
Clinical scenario

You are the attending intensivist in a neurointensive care 

unit. A 45-year-old woman is fi ve days post-rupture of a 

cerebral aneurysm (World Federation of Neurological 

Surgeons Grade 4 and Fisher Grade 3). She is intubated 

and receiving mechanical ventilation for airway protec-

tion and mild hypoxemia presumed to be secondary to an 

aspiration event at the time of aneurysm rupture. She 

does not meet criteria for acute respiratory distress 

syndrome (ARDS) [1]. She currently localizes and opens 

eyes only to painful stimuli. Th e intracranial pressure is 

normal (9  mmHg) as measured by an externalized 

ventricular drain. She is spontaneously hyperventilating 

with high tidal volumes despite minimal ventilatory 

support, and has developed signifi cant hypocapnia (partial 

pressure of arterial carbon dioxide (PaCO2) 25  mmHg) 

over the past 12 hours.

You know that hypocapnia is associated with poor 

neuro logical outcomes in other brain injuries, but recog-

nize that controlling PaCO2 would require sedation and 

paralysis, thus precluding frequent neurological monitor-

ing should she develop delayed cerebral ischemia from 

vasospasm. You estimate her risk of delayed cerebral 

ischemia to be 30%. In addition, you know that if she 

were to develop ARDS, provision of tidal volume limited 

ventilation is associated with improved mortality, but 

permissive hypercapnia may put her at risk for 

intracranial hypertension.

You ask yourself if the benefi ts of aggressively managing 

this patient’s PaCO2 outweigh the risks of sedation, 

paralysis and possibly a delay in diagnosing cerebral 

vasospasm and delayed ischemia.

Introduction

Neurological injuries are one of the most common 

reasons for initiating mechanical ventilation in the ICU 

[2]. Provision of mechanical ventilation to brain-injured 

patients is complex. Th ese patients are likely to be less 

forgiving of changes in arterial partial pressure of carbon 

dioxide (PaCO2) and the hemodynamic compromise 

associated with positive pressure ventilation.

Induced hyperventilation with hypocapnia is frequently 

observed in patients with brain injury who receive 
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clinical issues at hand.
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mechanical ventilation [3]. Historically, induced hypo-

capnia has been utilized as a method to treat acute 

elevations in intracranial pressure (ICP) or to decrease 

cerebral hyperemia following traumatic brain injury. 

However, acute hypocapnia can also reduce brain perfu-

sion suffi  ciently to induce brain ischemia and neuronal 

injury. Indeed, hypocapnia has been independently asso-

ciated with worse outcomes in a variety of brain injuries 

[4-7]. In a randomized controlled clinical trial of patients 

with traumatic brain injury (TBI), those receiving moderate 

prophylactic hyperventilation, as compared with those 

with mild hyperventilation, had worse outcomes [8].

Patients with acute brain injuries may have sponta-

neous hyperventilation leading to hypocapnia and 

respiratory alkalosis. Although the eff ects of spontaneous 

hypocapnia on brain perfusion are not diff erent to those 

in patients with induced hypocapnia, it is unclear 

whether controlling PaCO2 to protect cerebral perfusion 

off sets the potential complications of the requirement for 

sedation and neuromuscular blockade. In the absence of 

data demonstrating how to weigh these competing risks, 

clinicians are faced with a dilemma.

In this article we will explore the advantages and 

disadvantages of controlling hypocapnia in brain injury, 

in the context of the aforementioned scenario of a patient 

with an aneurysmal subarachnoid hemorrhage who is 

now spontaneously hyperventilating. For the rest of this 

article, we assume hypocapnia to mean hypocapnia with 

respiratory alkalosis, to diff erentiate it from compensa-

tory hypocapnia found with metabolic acidosis or other 

metabolic derangements.

Background

Hypocapnia and cerebral hemodynamics

Arterial levels of carbon dioxide (PaCO2) are maintained 

through a balance between production and elimination 

of carbon dioxide. In the physiological state, low PaCO2 

is usually the result of an increased rate of carbon dioxide 

elimination through increased alveolar minute ventilation 

(that is, hyperventilation).

