
Introduction

Acute kidney injury (AKI) is a common problem in 

critically ill patients and carries signifi cant morbidity and 

mortality. Based on a recent multinational study, the 

incidence of AKI is estimated to be 5.7%, with a mortality 

of 60% [1]. AKI rarely occurs in isolation but usually 

develops in the context of multiple organ failure. Despite 

advances in dialysis technology and supportive care, mor-

tality resulting from AKI has remained unchanged over 

the past years and is as high as 80% when associated with 

respiratory insuffi  ciency [1,2]. An observational study 

recently found that 75% of all patients with acute respira-

tory failure required some form of renal replacement 

therapy [1].

Mechanical ventilation (MV) is an independent risk 

factor for the development of AKI and can contribute to 

its development by three proposed mechanisms: blood 

gas disturbances leading to hypoxemia or hypercapnia 

and subsequent neurohumoral-mediated eff ects on renal 

blood fl ow during MV; changes in cardiac output, re-

distribution of intra-renal blood fl ow and stimulation of 

hormonal and sympathetic pathways may aff ect systemic 

and renal hemodynamics, thereby decreasing renal blood 

fl ow; and MV-induced biotrauma, defi ned as a pulmo-

nary infl ammatory reaction to MV with pulmo nary 

mediator release [1,3]. Subsequent spill-over of these 

mediators into the systemic circulation may contribute to 

AKI [4].

Although various processes play signifi cant roles in the 

pathophysiology of AKI, this review focuses specifi cally 

on the potential role of plasma mediators released as a 

result of MV in the pathogenesis of AKI. First, we review 

the current clinical and experimental literature describing 

mediators that are systemically released during MV and 

their eff ect on the kidney. Th e causality of the relationship 

between systemically released mediators and AKI will be 

explored. Second, we identify mediators whose release is 

attributable to MV and discuss the potential eff ects of 

these mediators on the kidney. Th is will provide a 

framework for future research on ventilation-induced 

renal injury through systemic mediator release.

Abstract

We review the current literature on the molecular 

mechanisms involved in the pathogenesis of acute 

kidney injury induced by plasma mediators released 

by mechanical ventilation. A comprehensive literature 

search in the PubMed database was performed and 

articles were identifi ed that showed increased plasma 

levels of mediators where the increase was solely 

attributable to mechanical ventilation. A subsequent 

search revealed articles delineating the potential eff ects 

of each mediator on the kidney or kidney cells. Limited 

research has focused specifi cally on the relationship 

between mechanical ventilation and acute kidney 

injury. Only a limited number of plasma mediators has 

been implicated in mechanical ventilation-associated 

acute kidney injury. The number of mediators released 

during mechanical ventilation is far greater and 

includes pro- and anti-infl ammatory mediators, but 

also mediators involved in coagulation, fi brinolysis, 

cell adhesion, apoptosis and cell growth. The potential 

eff ects of these mediators is pleiotropic and include 

eff ects on infl ammation, cell recruitment, adhesion and 

infi ltration, apoptosis and necrosis, vasoactivity, cell 

proliferation, coagulation and fi brinolysis, transporter 

regulation, lipid metabolism and cell signaling. 

Most research has focused on infl ammatory and 

chemotactic mediators. There is a great disparity of 

knowledge of potential eff ects on the kidney between 

diff erent mediators. From a theoretical point of view, 

the systemic release of several mediators induced by 

mechanical ventilation may play an important role in 

the pathophysiology of acute kidney injury. However, 

evidence supporting a causal relationship is lacking for 

the studied mediators.
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Methods

We performed an extensive literature search in PubMed 

using medical subject headings and text words, supple-

men ted by scanning the bibliographies of the recovered 

articles. We combined ‘acute renal failure’ and ‘acute kidney 

injury’ using the term ‘OR’. Th is search was subsequently 

combined with ‘mechanical ventilation’ using the Boolean 

operator ‘AND’. Using a similar search strategy, using 

‘mediator’ and ‘cytokine’ we identifi ed 19 diff erent plasma 

mediators that increased during MV. We included only in 

vivo studies in which the increase in plasma mediator 

levels was exclusively attributable to MV. We excluded 

neurohumorally increased mediators, mediators increased 

in renal tissue samples and mediators derived from in 

vitro experiments exposing cell cultures to mechanical 

stretch. Each mediator was searched in PubMed, also 

including alternative names and abbreviations. We 

combined these results with the terms ‘glomerular’, 

‘glomerulus’, ‘tubular’, ‘mesangial’, ‘mesangium’, ‘podocyte’, 

‘acute renal failure’ and ‘acute kidney injury’. To delineate 

the potential eff ects of these mediators on the kidney, we 

limited the articles to studies that solely studied eff ects 

on the kidney or on diff erent kidney cell types.

