 0.59 0.067

Variability of glucose (GLI) 112 (62 to 214) 126 (56 to 223) 0.468

Variability of glucose (δ) (mmol/L) 4.54 ± 2.00 5.08 ± 2.20 0.158

Coefficient of variation (%) 20 ± 7 22 ± 8 0.169

Variability of glucose during first 24 hours (SD) (mmol/L) 0.92 (0.64 to 1.32) 1.03 (0.73 to 1.46) 0.083

Variability of glucose during first 24 hours (GLI) 101 (54 to 200) 123 (54 to 198) 0.232

Variability of glucose during first 24 hours (δ) (mmol/L) 5.55 ± 2.23 6.42 ± 2.91 0.051

Measures of glucose

Mean of glucose (mmol/L) 6.03 ± 0.57 6.23 ± 0.09 0.097

Mean of glucose during first 24 hours (mmol/L) 5.89 (5.40 to 6.36) 5.74 (5.27 to 6.39) 0.414

Maximum glucose (mmol/L) 9.52 ± 2.01 10.16 ± 2.82 0.121

Glucose complexity 1.51 ± 0.10 1.58 ± 0.14 0.003

Measures of hypoglycemia

Time below 4.44 mmol/L (min/24hours) 109 (27 to 262) 120 (29 to240) 0.874

Time below 3.33 mmol/L (min/24hours) 0 (0 to 29) 0 (0 to 50) 0.864

Time below 2.22 mmol/L (min/24 hours) 0 (0 to 0) 0 (0 to 0) 0.116

Data are shown as mean ± SD or median (25th to 75th percentile). CGM, continuous glucose monitoring; GLI, glucose lability index; SD, standard deviation.
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exogenous factors. It is associated with mortality and
strategies are being sought for reducing glycemic variabil-
ity. Improved glucose variability with real time CGM was
reported in diabetic patients [25]. A possible explanation
of real time CGM not reducing glycemic variability in the
present study may be the use of an already well-estab-
lished insulin titration algorithm in the control group.
This algorithm has, in combination with the experienced
nurses and frequent BGA measurements, already shown
excellent results regarding glucose control. Hence, the
use of real time CGM may have a larger benefit in envir-
onments with less experienced and established ICU staff.
Unlike numerous reports in the literature [3,4,8-10,26],

we did not find a significant association between mortality
and glycemic variability or between hypoglycemia and
mortality, because our analysis was not powered for these
purposes.
The method and frequency of glucose determination

has a significant impact on variability measures as

already shown with mean absolute glucose change per
hour [27]. Mean daily delta was naturally higher when
calculated from CGMS compared to BGA values as the
gap between minimum and maximum glucose increases
with the number of measured values. The increase in
SD, CV and GLI calculated from BGA values may be
based on the fact that blood gases are taken more fre-
quently when a patient’s glucose levels are unstable,
resulting in virtually higher glucose variability values.
However, glucose variability measures were calculated
from CGM values in both groups in our study. There-
fore, measures between these groups are comparable.

Glucose complexity
Glucose complexity has been hypothesized as descriptive
of the endogenous glucoregulatory process and is an
independent predictor of mortality in critically ill patients
as reported by Lundelin et al. for the first time [19].
These findings have now been confirmed in a larger

Figure 1 Relation between glucose complexity and mortality. Relation between glucose complexity and mortality can be described best
with a quadratic function showing a pronounced increase in mortality with higher DFA and a moderate increase in mortality with very low DFA.

Table 4 Impact of the method of glucose determination on variability measures.

Variability measures derived from: CGMS values
(174 patients)

BGA values
(174 patients)