Carbon dioxide is a potent vasodilator of the cerebral 

vasculature, and hypocapnia causes rapid arterial con-

striction and a reduction in cerebral blood fl ow (CBF). 

Th is reduction in CBF is related to changes in pH within 

the perivascular space of the small arterioles of the brain 

[9,10]. Th is eff ect is dramatic: some studies have reported 

decreases in cerebral perfusion as much as 3% for every 

1 mmHg reduction in arterial PaCO2 [11]. Furthermore, 

in healthy volunteers, CBF can be reduced by over 30% 

with hyperventilation [10]. However, the acute reduction 

in CBF mediated by hypocapnia is short-lived. As the 

perivascular space is buff ered, local pH drops towards 

normal and cerebral vasculature acclimatizes to a lower 

PaCO2. Th is buff ering occurs within 6 to 12 hours after 

the onset of hypocapnia, with substantial restoration of 

CBF towards baseline observed as early as 30  minutes 

after onset of hypocapnia in both healthy volunteers and 

brain-injured patients [9,10].

Historical uses of induced hypocapnia

Induced hyperventilation with hypocapnia has been used 

for the acute treatment of intracranial hypertension and 

critically raised ICP. In patients with high ICP, reductions 

in CBF and the resultant decrease in intracranial blood 

volume can provide a lifesaving, albeit temporary, 

decrease in ICP and restoration of cerebral perfusion 

pressure. It is important to note that the extent to which 

ICP changes with decreasing CBF depends on the 

pressure-volume status of the cranial vault. Because the 

volume of the cranium is fi xed, in the normal state any 

increases in the volume of intracranial brain or blood are 

accommodated by displacement of cerebrospinal fl uid 

(CSF) into the thecal space, thus preventing life-threaten-

ing increases in ICP. In cases where intracranial com-

pensatory reserve is low or exhausted (the CSF-fi lled 

ventricles are collapsed or obstructed), even small 

changes in cerebral blood volume may result in large 

changes in ICP, and hence the effi  cacy of acute induced 

hypocapnia in life-threatening intracranial hypertension 

[11].

Longer-term and prophylactic use of induced hypo-

capnia has been more controversial and its use has waxed 

and waned over the past four decades. Mild to moderate 

hypocapnia is commonly observed in brain-injured 

patients who receive mechanical ventilation both within 

[3] and outside of the hospital [12]. Th is occurs despite 

the current recommendation of major TBI treatment 

guidelines to maintain eucapnia and avoid chronic or 

prophylactic hyperventilation [13].

Pro: Tight control of PaCO2 is indicated in this 

patient with acute brain injury

Proponents of tight control of PaCO2 in brain injury 

contend that hypocapnia is associated with deleterious 

reductions in CBF, thus increasing the potential for 

cerebral ischemia in a vulnerable, acutely injured brain. 

Th ere is a substantial amount of data demonstrating that 

hypocapnia induces cerebral ischemia and metabolic 

crisis [14-17]. Furthermore, there are data linking induced 

hypocapnia with poor clinical outcomes in a variety of 

acute brain injuries [4-6,8,18,19].

Hypocapnia decreases cerebral perfusion and induces 

cerebral ischemia

In contrast to patients with critical intracranial hyper-

tension, hypocapnia in other patient populations is 

associated with a reduction in CBF. Reductions in CBF 

may put brain tissue at risk of ischemia and irreversible 
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infarction, and the acutely injured brain may be at 

increased risk as cerebral perfusion and metabolism is 

already compromised. Hypocapnia is one of the most 

common identifi able causes of jugular venous oxygena-

tion desaturation [20-22], decreased brain tissue oxygen 

tension [23,24] and cerebral hypoperfusion evident on 

imaging studies [15,16].

Most existing data suggest that hypocapnia-induced 

decreases in brain perfusion lead to brain tissue ischemia. 

Although an acutely injured brain may be relatively 

protected from ischemia in the face of decreasing CBF by 

(1) lower metabolic requirements and (2) an increased 

oxygen extraction fraction [25,26], most studies have 

demonstrated that reduction in CBF during acute 

hypocapnia does induce brain tissue ischemia [15-17]. 