Mechanical ventilation, systemic mediator release 

and the kidney

Th e importance of MV in morbidity and mortality of 

patients suff ering from acute respiratory distress syn-

drome is stressed by the 2000 landmark study by the 

ARDS Network. In this multi-center trial, lung protective 

ventilation decreased morbidity and mortality rates com-

pared to a conventional strategy [5]. Although the exact 

mechanisms remain unknown, the biological response of 

the lungs to the eff ects of MV was aptly named biotrauma 

to describe the ongoing changes in pulmonary infl am-

mation and the systemic release of infl ammatory media tors 

[6]. Th e biotrauma hypothesis is supported by evidence 

from experimental models ranging from mechanically 

stressed cell systems to isolated lungs, intact animals, and 

humans [7]. Various mechanisms are responsible for the 

ventilation-induced release of media tors. Th ere are four 

principal mechanisms, all of which appear to be clinically 

relevant: stress failure of the plasma membrane 

(necrosis); stress failure of endothelial and epithelial 

barriers (decompartmentalization); over disten sion without 

tissue destruction (mechano trans duction); and eff ects on 

vasculature, independent of stretch and rupture [8]. Th e 

possible eff ects of systemically released and circulating 

mediators during ventilator-induced lung injury on 

organs distant from the lungs has prompted research to 

focus on the potential eff ects of mediators on the kidney 

(Table 1). Th us far only one clinical study has compared a 

conventional MV strategy with a lung-protective strategy 

in patients with acute respiratory distress syndrome. Th is 

single-center study found increased kidney failure in the 

conventional strategy group. A correlation was found 

between plasma IL-6 levels and the number of failing 

organs in the same patients [9]. In these patients an 

association between plasma soluble Fas ligand (sFasL) 

levels and changes in creatinine was also found [10]. Th e 

authors conclude that mediator release during MV is 

correlated to the development of multi-organ failure and 

these fi ndings may partially explain the decrease in 

morbidity and mortality in patients ventilated with a lung 

protective strategy. In animal experiments the role of MV 

on the kidney was further explored, focusing on the role 

of pro-infl ammatory mediators [11-14], renal apoptosis 

[10], vasoactive mediators and renal blood fl ow [15], 

coagulation and fi brinolysis [16,17], and other mediators 

such as vascular endothelial growth factor (VEGF) 

(Table  1) [18]. Of specifi c importance is the previously 

mentioned study by Imai and colleagues [10]. In contrast 

to other animal studies that are observational by nature, 

this is the only study that used specifi c blocking of 

mediators, albeit in vitro. Imai and colleagues found 

increased renal apoptosis after injurious ventila tion in 

rabbits. In vitro blocking of sFasL prevented induction of 

apoptosis of cultured kidney cells by plasma from rabbits 

ventilated with an injurious ventilatory strategy [10]. 

Although limited in number, studies linking MV with 

acute respiratory failure have discovered several new 

potential pathways in addition to pro-infl ammatory 

pathways through which MV may cause acute respiratory 

failure. To date, however, no study has established a 

causal relationship between specifi c mediators and acute 

respiratory failure during MV in vivo through, for 

instance, intervention studies where the release of media-

tors is prevented or by blocking released mediators.

Table 2 shows the mediators whose increased release 

was attributable to MV. Several clinical studies identifi ed a 

large number of plasma mediators [5,19-24]. Th ese plasma 

mediators are not only pro-infl ammatory by nature, but 

anti-infl ammatory mediators have been identi fi ed as well 

[22-24]. Furthermore, identifi ed media tors are also 

involved in coagulation, fi brinolysis, cell adhesion and 

surfactant homeostasis [5,19-26]. Most research has 

focused on pro- and anti-infl ammatory mediators as well 

as chemokines, and only limited studies have outlined a 

role for mediators primarily involved in cell growth and 

diff erentiation or apoptosis (Table 2) [10,18]. A more in-

depth analysis of the various media tors summarized in 

Table 2 may provide new therapeutic insights.

Potential eff ects of mediators on the kidney

Pro-infl ammatory

Tumor necrosis factor-α
In 1986 Tracey and colleagues [27] administered TNF-α 

intravenously to rats and observed, among other things, 
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hypotension, metabolic acidosis, hemoconcentration, 

acute tubular necrosis and death. Th is pleiotropic 

character of TNF-α is refl ected by its multitude of eff ects 

on the kidney [28]. TNF-α has been implicated in renal 

infl ammation, infl ammatory cell recruitment, adhesion 

and infi ltration, apoptosis and necrosis, vasoconstriction 

and vasodilatation, alterations in cell morphology and 

proliferation, coagulation and fi brinolysis, downregula-

tion of urea, glucose, sodium and chloride transporters 

and renal lipid metabolism and signaling (Table 3). 

