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Abstract

Introduction: Adequate ventilatory support of critically ill patients depends on prompt recognition of ventilator
asynchrony, as asynchrony is associated with worse outcomes.
We compared an automatic method of patient-ventilator asynchrony monitoring, based on airway flow frequency
analysis, to the asynchrony index (AI) determined visually from airway tracings.

Methods: This was a prospective, sequential observational study of 110 mechanically ventilated adults. All eligible
ventilated patients were enrolled. No clinical interventions were performed. Airway flow and pressure signals were
sampled digitally for two hours. The frequency spectrum of the airway flow signal, processed to include only its
expiratory phase, was calculated with the Cooley-Tukey Fast Fourier Transform method at 2.5 minute intervals. The
amplitude ratio of the first harmonic peak (H1) to that of zero frequency (DC), or H1/DC, was taken as a measure of
spectral organization. AI values were obtained at 30-minute intervals and compared to corresponding measures of
H1/DC.

Results: The frequency spectrum of synchronized patients was characterized by sharply defined peaks spaced at
multiples of mean respiratory rate. The spectrum of asynchronous patients was less organized, showing lower and
wider H1 peaks and disappearance of higher frequency harmonics. H1/DC was inversely related to AI (n = 110; r2 =
0.57; P < 0.0001). Asynchrony, defined by AI > 10%, was associated H1/DC < 43% with 83% sensitivity and
specificity.

Conclusions: Spectral analysis of airway flow provides an automatic, non-invasive assessment of ventilator
asynchrony at fixed short intervals. This method can be adapted to ventilator systems as a clinical monitor of
asynchrony.

Introduction
Patient-ventilator asynchrony occurs frequently in
mechanically ventilated patients, in particular those with
acute or severe lung injury [1,2]. Asynchronous events
occur when a patient’s intrinsic respiratory rhythm fails to
entrain to machine inflation or when ventilatory support is
inadequate to meet the patient’s requirements. Poorly syn-
chronized patients remain on mechanical ventilation
longer [3] and have worse outcomes [4].
The most reliable method presently available to detect

asynchrony is the placement of a balloon catheter in the
esophagus to measure intra-thoracic pressure changes

during the breath cycle [5]. Electromyography also has
been used to assess asynchrony by comparing ventilatory
muscle electrical activity to the initiation of ventilator-
delivered inspiratory flow [6]. Both methods have the dis-
advantage of being invasive and not well tolerated by some
patients, particularly those who are alert. Non-invasive
methods to establish the degree of patient-ventilator syn-
chrony have been proposed as possible alternatives to elec-
tromyography and measures of intrathoracic pressures.
Perhaps the method with the widest clinical acceptance is
the computation of an asynchrony index (AI) by visual
analysis of airway flow and pressure tracings [3]. Although
useful as a research tool, the calculation of an AI is time
consuming and does not lend itself to real-time monitor-
ing of asynchrony in mechanically ventilated patients.* Correspondence: ggutierrez@mfa.gwu.edu

Pulmonary and Critical Care Medicine Division, The George Washington
University MFA, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA

Gutierrez et al. Critical Care 2011, 15:R167
http://ccforum.com/content/15/4/R167

© 2011 Gutierrez et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:ggutierrez@mfa.gwu.edu
http://creativecommons.org/licenses/by/2.0


Airway flow and pressure are periodic functions whose
frequency spectra can be determined using Fourier
transformation. This method separates a time dependent
signal into an infinite number of sine and cosine waves
whose frequencies and amplitudes are displayed as a fre-
quency spectrum. We hypothesize that application of
spectral frequency analysis to airway signals will allow
for the detection of patient-ventilator asynchrony in a
non-invasive and automatic manner.
The physiological notion underpinning the use of fre-

quency spectral analysis as a measure of patient-ventila-
tor asynchrony is shown in Figure 1. Although the
precise cellular and molecular mechanisms that regulate
the periodicity of respiratory rhythm are largely
unknown, the respiratory center is thought to generate a
pacemaker signal with nearly constant TTot [7]. This
pacemaker signal is modulated by cortical inputs, such as
the degree of alertness, speech, pain, and so on, and also
by changes in tidal volume and respiratory rate that acti-
vate chemical and mechanical feedback loops. The var-
ious inputs produce breath-by-breath timing variations in
TTot denoted in the diagram by the term Δt. Under nor-
mal conditions Δt is small, imparting the respiratory
cycle with its inherent timing variability [8,9].
Mechanical ventilation appears to impose an additional