Coles and colleagues [15,16] reported that even brief 

periods of moderate hypocapnia (<34 mmHg) can result 

in a signifi cant increase in the volume of critically hypo-

perfused tissue in the injured brain and, further, an 

increase in oxygen extraction fraction. It is interesting to 

note that observed increases in hypoperfused brain 

volume occurred despite improvements in ICP and 

cerebral perfusion pressure, as well as maintenance of 

jugular venous oxygen saturation (SjvO2) levels >50% in 

all patients, a level usually interpreted as indicative of 

adequate global delivery of cerebral oxygen [16]. Another 

study, using cerebral microdialysis in patients with TBI, 

found evidence of anaerobic metabolism (defi ned as an 

increase in concentrations of glutamate, lactate and an 

increased lactate:pyruvate ratio) with hyperventilation 

[17]. Th ese fi ndings suggest that hypocapnia-related 

cerebral hypoperfusion was suffi  cient to cause metabolic 

crisis and potential neuronal injury [17]. Finally, hypo-

capnia has also been associated with excitatory cellular 

responses that may lead to secondary brain injury [27,28], 

and worsen ischemia-reperfusion injury [29,30].

Association between induced hypocapnia and poor clinical 

outcomes

Hypocapnia has been independently associated with 

poor neurological outcome in patients with a variety of 

acute brain injuries. To date, only one randomized 

clinical trial has been conducted evaluating the impact of 

induced hyperventilation on clinical outcomes in patients 

with TBI [8]. In this study, individuals receiving severe 

induced hypocapnia (PaCO2 25  mmHg) had worse 

functional outcomes compared to control (PaCO2 

35  mmHg) at three and six months. Th is diff erence 

continued out to 12  months follow-up, although it was 

not statistically signifi cant.

A signifi cant amount of observational data link hypo-

capnia with poor clinical outcomes [4-6,18,19]. Th ese 

include several studies in which pre-hospital hypocapnia 

or hypocapnia on presentation was identifi ed as an 

independent risk factor for poor outcome. Hypocapnia 

has been clearly linked to decreased brain tissue oxygen 

tension [23,24], and other observational data have linked 

duration of brain tissue oxygen tension below 15 mmHg 

with worse outcomes [31-33]. Although causal inferences 

from these observational studies are limited, the 

direction and strength of association are all consistent 

and also might suggest that the duration of hypocapnia 

required to induce signifi cant injury to a vulnerable brain 

is very short.

Finally, associations between hypocapnia and poor 

clinical outcomes or neuropsychiatric defi cits have also 

been observed during anesthesia, cardiac surgery and 

extracorporeal lung assist in patients without primary 

acute brain injury [34-38]. During general anesthesia of 

healthy individuals, the risk of transient psychomotor 

and cognitive dysfunction is increased with exposure to 

hypocapnia [34], and mitigated by higher PaCO2 levels 

during anesthesia [35]. In a study by Graziani and 

colleagues [38], lower intraoperative end-tidal carbon 

dioxide (EtCO2) values were independently associated 

with longer hospital length of stay. Further, poor 

neurological outcomes associated with low PaCO2 are 

not limited to adult populations [37,38].

Spontaneous hypocapnia

Spontaneous hyperventilation was observed in brain-

injured patients over four decades ago [39], yet little is 

known about its eff ects on brain oxygenation and clinical 

outcomes. Th e exact mechanism for spontaneous hyper-

ventilation in brain injury is unclear. Th eories include 

loss of descending inhibitory signals to the medullary 

respiratory centers, increased stimulation of J-receptors 

in the lung as a result of pulmonary edema, increased 

refl ex hypoxic respiratory drive and concurrent systemic 

infl ammatory responses [40].

Although most of the published data linking cerebral 

ischemia to hypocapnia have been in the context of 

induced hyperventilation, there is little physiologic 

rationale to suggest that spontaneous hypocapnia may be 

any less harmful than induced hypocapnia. A recent 

pros pective observational trial by Carrera and colleagues 

[14] evaluated spontaneous hypocapnia in a mixed 

population of patients with severe brain injury (Glasgow 

Coma Scale score <8), including TBI, subarachnoid 

hemorrhage and intracranial hemorrhage. Th ey found 

hypocapnia to be signifi cantly associated with an 

increased risk of brain tissue hypoxia (defi ned by brain 

tissue oxygen tension (PbtO2) <15 mmHg).