TNF-α, through activation of NF-κB, induces its own 

expression by mesangial cells [29-31], podocytes [32-34], 

and tubular epithelial cells [35,36].

In a TNF-α receptor knock-out mouse model of 

cisplatin nephrotoxicity and renal tubular epithelial cells, 

TNF-α increased gene expression of a variety of infl am-

matory mediators, such as transforming growth factor-β, 

RANTES (regulated upon activation, normal T-cell ex-

pressed, and secreted), IL-1β, TNF-α, T-cell activation-3, 

IL-6 and IL-8 (see Table 3 for a complete list) [37-42]. 

TNF-α is also capable of increasing expression of major 

histocompatibility complex (MHC) I on mesangial cells 

[43], which indicates the stimulation of antigen-present-

ing properties by mesangial cells under infl ammatory 

circumstances. In vitro exposure of mesangial cells and 

tubular epithelial cells to TNF-α increased expression of 

CC and CXC chemokines (Table 3), which are involved in 

neutrophil, monocyte and T-lymphocyte recruitment 

[44-46]. In both tubular epithelial cell monolayer and 

tubular epithelial and endothelial cell bilayer experi-

ments, TNF-α increased leukocyte transmigration [41,42]. 

By increasing the expression of intercellular adhesion 

molecule (ICAM)-1, vascular cell adhesion molecule 

(VCAM)-1 and L-selectin on mesangial cells and glo-

meru lar endothelial cells, TNF-α also facilitates leukocyte 

adhesion and infi ltration into the kidney [47-49].

Both in vitro and in vivo studies have shown that TNF-

α induces caspase 8-dependent apoptosis of renal tubular 

cells and renal endothelial cells by binding to either the 

TNF-receptor-1 or Fas-receptor [50-53]. In glomerular 

endothelial cells, cytochrome c infl ux in the cytosol was 

found after TNF-α stimulation, suggesting a role in the 

mitochondrial pathway as well [54]. Ceramide is an 

important signaling molecule in cellular responses, inclu-

d ing apoptosis [55]. In both mesangial cells and glomeru-

lar endothelial cells TNF-α stimulated ceramide forma-

tion, but only in the latter did this lead to increased 

apoptosis [56,57]. TNF-α also suppresses expression of 

anti-apoptotic proteins, both in vitro and in vivo [53,54]. 

Hruby and colleagues [58] showed in vitro that TNF-α 

induced cytolysis in mesangial cells, but not in glomeru-

lar epithelial cells. Th is may be partially attributable to 

the TNF-α-induced production of reactive oxygen 

species by mesangial cells [59].

Table 1. Eff ects of mechanical ventilation on the kidney

Reference Model/injury Ventilation strategy Plasma mediators Renal endpoints

Ranieri et al. 2000 [9] ARDS patients 11 ml/kg, PEEP 6 versus 8 ml/kg, 

PEEP 15

IL-6, TNF-α, IL-1β, IL-8 Renal failure according to Knaus [198]

Choi et al. 2003 [18] Healthy rats 20 ml/kg versus 7 ml/kg VEGF Proteinuria, albuminuria, eNOS 

expression, microvascular leak

Gurkan et al. 2003 [200] Acid aspiration in mice 17ml/kg, PEEP 3 versus 6 ml/kg, 

PEEP 3

IL-6, VEGFR-2 expression

Imai et al. 2003 [10] Acid aspiration in 

rabbits

15 to 17 ml/kg, PEEP 0 to 3 versus 

5 to 7 ml/kg, PEEP 9 to 12

MCP-1, IL-8, GRO, sFasL Creatinine, apoptosis, histological 

changes with EM

Crimi et al. 2006 [11] Hemorrhagic shock 

and resuscitation in 

rats

12 ml/kg, PEEP 0 versus 6 ml/kg, 

PEEP 5

IL-6, MIP-2 Creatinine, apoptosis

Dhanireddy et al. 2006 [12] Bacterial aspiration 

(S. aureus) in mice

Spontaneous breathing versus 

10 ml/kg

IL-6, KC, MIP-2 Creatinine

O’Mahony et al. 2006 [13] LPS i.p. in mice Spontaneous breathing versus 

10 ml/kg

IL-6, KC, MIP-2, TNF-α Creatinine

Kuiper et al. 2008 [15] Healthy rats 20 cmH
2
O, PEEP 2 versus 14 cmH

2
O, 

PEEP 5

Decreased renal blood fl ow, increased 

renal ET-1

Vaschetto et al. 2008 [14] LPS aspiration in rats 15 ml/kg, PEEP 0 versus 6 ml/kg, 

PEEP 5

IL-6, TNF-α Kidney apoptosis. Decreased creatinine 

clearance

Hegeman et al. 2009 [201] Healthy mice 20 cmH
2
O, PEEP 0 for 1, 2, 4 hours 

versus spontaneous breathing

Increased E-selectin, VCAM-1, ICAM-1, 

PECAM-1, IL-1β, KC mRNA expression. 