feedback loop on breathing pattern, possibly acting
through the fast-acting Hering-Breuer mechanoreceptor

reflex [10]. Asynchronous events, whether occurring dur-
ing inspiration or expiration, are likely to increase
mechanoreceptor firing, resulting in increased breath-by-
breath TTot variability [11]. Whereas subtle variations in
TTot are difficult to detect from direct examination of
airway signal tracings, these changes can be readily iden-
tified from the signal’s frequency spectrum.
To test the hypothesis that time series analysis of airway

flow provides a noninvasive assessment of patient-ventila-
tor asynchrony, we sampled airway signals digitally in
mechanically ventilated patients during a two-hour obser-
vation period and compared the frequency spectra of
airway flow to corresponding AI values.

Materials and methods
This was a prospective, observational study conducted at
The George Washington University Hospital intensive
care unit from February 2010 to January 2011. We chose
an arbitrary sample of 110 patients of either sex, 18 years
of age or older, who were mechanically ventilated on a
Servoi or Servos Maquet ventilator (Maquet Critical Care
AB, Solna, Sweden). The study was approved by the
GWU Institutional Review Board (IRB#110910) and
informed consent to participate was obtained from the
patient or surrogate. All those mechanically ventilated of
whom informed consent was granted were enrolled in
the study. All patients were monitored hemodynamically.

Figure 1 A conceptual model of the feedback loops producing breath-by-breath changes in respiratory periodicity. See text for
explanation. Δt, breath-by-breath timing variations; SaO2, arterial O2 saturation; TTot, total breath cycle time.
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This was strictly an observational study and all treatment
modalities, including ventilatory mode and ventilator set-
tings, were determined by treating physicians not
involved in the study.

Data acquisition
Data were acquired during the two-hour period that fol-
lowed enrollment in the study. We measured airway flow
and pressure continuously, using the built-in data acquisi-
tion system of the Servo ventilator (Servoi/Servos Compu-
ter Interface Emulator, Sölna, Sweden) programmed to
sample airway signals digitally at 30 Hz (equivalent to
1,800 cycles per minute), a sampling rate exceeding the
Nyquist criterion for respiratory signals [12]. We also
sampled O2 saturation (SpO2) by pulse oximetry, arterial
blood pressure from an arterial line, and heart rate from
one electrocardiographic lead. These signals were acquired
from the analog output port of the ICU monitor (Tram®

Multi-Parameter Module, GE Healthcare Bio-Sciences
Corp., Piscataway, NJ, USA) with an analog-to-digital con-
verter at 30 Hz (DI148U A/D, DATAQ Instruments, Inc.
Akron, OH, USA).

Data analysis
The sampled airway flow signal was modified by setting
all inspiratory (positive) values to zero. This resulted in a
periodic, continuous signal displaying only the expiratory
phase of the breathing cycle. The Discrete Fourier Trans-
form of the processed flow signal was obtained with the
Cooley-Tukey Fast Fourier Transform (FFT) algorithm
[13]. Since this method requires input data in blocks of
2n samples, we applied the FFT to segments containing
4,096 consecutive samples. The data segments encom-
passed approximately 2.3 minutes of observation and
produced one distinct frequency spectrum with a fre-
quency resolution of 7.32 × 10-3 Hz. To avoid the possi-
bility of spectral leakage, our program insured that each
sampling window contained an integer number of cycles
beginning at the initiation of inspiration. Spectra were
generated at 2.5 minute intervals, for a total of 48 spectra
during the two-hour observation period. The amplitude
of the first harmonic peak (H1) was calculated with a
peak detection algorithm based on Lorentzian peak ana-
lysis [14]. We calculated the amplitude ratio of H1 to that
of zero frequency or DC component (H1/DC ratio) for
each spectrum. Hemodynamic and ventilatory variables
were averaged every 2.5 minutes and monitored for 2
hours. Data acquisition and frequency spectral analysis
were performed in real time at bedside using a laptop
computer with software written in-house specifically for
this purpose (Visual Basic Programming Language,
Microsoft Corporation, Redmond, WA, USA).
The AI values were computed visually [3,4] from the