In summary, data suggest that both induced and spon-

taneous acute hypocapnia are associated with decreases 

in CBF, worsening brain tissue hypoxia, and worse 

clinical outcomes. Th ese fi ndings are consistent across 

available data from animal models, human observational 
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studies and, although limited, clinical trials. Although 

defi nitive controlled clinical trial data demonstrating 

benefi t of tight PaCO2 control in spontaneously breath-

ing patients is unavailable, proponents of such an 

approach argue that there is suffi  ciently strong rationale 

to tightly control and prevent acute hypocapnia in 

patients with acute brain injury.

Con: Tight control of PaCO2 is not indicated in this 

patient

As presented above, there is considerable data associating 

hypocapnia with deleterious eff ects on brain physiology 

and worse clinical outcomes. In light of these data, 

avoidance of hypocapnia in acutely brain-injured patients 

during controlled mechanical ventilation is appropriate 

given the possible harms.

A challenge arises, however, in intubated patients who 

are spontaneously breathing with high minute ventilation 

and resultant hypocapnia. Th ere is little physiologic 

reason to suspect that the cerebrovascular eff ects of 

spontaneous hypocapnia would be diff erent to those of 

induced hypocapnia. Th e control of PaCO2 in these 

patients, however, may require sedatives and opioids to 

blunt respiratory drive and ultimately neuromuscular 

blockade may be necessary to prevent spontaneous 

breathing or ventilator dyssynchrony. Th ese measures are 

associated with several disadvantages, including (1) drug-

related adverse eff ects (including both drug-specifi c 

eff ects as well as the risks of prolonged sedation in the 

ICU), and (2)  a decrease in clinical neuromonitoring. 

Th ere are no data demonstrating overall benefi t to 

actively controlling PaCO2 in spontaneously breathing 

patients in this scenario, so it is important to weigh the 

potential benefi ts and risks of ventilatory control for each 

patient.

The risks of sedation and neuromuscular blockade

Although sedatives are integral in the care of critically ill 

patients, multiple adverse eff ects are associated with the 

use of these agents; hemodynamic instability is commonly 

observed with increased doses of sedatives, and may 

prolong the need for mechanical ventilation [41], 

increasing the risk of pneumonia [42]. Further, the use of 

such agents has been independently associated with an 

increased risk of ICU delirium [43] and posttraumatic 

stress disorder [44]. Indeed, strategies to limit and 

prevent accumulation of sedatives have been shown to 

decrease duration of mechanical ventilation, ICU length 

of stay and posttraumatic stress disorder in survivors of 

critical illness [44-47].

Neuromuscular blockers also have adverse eff ects. 

Paralysis suppresses the cough refl ex, resulting in reten-

tion of secretions and atelectasis, both of which increase 

the risk of pulmonary infections. Prolonged immobility 

may also increase the risk of venous thromboembolic 

events, peripheral nerve injuries, skin breakdown, stasis 

ulcers, and slowed gastric motility [48]. Neuromuscular 

blockade has also been shown to be a risk factor for 

critical illness myopathy and neuropathy [49].

Sedation prevents monitoring of clinical neurologic status

Despite the aforementioned drawbacks to the use of 

sedation and neuromuscular blockade, perhaps the most 

signifi cant disadvantage to their use to control PaCO2 in 

acutely brain-injured patients is the loss of close clinical 

neuromonitoring. Although signifi cant occult secondary 

brain injury may occur following acute brain injury, 

clinical examination remains an important component of 

monitoring patients in the ICU. Surrogate markers of 

brain physiology and metabolism may be monitored 

through alternative monitoring modalities (transcranial 

doppler sonography, brain tissue oximetry, jugular bulb 

oximetry and cerebral microdialysis) [50,51], but these 

modes are often restricted to a small area of sampled 

brain and thus may not refl ect perfusion and metabolism 

of other areas of the brain.