Increased MPO activity

Kobr et al. 2009 [26] Healthy piglets 10 ml/kg versus 6 ml/kg versus 

spontaneous breathing

VCAM-1, ICAM-1 Decreased creatinine clearance and free 

water clearance

ARDS, acute respiratory distress syndrome; EM, electron microscopy; eNOS, endothelial nitric oxide synthase; ET, endothelin; ICAM, intercellular adhesion molecule; 
i.p., intraperitoneal; LPS, lipopolysaccharide; GRO, growth-regulated oncogene; KC, keratinocyte-derived chemokine; MCP, monocyte chemoattractant protein; MIP, 
macrophage infl ammatory protein; MPO, myeloperoxidase; PECAM, platelet endothelial cell adhesion molecule; PEEP, positive end-expiratory pressure (in cmH2O); 
sFasL, soluble Fas ligand; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.
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TNF-α stimulates mesangial cells to produce a variety 

of vasoactive mediators in vitro (Table 3) [60-69]. Piepot 

and colleagues [70] showed impaired endothelium-

dependent arterial relaxation after TNF-α exposure. By 

disturbing the balance between vasoconstriction and 

vasodilatation, TNF-α is thus potentially capable of 

reducing glomerular blood fl ow and glomerular fi ltration 

rate [71]. Additionally, TNF-α induced downregulation of 

angiotensin (Ang)-II type-1 receptor expression in vivo, 

which may explain the frequently observed vasodilation 

during sepsis [72].

Tubular epithelial cell shedding and tubular obstruction 

play a role in renal dysfunction. Glynne and colleagues 

[73] incubated proximal tubular epithelial cells with 

Table 2. Plasma mediator release during mechanical ventilation; patient and animal data

Reference Model/injury Ventilation strategy Systemic mediators

Calfee et al. [19] ICU patients 12 ml/kg versus 6 ml/kg sICAM-1

Eisner et al. [20] ICU patients 12 ml/kg versus 6 ml/kg SP-D

Parsons et al. [21] ICU patients 12 ml/kg versus 6 ml/kg IL-6, IL-8

Parsons et al. [22] ICU patients 12 ml/kg versus 6 ml/kg sTNFR-1

Ranieri et al. [23] ARDS patients 11 ml/kg, PEEP 6 versus 8 ml/kg, PEEP 15 TNF-α, IL-1β, IL-6, IL-8, IL-1RA, sTNFR-55/75

Stuber et al. [24] ICU patients 12 ml/kg, PEEP 5 versus 5 ml/kg, PEEP 15 IL-6, TNF-α, IL-10, IL-1RA

ARDS Network [5] ICU patients 12 ml/kg versus 6 ml/kg IL-6

Ware et al. [25] ICU patients 12 ml/kg versus 6 ml/kg PAI-1, aPC

Chen et al. [17] Healthy rats Non-ventilated versus 40 ml/kg Active PAI-1

Chiumello et al. [202] Acid aspiration in rats 16 ml/kg versus 16 ml/kg, 5 PEEP versus 9 ml/kg  TNF-α, MIP-2

  versus 9 ml/kg, 5 PEEP versus same with 

  recruitment maneuvers

Choi et al. [18] Healthy rats 20 ml/kg versus 7 ml/kg VEGF

Crimi et al. [11] Hemorrhagic shock and  12 ml/kg, PEEP 0 versus 6 ml/kg, PEEP 5 IL-6, MIP-2

 resuscitation in rats

Dhanireddy et al. [12] S. aureus aspiration in mice SB versus 10 ml/kg IL-6, KC, MIP-2

Guery et al. [203] Healthy rats 30 ml/kg versus 10 ml/kg TNF-α

Haitsma et al. [16] Pneumonia in rats 12 ml/kg versus 6 ml/kg, PEEP 5, versus SB TATc, active tPA