flow and pressure recordings corresponding to the time

window used to produce one frequency spectrum. Three
trained observers, who were blinded to the results of the
spectral analysis, calculated AI at times 0, 30, 60, 90 and
120 minutes. The mean of the three AI measurements
was taken as the AI value at each time point. For each
patient we obtained the time-averaged AI value for
times 0, 30, 60, 90 and 120 minutes and plotted them as
functions of their corresponding time-averaged H1/DC
values. We conducted a Cohen Kappa test modified by
Fleiss for three independent observers [15] and found a
� statistic = 0.66 when comparing the ability of the
three observers to detect asynchrony index values > 10%
[3]. According to Landis and Koch [16], this � value
corresponds to substantial agreement among the three
observers.

Statistics
We tested for significant differences between distributions
of independent samples with the Mann-Whitney U test
for nonparametric data. The Chi Square test with Pear-
son’s correction was used to test for differences in catego-
rical variables. A receiver operating characteristic curve
(ROC) was constructed for H1/DC, in which asynchrony
was defined by simultaneously measured AI values > 10%
[17]. The relationship between dependent variables was
determined with linear regression [18]. Numerical data are
shown as median and interquartile range and P < 0.05 was
considered significant.

Results
Patient demographics, most common ICU admission diag-
noses, and conditions leading to the initiation of mechani-
cal ventilation of the 110 mechanically ventilated patients
enrolled in the study are shown in Table 1. There was a
preponderance of male patients. Patients were enrolled
early upon their admission to the ICU and initiation of
mechanical ventilation. These were acutely ill patients
with a high Simplified Acute Physiology Score (SAPS) II
score of 57, carrying a predicted mortality rate of 62%.
There was an almost equal distribution between medical
and post-operative patients with sepsis being the most
common major diagnosis. Acute lung injury was the con-
dition most frequently resulting in mechanical ventilation.
Patients were ventilated using the following modes:
assisted pressure controlled (PC; n = 18); pressure regu-
lated volume controlled (PRVC; n = 55); assisted volume
controlled (VC; n = 26); and pressure support ventilation
(PS; n = 11).
Figure 2 shows airway flow signals and corresponding

frequency spectra during conditions of synchrony and
asynchrony. Panel A shows a synchronous flow signal.
The frequency spectrum of this signal is characterized by
a finite zero frequency component (DC) with an ampli-
tude equal to mean expiratory flow. This is followed by a
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series of sharp, Lorentzian-shaped peaks displaying pro-
gressively lower amplitude. The first harmonic peak,
denoted as H1, is located at a frequency equal to the
mean respiratory rate of the data segment used to
develop the frequency spectrum. Subsequent peaks are
located at frequency multiples of the mean respiratory
rate. The H1/DC amplitude ratio corresponding to this
particular spectrum is 67.4%. Panel B shows a patient
experiencing asynchrony characterized by double trigger-
ing during inspiration. Compared to that of Patient A,
the frequency spectrum of Patient B shows loss of organi-
zation, with greatly diminished H1 amplitude and the vir-
tual absence of subsequent harmonic peaks. The H1/DC
for this case is 29.7%. Panel C shows asynchrony mani-
fested by ineffective triggering during expiration. The fre-
quency spectrum for this condition is similar to that for
Panel B, with H1/DC = 24.8%.
Frequency spectra during the two-hour observation

period varied according to the degree of patient-ventila-
tor asynchrony. This is illustrated in Figure 3, where
staggered spectral ensembles are shown at 2.5-minute
intervals for the 2-hour observation period. Patient A
displayed a synchronous pattern that replicated almost
exactly during the two-hour period. The average AI and
H1/DC values during that time were 0% and 79.5%,
respectively. Conversely, Patient B appeared to be asyn-
chronous during the whole two-hour observation period,
with a mean AI of 29.5%. The corresponding frequency