Th e loss of clinical monitoring is particularly important 

to patients with subarachnoid hemorrhage because these 

patients are at signifi cant risk of delayed cerebral 

ischemia from vasospasm, and as such close clinical 

monitoring is important for detecting early signs of 

ischemia to prevent irreversible cerebral infarction. 

Corre lation of clinical and radiological evidence of cere-

bral vasospasm is vital as a signifi cant proportion of 

patients will develop radiographic cerebral vasospasm 

without symptoms, and vice versa. Although other 

modali ties of neuromonitoring can be used when clinical 

exams are unavailable (for example, brain tissue oxygena-

tion in traumatic brain injury), these modalities lack 

optimal sensitivity or specifi city when used as screening 

tests for cerebral vasospasm and delayed cerebral 

ischemia [52,53].

Ultra-short acting sedatives and opioids (for example, 

remifentanil) have become increasingly popular in certain 

centers caring for patients with acute brain injuries 

[54-56] because these agents potentially allow both 

control of PaCO2 and repeated rapid awakenings for 

neurological observation. Signifi cant decreases in PaCO2 

can occur as patients hyperventilate on emergence from 

sedation, only to normalize when anesthesia is re-

induced following clinical examination. It is possible that 

these repeated periods of acute hypocapnia, with 

resultant decreases in cerebral blood fl ow, may be even 

more harmful to the brain than prolonged hypocapnia 

where plasma and CSF buff ering partially normalize 

cerebral perfusion over several hours [9].

Finally, the pathophysiology leading to spontaneous 

hyperventilation following acute brain injury is not fully 
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understood. Indeed, this lack of a causal understanding 

confounds observations linking spontaneous hypocapnia 

and poor neurological outcome. It remains unclear 

whether poor outcomes observed are due to the 

hypocapnia or if the hypocapnia is simply related to the 

higher severity of illness or greater burden of brain injury.

In summary, in the setting of isolated hyperventilation 

with hypocapnia in a patient with brain injury, tight 

control of hypocapnia via controlled mechanical 

ventila tion may not be indicated given the risks of 

sedation, neuromuscular blockade, the loss of clinical 

monitoring and the lack of demonstrable overall clinical 

benefi t.

Lung protective ventilation and the risk of permissive 

hypercapnia

In the scenario presented at the beginning of this debate, 

our patient was spontaneously hyperventilating, but was 

also receiving mechanical ventilation because of an 

aspiration event. Th ough oxygenation may not have 

initially been an issue, this patient is at risk of developing 

ARDS. Th e development of ARDS following subarach-

noid hemorrhage is common, and has been indepen-

dently associated with worse outcomes [57]. Th erefore, in 

cases of patients with subarachnoid hemorrhage and 

ARDS, perhaps the most compelling and evidence-based 

reason to control ventilation would be for protection 

against ventilator-induced lung injury by limiting tidal 

volumes, distending pressures and cyclical tidal recruit-

ment, an approach that has been shown to decrease 

mortality in a general population of patients with ARDS 

[58].

In patients with subarachnoid hemorrhage, despite the 

high incidence of ARDS, only 30% of patients with ARDS 

received low tidal-volume ventilation [57]. A potential 

reason for this is the concern amongst healthcare 

providers that low-tidal volume ventilation could 

increase ICP through hypercapnia-related cerebral vaso-

dilation. Lung-protective ventilation does not necessarily 

imply hypercapnia or respiratory acidosis. In two 

landmark ARDSnet studies, the mean PaCO2 of enrolled 

patients did not change appreciably over the fi rst 

72  hours, and respiratory acidosis was uncommon 

[58,59]. Another observational study also found that the 

use of lung-protective ventilation was not associated with 

diff erences in pH or PaCO2 in patients with ARDS 

following subarachnoid hemorrhage [57].

Secondly, it is important to realize that the impact of 

acute changes in PaCO2 will depend to a great degree on 

intracranial compliance, and the ability of the brain to 

accommodate a small increase in intracranial blood 

volume should it occur. Most patients with adequate 

compensatory reserve are able to accommodate small 

changes in PaCO2 with negligible eff ect on their ICP.