Haitsma et al. [204] LPS aspiration and i.p. in rats 45 cmH
2
O versus 45 cmH

2
O, PEEP 10 TNF-α

Haitsma et al. [205] LPS aspiration and i.p. in rats 45 cmH
2
O versus 45 cmH

2
O, PEEP 10 TNF-α

Haitsma et al. [206] Healthy rats 32 cmH
2
O versus 32 cmH

2
O, PEEP 6 versus  IL-6, MIP-2

  13 cmH
2
O, PEEP 3

Herrera et al. [207] Septic rats 20 ml/kg versus 6 ml/kg versus 20 ml/kg, PEEP AIP  TNF-α, IL-6

  versus 6 ml/kg, PEEP AIP

Imai et al. [10] Acid aspiration in rabbits 15 to 17 ml/kg, PEEP 0 to 3 versus 5 to 7 ml/kg,  MCP-1, IL-8, GRO, sFasL

  PEEP 9 to 12

Kobr et al. [26] Healthy piglets SB versus 6 ml/kg versus 10 ml/kg VCAM-1, ICAM-1

Murphy et al. [208] LPS aspiration in rabbits 12 ml/kg versus 5 ml/kg, PEEP 10 to 12 TNF-α

Oliveira-Junior et al. [209] Healthy rats 42 ml/kg versus 7 ml/kg TNF-α, IL-1β

O’Mahony et al. [13] LPS i.p. in mice SB versus 10 ml/kg IL-6, KC, MIP-2, TNF-α

Schortgen et al. [210] P. aeruginosa aspiration in rats 27 ml/kg versus 6 ml/kg versus 6 ml/kg, PEEP 8  TNF-α

  versus PLV versus SB

Vaschetto et al. [14] LPS aspiration in rats 15 ml/kg, PEEP 0 versus 6 ml/kg, PEEP 5 IL-6, TNF-α

Vreugdenhil et al. [211] Healthy rats 32 cmH
2
O versus 32 cmH

2
O, PEEP 6 versus  MIP-2

  14 cmH
2
O, PEEP 6 

Wolthuis et al. [212] Healthy mice 15 ml/kg versus 8 ml/kg IL-6, KC

AIP, above infl ection point; aPC, activated protein C; ARDS, acute respiratory distress syndrome; GRO, growth-regulated oncogene; ICAM, intercellular adhesion 
molecule; IL-1RA, interleukin-1 receptor antagonist; i.p., intraperitoneal; KC, keratinocyte-derived chemokine; LPS, lipopolysaccharide; MCP, monocyte 
chemoattractant protein; MIP, macrophage infl ammatory protein; PAI, plasminogen activator inhibitor; PEEP, positive end-expiratory pressure (in cmH2O); PLV, partial 
liquid ventilation; SB, spontaneous breathing; sFasL, soluble Fas ligand; sICAM, soluble intercellular adhesion molecule; SP-D, surfactant protein D; sTNFR, soluble 
TNF-α receptor; TATc, thrombin-antithrombin complex; tPA, tissue-type plasminogen activator; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial 
growth factor.
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Table 3. Potential eff ects on the kidney of mediators released during mechanical ventilation

Mediator Eff ects on kidney References

Pro-infl ammatory  
 TNF-α Stimulated expression of TGF-β, RANTES, MIP-2, MCP-2, IL-1β, TNF-α, T-cell activation 3, IL-6, phospholipase-A2,  [37-40,43]

  LIF. MHC-I upregulation

  Leukocyte infi ltration through MCSF, MCP-1, GRO-α, β, γ, ENA-78, GCP-2, IL-8, MIP-1β and 3α, RANTES, ICAM-1,  [44-49]

  VCAM-1, L-selectin

  Death receptor- and mitochondrial-mediated apoptosis and ceramide signaling. Necrosis through ROS.  [50-54,56-59]

  Downregulation of anti-apoptotic proteins.

  Production of vasoactive mediators: PAF, ET-1, PGs, adenosine, NO. Downregulation Ang-II-R [60-69,72]

  NO tubular epithelial cell shedding. Decreased proliferation of tubular and mesangial cells [73,74]

  Increased PAI-1 gene expression, increased TF production with fi brin deposition [75,76]

  Decreased gene expression for urea, glucose, sodium and chloride transporters/channels [77-80]

  Decreased gene expression of nuclear hormone receptor LXR, its target genes and coactivators [81]

 IL-1β Stimulated expression of IL-6, IL-8, LIF, ceramide. MHC-I upregulation [40,43,87-89]

  Increased expression of MCP-1, GMCSF, MSF, ENA-78, RANTES, MIP-1β, ICAM-1 [90-93]

  Downregulation of Ang-II-R. Expression of NO, PGE2 [39,72,94,95]

  Stimulated growth of glomerular epithelial cells [96]

  Increased TF expression and activity, upregulation of tPA and PAI-1 [97,98]