spectra displayed a persistently disorganized pattern
with mean H1/DC of 23.6%. Patient C displayed a mixed
pattern. During the first 1.4 hours of observation Patient
C appeared to be synchronous with the ventilator, with
mean AI = 2.0. Corresponding frequency spectra
appeared organized with H1/DC = 69.5%. Following the
cessation of sedation, and for the remainder of the
observation period, the patient’s AI increased to a mean
of 38.2%, suggesting the development of significant
asynchrony. The corresponding frequency spectra
became less organized, evolving into an asynchronous
pattern with increases in DC and a shift of H1 to a
higher frequency, signifying increased mean expiratory
flow and faster respiratory rate, respectively. Mean
H1/DC during that time was 23.4%.
Figure 4 shows the mean AI and H1/DC values during

the two-hour observation period for each study patient
(n = 110). Each point represents the average of five AI
and H1/DC determinations obtained at 0, 30, 60, 90 and
120 minutes. Also shown are the 95% confidence bands
for the regression equation and the prediction interval
encompassing 95% of the data. There is an inverse rela-
tionship between AI and H1/DC (AI = 39.9 - 0.6 H1/
DC; r2 = 0.57, P < 0.0001), a finding that supports the
stated hypothesis that decreases in H1/DC are associated
with patient-ventilator asynchrony, as determined by AI.
The ROC curve for H1/DC, using AI > 10% as an

indicator of asynchrony, is shown in Figure 5 (Top).
The area under the ROC is 0.91 ± 0.03 (P < 0.0001).
The bottom graph plots sensitivity and specificity as
functions of H1/DC cutoff values. The curves intersect
at H1/DC = 42.9%, a value that identifies asynchrony (as
defined by AI > 10%) with sensitivity and specificity of
82.7% each.
There were no significant differences in the overall

prevalence of asynchrony as determined by AI (50.9%)
or H1/DC (51.8%). We also found no differences in the
prevalence of asynchrony when patients were classified
according to mode of ventilation (Table 2). Patients ven-
tilated with PS experienced significantly more asyn-
chrony when compared to other ventilatory modes (P <
0.001). The cutoff value for H1/DC of 43% identified as
asynchronous 47 of the 56 individuals having AI > 10%
(84% sensitivity). In those 47 individuals, the most com-
mon types of asynchronies displayed during the two-
hour period of observation were ineffective triggering
during inspiration (n = 17; 36.2%); ineffective triggering
during expiration (n = 16; 34.0%); and double triggering
(n = 14; 29.8%).
Table 3 shows ventilatory and hemodynamic variables

measured during the two-hour observation period, listed
according to the cutoff value for H1/DC of 43%. Other
than a trend towards greater use of continuous i.v. seda-
tion in the group identified as synchronous by H1/DC

Table 1 Patient demographics, major diagnoses, and
primary causes for mechanical ventilation (n = 110)

Age (years) 60 (51 to 72)

Male gender 66.4%

Days in Hospital 4.0 (2.0 to 9.8)

Days in ICU 3.0 (1.0 to 7.0)

Days on Mechanical Ventilation 2.0 (1.0 to 5.8)

Enrollment SAPS II 57 (52 to 68)

Enrollment SOFA 6 (5 to 9)

Major diagnoses:

Cardiogenic shock 11.8%

COPD 7.3%

Post operative 43.6%

Sepsis 34.5%

Conditions resulting in mechanical ventilation:

Acute lung injury 37.3%

Airway protection 12.7%

Pneumonia 12.7%

Post-op complication 10.9%

Pulmonary edema 14.5%

Respiratory failure* 10.0%

*Defined as severe hypercarbia or hypoxemia in the absence of airspace
densities in the chest roentgenogram. Numerical data are shown as median
and interquartile range. SAPS, Simplified Acute Physiology Score; SOFA,
Sequential Organ Failure Assessment.
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Figure 2 Airway flow signals and their corresponding frequency spectra. Frequencies shown as cycles per minute (cpm). H1 denotes the
first harmonic peak amplitude and DC is the amplitude of the zero frequency component. Panel A illustrates a condition of patient-ventilator
synchrony in which the spectral pattern is characterized by sharp peaks located at multiples of the respiratory rate. Panel B shows double
triggering asynchrony during inspiration. Compared to that of Patient A, the frequency spectrum of Patient B has lost much of its initial
organization. Panel C displays ineffective triggering asynchrony during expiration. The corresponding frequency spectrum also shows loss of
organization and diminished H1 amplitude; cpm, cycles per minute; DC, zero frequency amplitude; H1, first harmonic peak amplitude; L/minute,
liters per minute; s, seconds.
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≥43% (P = 0.08), there were no significant differences in
any of the variables measured. We also found no differ-
ences in the distribution of major diagnoses or primary
reasons for initiation of mechanical ventilation when
asynchrony was detected with H1/DC < 43% or AI >
10% (data not shown).