P value

Number of glucose measurements 140 209 3497

GLI 178 ± 188 301 ± 380 <0.01

Mean daily delta (mmol/L) 4.65 ± 2.06 3.10 ± 1.50 <0.01

SD (mmol/L) 1.24 ± 0.52 1.35 ± 0.57 <0.01

BGA, blood gas analyzer; CV, coefficient of variation; GLI, glucose lability index: SD, standard deviation.
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patient group in a medical ICU. Loss of complexity in
glucose time series was significantly associated with
higher mortality. However, the relation between glucose
complexity and mortality was not linear but can be
described best with a quadratic function with a pro-
nounced increase in mortality with higher DFA and a
moderate increase in mortality with very low DFA.
The underlying hypothesis is that the ability of a

healthy organism to detect even minor changes in glu-
cose concentration and then to follow promptly with
counter regulatory measures leads to a complex glucose
profile. In contrast, an impaired regulatory system
responds slowly and imprecisely to varying glucose con-
centrations and, therefore, displays low glucose complex-
ity [19]. The unexpected mortality increase with very
complex profiles, which has not been discussed by Lun-
delin et al. [19], cannot be explained by the present data
and needs further investigation. Therefore, the biological
explanation of the association between glucose complex-
ity and mortality in critically ill patients should still be
seen as a hypothesis.
Glucose complexity, but not SAPS II score, was signifi-

cantly associated with mortality in a binary logistic
regression analysis. However, this study was not powered
to address this association.
Moreover, the complexity of the glycemic profile was

significantly lower in diabetic, compared to non-diabetic,
critically ill patients. This is consistent with several stu-
dies assessing glucose complexity in non-critically ill dia-
betic patients [28,29] and in critically ill patients after
controlling for mortality [19]. Glucose complexity was
similar between the real time CGM and the control
group. We expected this finding, as glucose complexity
reflects the endogenous fundamental glucose regulation,
which seems autonomous from exogenous stimuli such
as insulin treatment.

Strengths and weaknesses
The present findings may be influenced by the accuracy
and method of glucose monitoring. Glucose variability
and inaccuracy of glucose monitoring may be positively
correlated [30] and glycemic variability may be underes-
timated with a higher time span between glucose mea-
surements [31].
We regard the estimation of glycemic variability in our

study acceptable based on the following factors: the
CGMS is relatively accurate, the accuracy of the CGMS is
constant at all glucose levels [18] and the time span
between glucose measurements is very small (5 minutes).
Calculation of glucose complexity is possible only with

CGM. The CGMS we used in the trial was the most
accurate system available at that time.
Furthermore, glucose variability and complexity mea-

sures are calculated from CGMS values in all patients.

Thus, a systematic error based on the CGMS would
influence both groups in the same way.
In our opinion, the advantages of the real time CGM

could not be fully utilized based on the following fac-
tors. In our algorithm decisions are primarily based on
the value of blood glucose, but not on the actual glucose
trend [21]. However, glucose trend data is, in our opi-
nion, one of the essential strengths of CGM. Therefore,
we hypothesize that a (computer-based) algorithm using
trend data for its decision process and capable of pro-
cessing the great number of glucose values of CGM
would be superior to the conventional algorithm used in
our trials.
Moreover, the CGM devices in the study were used off-

label and were originally designed for outpatients. There-
fore, the display was very small and trend data could not
be visualized. Due to the study design and because of the
impossibility of making alarms adequately audible in an
ICU environment alarm functions were not used. Devices
compensating for these shortcomings are currently under
development by several manufacturers, but were not
available when we conducted our trial.
Consequently, despite the availability of real time data,

the frequency of changes of the insulin infusion did not
increase in the CGM group (Table 2). Furthermore, the
number of BGA measurements was equal in both
groups. However, BGA are not only used for glucose
measurement in our ICU. Based on these data we con-
clude that the use of our CGMS device did not have a
significant impact on the behavior of the nursing staff in
the real time CGM group compared to the control
group.
Unlike in the study of Lundelin et al. [19], glucose

complexity metrics were convincing in our analysis
based on a relatively large patient group, standardized
beginning of CGM and calibration of CGM devices with
glucose values determined by very accurate blood gas
analyzers [32].

Conclusions
IIT guided by real time CGM did not result in signifi-
cantly reduced glycemic variability. The loss of glucose
complexity was significantly associated with mortality
and with the presence of diabetes mellitus. Thus, glu-
cose complexity is an excellent measure of the endogen-
ous glucose regulation and a robust parameter of the
severity of disease in critically ill patients. In the future -
when continuous glucose monitoring may become stan-
dard in the ICU - glucose complexity may add to clini-
cal scores in this regard.

Key messages
• IIT guided by real time CGM did not lead to reduced
glycemic variability
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• The loss of glucose complexity is associated with
mortality and diabetes mellitus in critically ill patients
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