  Decreased gene expression for urea, glucose, sodium and chloride transporters/channels [77-80]

  Decreased gene expression of nuclear hormone receptor LXR, its target genes and coactivators [81]

 IL-6 TNF-α, IL-1β stimulation. Increased ICAM-1, P-selectin expression with neutrophil infi ltration [105-107]

  Increased survival, upregulation of pro- and anti-apoptotic genes [108]

  Decreased expression of Ang-II-R [72]

  Increased oxidative stress, but increased expression of HO-1, Ref-1 [105,106]

  Proliferation of rat mesangial and tubular cells, increased HGF and met-c receptor. Confl icting reports [109-111]

  Decreased gene expression for urea, glucose and chloride transporters [77-79]

  Abrogation of protective eff ect of hyperlipidemia [115]

  

Anti-infl ammatory  
 IL-10 Decreased synthesis of TNF-α and IL-1β [118,119]

  Contradictory eff ects on ICAM-1 expression and leukocyte infi ltration [118,120]

  Prevention of apoptosis and necrosis. Decreased cell cycle activity [118]

  Reduction of VEGF, iNOS and nitrite formation [118,121]

  Proliferation of mesangial cells [122-124]

 sTNFR Decreased expression of TNF-α, MCP-1 [71]

  Inhibition of apoptosis, decreased cell proliferation and fi brosis [128-130]

 IL-1RA Decreased gelatinase B, stromelysin, MCP-1 and IL-8 [132,133]

  Decreased ICAM-1 expression and leukocyte infi ltration [134-138]

  

Chemotactic  
 IL-8 Increased COX1 and PGE2 expression [145]

  Alterations in glomerular basement membrane sulfate metabolism [146]

 MIP-2 Increased MCP-1, RANTES, MIP-2 [151]

  Decreased neutrophil infl ux [152,153]

  Decreased fi brin deposition [152]

 KC = GRO-α Increased MCP-1, RANTES, MIP-2, KC [151]

  Neutrophil infi ltration [153]

  Stimulated proliferation of medullary collecting duct cells [154]

  Increased COX1 and PGE2 synthesis [145]

 MCP-1 Increased IL-6 [155]

  Increased ICAM-1 expression, chemotaxis and haptotaxis, monocyte/macrophage infi ltration [155-165]

  Increased apoptosis [164]

  Increased fi brosis, TGF-β, collagen deposits [165-167]

  Decreased nephrin [168]

Continued overleaf
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TNF-α and observed disruption of the actin cytoskeleton 

and elongation of cells and shedding of viable, apoptotic 

and necrotic cells dependent on nitric oxide (NO). Cell 

shedding was accompanied by dispersal of β1-integrins 

and E-cadherin. Th e same authors also found decreased 

proximal tubule epithelial cell proliferation, an eff ect that 

was also observed in mesangial cells [73,74].

TNF-α-induced histologic kidney damage is frequently 

characterized by glomerular fi brin deposition. By stimu-

lat ing renal plasminogen activator inhibitor (PAI)-1 gene 

expression and increasing the production of tissue factor 

by mesangial and endothelial cells, TNF-α can contribute 

to fi brin deposition [75,76].

In a series of animal experiments, Schmidt and 

colleagues [77-80] hypothesized a role for urea, glucose, 

sodium and chloride transporters in sepsis-associated 

tubular dysfunction. Within hours after lipopolysac-

charide injection in mice they showed decreased renal 

blood fl ow and glomerular fi ltration and impaired tubular 

sodium handling associated with decreased levels of the 

aforementioned transporters. In TNF-α-challenged mice 

they found signifi cant downregulation of genes coding 

for urea, glucose, sodium and chloride transporters as 

well as for chloride channels and Na+/K+-ATPase-α
1
 com-

pared to wild-type mice.

In proximal tubule cells in vitro, TNF-α caused a 

downregulation of gene expression of the nuclear 

hormone receptor liver X receptor/retinoid X receptor 

(LXR) and several of its target genes and coactivators 

[81]. During the acute phase TNF-α interferes with lipid 

metabolism in the kidney, with potential subsequent 

eff ects on the anti-infective and anti-infl ammatory 

properties of lipids [82].