Discussion
The purpose of the present study was to compare a
novel method of asynchrony detection, based on fre-
quency spectral analysis of airway flow, to AI, an
accepted parameter of asynchrony. We studied a hetero-
geneous group of 110 mechanically ventilated patients
and found a significant inverse correlation between the
methods. Moreover, spectral analysis of airway flow
could detect asynchronies with a high degree of sensitiv-
ity and specificity. Defining asynchrony by AI > 10%, a
cutoff value of H1/DC = 43% identified asynchrony with
83% sensitivity and specificity, each.
Synchronous patients displayed a spectral pattern

characterized by a series of Lorentzian shaped peaks
[14] monotonically spaced at frequency multiples of the
respiratory rate. Conversely, patient-ventilator asyn-
chrony was associated with a less organized spectral pat-
tern in which H1 bandwidth widened, its amplitude
decreased, and higher frequency harmonics disappeared.
The zero frequency amplitude, or DC component, is

defined as the time average of a periodic signal. Since
the time average of air flow during the breath cycle
(inspiratory and expiratory phases) is zero, its spectrum
lacks a DC component. Modifying the flow signal to

Figure 3 Waterfall ensembles featuring 48 spectra during the
two-hour period of observation. Frequencies shown as cycles per
minute (cpm). Panel A corresponds to a patient with no
asynchrony. Panel B is that of an asynchronous patient. Panel C is
an initially synchronous patient who develops asynchrony upon
cessation of sedation. cpm, cycles per minute; DC, zero frequency
amplitude; h, hours; H1, first harmonic peak amplitude; L/minute,
liters per minute.

Figure 4 Asynchrony Index (AI) as a function of H1/DC. The
average synchrony index (AI) of measurements taken at 0, 30, 60,
90 and 120 minutes plotted as a function of corresponding average
H1/DC for each study patient (n = 110). H1/DC varied inversely with
AI during the two-hour during observation period (AI, 39.9 - 0.6 H1/
DC; r2 = 0.57, P < 0.0001). DC, zero frequency amplitude; H1, first
harmonic peak amplitude.
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contain only the expiratory phase resulted in a fre-
quency spectrum with a finite DC component. This DC
component can be used to gauge sequential changes in
H1 as the denominator for the parameter H1/DC. This

parameter has a solid physiological foundation since the
DC component equals mean expiratory flow and the fre-
quency of H1 is the mean respiratory rate. In addition,
the shape of the expiratory flow signal is independent of

Figure 5 Receiver Operating Characteristic (ROC) and sensitivity analysis. (Top) ROC curve for H1/DC. Area under the curve is 0.91 ± 0.03 (P <
0.0001). (Bottom) Sensitivity and specificity plotted as functions of H1/DC values. The curves intersect at H1/DC = 42.9%, a value that identifies
asynchrony (as defined by AI > 10%) with sensitivity and specificity of 82.7% each. DC, zero frequency amplitude; H1, first harmonic peak amplitude.
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the manner used to insufflate the lungs; therefore, its
frequency spectrum should not be affected by the mode
chosen to ventilate the patient. This notion is supported
by the results of Table 2 showing that the ability of H1/
DC to detect asynchrony was unaffected by the mode of
ventilation.
Asynchrony is associated with longer duration of

mechanical ventilation and worse outcome [4]. The
major types of asynchrony include double triggering, pre-
sent when the inspiratory efforts of patient and ventilator
are out of phase; ineffective triggering during inspiration,
when the patient’s flow demands are not met by the ven-
tilator; and ineffective triggering during expiration [19].
We focused on the expiratory portion of the flow signal,
but it should be stressed that the method presented here