In summary, the high incidence of ARDS in patients 

with brain injuries should prompt all providers to be 

vigilant in screening for this disorder and institute lung 

protective mechanical ventilation wherever possible. Th e 

existing data suggest that most patients, even with 

relative sensitivity to PaCO2 increases, are a ble to 

tolerate lung-protective ventilation safely.

Conclusions and recommendations

In this scenario a patient developed hypocapnia as a 

result of spontaneous hyperventilation following an 

aneurysmal subarachnoid hemorrhage. Th e dilemma of 

whether to sedate this patient in order to take control of 

their ventilation and tightly control PaCO2 is founded on 

the competing interests of (1) control of ventilation and 

PaCO2 to optimize cerebral perfusion and (2) the loss of 

clinical monitoring with heavy sedation and neuro-

muscular blockade. When summed together, tight 

control of our patient’s PaCO2 may not be indicated on 

its own.

As previously stated, however, patients with sub-

arachnoid hemorrhage commonly develop ARDS. Such 

cases would thus be further complicated by the 

consideration of providing best practice lung-protective 

ventilation. Th erefore, if we were to assume our patient 

went on to develop ARDS (while preserving normal ICP), 

our practice and suggestion would be to prioritize lung 

protective ventilation given the mortality benefi t 

associated with this mechanical ventilation strategy in 

clinical trials and our belief that any changes in PaCO2 

(which are unlikely) will usually be tolerated from a brain 

perfusion point of view. We would fi rst review the brain 

imaging (to assess ventricular size, cerebral edema and 

eff acement of sulci and basal cisterns) to ensure there is 

no radiographic evidence of limited compensatory 

reserve. Many such patients would have an externalized 

ventricular drain that would allow measurement of ICP, 

but in the absence of a drain, consideration should be 

made to insertion of an ICP monitor. If signifi cant 

hypercapnia develops during lung-protective ventilation 

with evidence of high ICP or limited intracranial com-

pensatory reserve, then we would fi rst carefully address 

anything that may decrease CO
2
 removal or respiratory 

system compliance (for example, remove any dead space 

in the ventilation circuit, drain large pleural eff usions or 

ascites, and so on) and fi nally relax restriction of tidal 

volumes to reduce PaCO2.

As previously discussed, it is not clear that tight control 

of PaCO2 is benefi cial to patients overall and it is 

unknown if the improvement of cerebral perfusion by 

avoidance of spontaneous hypocapnia outweighs the 

risks of sedation. In the absence of evidence to guide 

patient care, we would attempt to be highly selective and 

control PaCO2 only in patients who are at highest risk of 
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evolving brain ischemia (for example, vasospasm), and in 

whom a reduction in CBF might result in permanent 

neurological injury. Th e presented scenario is an example 

of such a case, as the reduction in CBF in the context of 

evolving vasospasm could lead to catastrophic and wide-

spread cerebral infarction. Our practice in such patients 

is to sedate with short acting sedatives and opioids 

(propofol and remifentanil) to allow intermittent neuro-

logical observation. When interrupting sedation for 

neurological examinations, we typically interrupt seda-

tives fi rst, and once the patient’s level of arousal has 

improved we interrupt remifentanil immediately prior to 

neurological examination; we have observed that this 

approach limits swings in PaCO2 with emergence from 

sedation and resumption of the patient’s spontaneous 

hyperventilation. Th ese patients receive monitoring with 

end tidal CO
2
 monitoring, frequent arterial blood gas 

monitoring, ICP monitoring and daily or bi-daily 

transcranial doppler for vasospasm surveillance.

Th e neurocritical care community is in need of research 

evaluating optimal ventilation strategies in patients with 

acute brain injuries. Discovery of the exact mechanism 

and pathophysiology of spontaneous hyperventilation in 

brain injury would be critical not only to understand its 

potential impact on patients, but also to identify oppor-

tunities to modify ventilation if this proves to be a 

harmful or maladaptive response. Future clinical research 

regarding PaCO2 control in patients with brain injuries 

should employ functional outcomes (such as modifi ed 

Rankin score) as primary endpoints, as the question is 

not whether control of PaCO2 aff ects cerebrovascular 

dynamics, but whether the balance between risks of 

hypocapnia and sedation favors aggressive PaCO2 con trol 

by sedation and anesthesia.
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