Interleukin-1β
Cells of the innate immune system recognize microbial 

products and products released from dying and damaged 

cells, leading to the formation of complex proteins, 

termed infl ammasomes [83,84]. Activation of caspase 1 

by the infl ammasome leads to cleavage and subsequent 

activation of IL-1β [85]. Glomerular endothelial cells, 

cortical tubular epithelial cells, podocytes and mesangial 

cells are capable of IL-1β production [86]. Despite its 

central role in the response to cell damage and microbes, 

surprisingly little in vivo research has focused on the role 

of IL-1β in acute kidney disease. IL-1β has been 

Table 3. Continued

Mediator Eff ects on kidney References

Coagulation/fi brinolysis  
 Active PAI-1 Increased leukocyte infi ltration [169]

  Fibrin, collagen deposits, increased fi bronectin, TGF-β, decreased urokinase and fi brosis [169-172]

 tPA Confl icting reports on leukocyte infi ltration [175,178]

  Confl icting reports on fi brosis [175-178]

 aPC Decreased TNF-α, IL-6, IL-8, IL-18 [180-182]

  Decreased KC, MIP-2, MCP-1, suppression of leukocyte rolling, adhesion and infi ltration [180-184]

  Decreased apoptosis, necrosis [180-185]

  Decreased nitrosative stress [185]

  Decreased adrenomedullin, iNOS, angiotensin (II), ACE. Increased renal and peritubular blood fl ow,  [180,181,184]

  decreased permeability

  Decreased extracellular matrix depositions [180,185]

  

Miscellaneous  
 VEGF Decreased MCP-1, ICAM-1, leukocyte infi ltration [188]

  Decreased apoptosis and necrosis [189-192]

  Stimulated eNOS and NO expression [193,194]

  Increased permeability [195,196]

  Increased proliferation of glomerular cells, podocytes, mesangial cells, fi broblasts and capillaries [192,194,213-220]

  Confl icting reports of fi brosis and sclerosis [194,217,219-221]

  Sustained nephrin expression [221]

 sFasL Increased apoptosis [10]

ACE, angiotensin converting enzyme; Ang-II-R, angiotensin-II receptor; aPC, activated protein C; COX, cyclooxygenase; ENA, epithelial neutrophil activating protein; 
eNOS, endothelial nitric oxide synthase; ET, endothelin; GCP, granulocyte chemotactic peptide; GMCSF, granulocyte macrophage colony-stimulating factor; GRO, 
growth related oncogene; HGF, hepatocyte growth factor; HO, heme-oxygenase; ICAM, intercellular adhesion molecule; IL-1RA, interleukin-1 receptor antagonist; 
iNOS, inducible nitric oxide; KC, keratinocyte-derived chemokine; LIF, leukemia inhibitory factor; LXR, liver X receptor/retinoid X receptor; MCP, monocyte 
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implicated in infl ammation and cell recruitment, 

vasoactivity, coagulation and fi brinolysis, and regulation 

of chloride, urea, sodium and glucose transporters 

(Table 3).

Th rough NF-κB signaling IL-1β stimulates human renal 

proximal tubular epithelial cells to produce IL-6 [87]. In 

mesangial cells, others showed IL-1β-driven expression 

of ceramide, IL-6, IL-8 and leukemia inhibitory factor 

[40,55,88,89]. Like TNF-α, IL-1β is also capable of up-

regulating MHC class I expression in mesangial cells [43].

In mesangial and epithelial cell cultures, IL-1β induced 

upregulation of a multitude of chemoattractants, includ-

ing CC and CXC chemokines [45,90-92]. Following 

chemo attraction, IL-1β also stimulates expression of 

ICAM-1 on mesangial cells, thereby facilitating leukocyte 

adhesion [93].

IL-1β is also involved in hemodynamic instability 

during septic shock. By downregulating Ang-II type-I 

receptors, IL-1β may be partially responsible for the 

decreased reactivity to vasoconstrictors [72]. Additionally, 

in mesangial cells, IL-1β, through inducible nitric oxide 

synthase (iNOS), caused increased production of NO, 

known for its vasodilatatory eff ects, and prostaglandin 

(PG)E
2
, which has potential vasodilatory properties 

[39,94,95].

Data on the eff ects of IL-1β cell proliferation are 

limited. Tateyama and colleagues [96] showed that IL-1β 

could function as an autocrine growth factor for rat 

glomerular epithelial cells in vitro.

IL-1β can aff ect both coagulation and fi brinolysis in 

vitro. In mesangial cells, IL-1β upregulated tissue factor 

expression by a protein kinase C-dependent pathway, 

with an eff ect on tissue factor activity only when cells 

were rendered apoptotic [97]. Also in these cells, IL-1β 

was capable of inducing the fi brinolytic enzyme tissue 

type plasminogen activator (tPA), but also its inhibitor 

PAI-1 [98]. Th e eff ects of IL-1β on coagulation and 

fi brinolysis in the kidney in vivo remain unknown.