responds to asynchronies occurring both during inspira-
tion and expiration. Spectral analysis detects small
breath-to-breath variations in TTot resulting from stretch
receptor activation at any time during the ventilatory
cycle. As far as the frequency analysis method is con-
cerned, it does not matter whether the asynchronous
event occurs during inspiration or expiration, or what
type of asynchrony is encountered: trigger, flow or
expiratory asynchrony. What matters is the effect that
these asynchronies have on breath-by-breath TTot varia-
bility. This was amply demonstrated by the similar preva-
lence rates for all types of asynchrony detected both by
spectral analysis and by AI, whether they occurred during
the inspiratory or expiratory portion of the breathing
cycle.
There is no universal agreement on the prevalence of

ventilator asynchrony. Chao et al. [4] reported a preva-
lence of 10%, Thille et al. 24% [3], and Colombo et al.
36% [20]. We found the asynchrony prevalence in our
patient population to be approximately 50%. It is possi-
ble that this high asynchrony prevalence is related to
the high illness acuity of our patient population and is
in line with those reported by Piquilloud et al. [21] of
63.5% in patients on PS ventilation studied three days
post-intubation. In particular, we noted a high preva-
lence of asynchrony in patients ventilated with PS. This
finding is difficult to generalize, given the few indivi-
duals on PS in the study (n = 11). It is possible that PS
ventilation may be associated with a greater degree of
asynchrony than other modes of ventilation [21], but
also it may be that PS ventilation was applied impro-
perly in this cohort, a situation beyond our control
given our role as observers. The relevant issue regarding
our study is that detection of asynchrony in PS patients
by AI (11/11) was similar to that of H1/DC (10/11).
Several automatic, noninvasive methods have been

developed to detect patient-ventilator asynchrony. These
methods rely on the analysis of airway signals for
anomalies indicative of ineffective patient triggering
(IT). Mulqueeny et al. [22] proposed applying a noise
filter and an unintentional leak compensation algorithm
to the flow and pressure curves, followed by the calcula-
tion of the first and second derivatives of the flow sig-
nal. They tested their method in 20 mechanically
ventilated patients and found 91% sensitivity and 97%
specificity when compared to the manually derived AI.
Cuvelier et al. [23] developed an algorithm that analyzed
phase portraits, a geometrical depiction of temporal
changes in patient-ventilator interaction. They were able
to identify 95% of all IT efforts when comparing the
results of this method to esophageal tracings in 14 chil-
dren with cystic fibrosis on non-invasive ventilation.
Chen et al. [24] developed a computerized algorithm

based on small deflections of the flow and pressure

Table 2 Prevalence of total asynchronies and types of
asynchrony according ventilatory mode

Asynchrony Prevalence (%)

Mode n H1/DC AI

PC 17 50.0 55.6

PRVC 56 49.1 50.9

VC 26 42.3 26.9

PS 11 90.9 † 100.0 †

IT, ineffective triggering; Mode, mode of mechanical ventilation; n, number of
patients ventilated with a given mode; PC, pressure controlled; PRVC, pressure
regulated volume control; PS, pressure support; VC, volume controlled; † P <
0.001 when compared to other modes of ventilation.

Table 3 Ventilatory and hemodynamic variables during
the two-hour observation period

H1/DC < 43% H1/DC ≥43%

Number of patients 57 53

Enrollment SAPS II 56.0 (53.0 to 66.0) 57.5 (50.0 to 70.0)

Enrollment SOFA 6 (4 to 8) 7 (5 to 9)

H1/DC (%) 34.1 (28.9 to 38.2) 53.1 (47.5 to 61.0) †

AI (%) 20.0 (11.1 to 25.5) 2.8 (0 to 8.9) †

FIO2 (%) 40.0 (39.8 to 50.0) 49.8 (40 to 57.8)

SpO2 (%) 97.9 (95.8 to 99.0) 97.4 (95.6 to 98.9)

RR (bpm) 18.7 (16.0 to 22.0) 17.5 (14.0 to 22.6)

MIP (cmH2O) 10.4 (8.8 to 12.9) 10.3 (8.4 to 14.7)

PeakP (cmH2O) 25.2 (20.5 to 32.1) 27.4 (22.5 to 31.3)

VT (mL) 502 (450 to 560) 470 (410 to 546)

PEEP (cmH2O) 5.0 (4.7 to 5.5) 5.1 (4.9 to 5.4)

HR (bpm) 89.8 (78.8 to 98.3) 86.6 (77.0 to 97.0)

MAP (mmHg) 80.3 (71.9 to 97.0) 78.7 (70.7 to 95.7)

Vasoactive agents (%) 29.8 43.4

Continuous sedation (%) 59.6 75.5

AI, Asynchrony Index (%); FIO2, inspired O2 concentration; H1/DC, ratio of first
harmonic peak amplitude to DC component amplitude (%); HR, heart rate;
MAP, mean arterial pressure; MIP, mean inspiratory pressure; PeakP, peak
inspiratory pressure; PEEP, positive end expiratory pressure; RR, respiratory
rate; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure
Assessment; SpO2, arterial O2 saturation by pulse oximetry; VT, tidal volume.
Data shown as median and IQR; † P < 0.01.
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signals during the expiratory phase of ventilation. The
algorithm detected IT with high sensitivity and specifi-
city in 14 ventilated patients. However, as pointed out
in an accompanying editorial [25], this method has the
disadvantage of detecting only one type of patient-venti-
lator interaction. Younes et al. [26] monitored patient-
ventilator interaction with a proprietary system that gen-
erates a signal mimicking respiratory muscle pressure
output. The signal was derived from the equation of
motion of the respiratory system using improvised
values for resistance and elastance. This method could
detect 80% of IT efforts when applied to airway signal
tracings from 21 mechanically ventilated patients.
A problem common to the above methods is the dis-

torting effect of background noise on the airway signals,
a phenomenon that may affect their ability to distinguish
small deflections indicative of wasted inspiratory effort.
Moreover, these methods also may fail to identify condi-
tions in which ventilatory support during inspiration is
not sufficient to meet ventilatory requirements [27].
Although not totally immune to the effect of noise, the
method presented here does not analyze airway signals
for difficult to detect anomalies. Instead, it applies a
Fourier transformation to several cycles of expiratory
flow to produce a frequency spectrum. The shape of the
resulting spectrum is determined by variations in breath-
to-breath changes in TTot. Regularity in TTot is associated
with sharply defined peaks that repeat at frequency mul-
tiples of respiratory rate. On the other hand, as TTot

becomes variable, the spectral pattern becomes less regu-
lar. These changes can be readily determined by visual
inspection of the spectrum, or as shown in this study, by
changes in the parameter H1/DC.

Conclusions
The present study is the first report on the clinical
application of spectral analysis of airway flow to identify
the occurrence of asynchronous events in mechanically
ventilated patients. Since the method is noninvasive,
fully automatic and adaptable to existing ventilator
monitoring systems, it may provide timely and action-
able information on patient asynchrony both during
invasive and non-invasive ventilation.
This is a preliminary, and by no means exhaustive,

study on the use of spectral analysis of airway flow to
characterize patient-ventilator asynchrony. It was not
our purpose to ascertain the causes or treatment of
asynchrony since this was an observational study in
which all therapeutic and ventilator management deci-
sions were determined by physicians who were not part
of the research team. Further work remains to be done
in validating the method, including clinical trials in
which changes in H1/DC are compared to pressure

changes obtained with esophageal balloon catheters. We
also must learn its limitations. Further studies are
needed to understand its utility in patients ventilated
with assisted ventilatory modes.
Another limitation concerns the degree of intrinsic irre-

gularity of respiratory pattern noted in alert individuals.
Whereas a totally disorganized pattern appears to be indi-
cative of severe asynchrony, a highly organized spectral
pattern also may not be desirable, as it could indicate con-
ditions that may also adversely affect the outcome [28],
such as the excessive use of sedatives and neuromuscular
blockade. Studies conducted in alert, mechanically venti-
lated patients who are synchronous with the ventilator are
needed to establish the level of H1/DC separating physio-
logically appropriate TTot variations ("good noise”) from
detrimental ventilator-patient asynchrony.

Key messages
• Mechanically ventilated patients who fail to syn-
chronize with the ventilator have worse outcomes.
• A reliable, non-invasive method of monitoring
asynchrony on a real-time basis is not presently
available.
• Spectral analysis of airway flow can detect asyn-
chrony based on changes in the frequency spectrum.
• This noninvasive, fully automatic method to moni-
tor asynchrony can be easily adapted to existing ven-
tilator monitoring systems.
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