In the aforementioned series of animal experiments, 

Schmidt and colleagues [77-80] also found that IL-1β-

challenged mice signifi cantly downregulated genes 

coding for urea, glucose, sodium and chloride trans porters 

as well as for chloride channels and Na+/K+-ATPase-α
1
 

compared to wild-type mice. Th is implicates IL-1β in 

sepsis-associated tubular dysfunction with decreased 

glomerular fi ltration rate, failure of urine concentration, 

decreased urine osmolality, increased fractional sodium 

excretion and glucosuria.

In human proximal tubule cells in vitro, IL-1β, like 

TNF-α, caused downregulation of gene expression of the 

nuclear hormone receptor LXR and several of its target 

genes and also of its coactivators [81]. Th e authors 

suggest a role for IL-1β in lipid metabolism in the kidney 

during the acute phase.

Interleukin-6
Th e exact nature of IL-6 remains the subject of debate - it 

has been extensively described as both pro- and anti-

infl am matory [99,100]. IL-6 levels increase during 

hypoxia, tissue damage and organ failure [101-103] and 

predict mortality in patients with acute renal failure 

[104]. In the kidney, IL-6 is involved in infl ammation, 

leukocyte adhesion and infi ltration, apoptosis and 

survival, vasoactivity, prevention of oxidative stress, cell 

proliferation and lipid homeostasis during the acute 

phase (Table 3).

Ischemia/reperfusion (I/R) studies with IL-6 knock-out 

mice showed decreased levels of renal TNF-α and IL-1β 

compared to wild type [105]; this was accompanied by 

downregulated expression of ICAM-1 and P-selectin and 

decreased neutrophil infi ltration [105-107].

Th e role of IL-6 in apoptosis and survival is complex. In 

cisplatin-induced renal failure, mice lacking IL-6 had 

better survival rates despite decreased renal function. 

Th is was associated with upregulation of both pro- and 

anti-apoptotic genes [108]. Th e authors explain these 

phenomena by the fact that the upregulation of pro-

apoptotic genes disappears after 24 hours, while anti-

apoptotic genes remain upregulated for 72 hours [108]. 

Others also found a positive eff ect on survival in IL-6 

knock-out mice with improved renal function [105,106].

In mice exposed to intravenous IL-6, Schmidt and 

colleagues [72] found decreased expression of Ang-II 

type-I receptors, which are involved in vasoconstriction, 

potentially explaining vasodilatation during shock. In an 

I/R model and a mercury chloride-induced model of 

acute renal failure, IL-6 knock-out mice and mice treated 

with anti-IL-6 antibodies had lower levels of oxidative 

stress and NO-dependent oxidative stress. In addition, 

IL-6 bound to soluble IL-6 receptor, likely shedded from 

neutrophils during AKI, increased gene expression of 

heme oxygenase-1 and restriction factor-1, both known 

to protect against oxidative stress [105,106].

Confl icting reports delineate a role for IL-6 in prolifera-

tion of various kidney cells, associated with tissue repair 

and regeneration (Table 3) [109-114].

Similar to TNF-α and I L-1β, Schmidt and colleagues 

[77-79] hypothesized a role for urea, glucose and chloride 

transporters in sepsis-associated tubular dysfunction 

with failure of urine concentration, decreased urine 

osmo lality and glucosuria. In IL-6-challenged mice they 

found signifi cant downregulation of genes coding for 

urea, glucose and chloride transporters as well as for 

chloride channels and Na+/K+-ATPase-α
1
 expression 

compared to wild-type mice, though to a lesser extent 

than TNF-α and IL-1β.

Poloxamer 407 induces hyperlipidemia that protects 

against renal I/R dysfunction. Th is was associated with 

decreased plasma levels of IL-6, but recombinant IL-6 
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infusion abrogated these eff ects. Th ese results were con-

fi rmed in apolipoprotein-E- and angiopoietin-like 

3-defi cient mice, which suff er from hypercholesterolemia 

and hypolipidemia, respectively [115].

Anti-infl ammatory

Interleukin-10
IL-10 exerts its anti-infl ammatory eff ect through 

inhibition of MHC class II-associated antigen presen ta-

tion and by decreasing circulating levels of CC and CXC 

chemokines [116]. However, in a dose-dependent manner, 

IL-10 can also promote infl ammation through eff ects on 

B cells and natural killer cells and by stimulating cytokine 

production [116]. Increased levels of IL-10 predicted 

mortality in patients with acute renal failure and, 

interest ingly, patients with specifi c IL-10 gene poly-

morphisms required less renal support during sepsis 

from pneumonia [104,117]. Th e eff ects of IL-10 on the 

kidney involve eff ects on infl ammation, infl ammatory 

cell recruitment and infi ltration, apoptosis, necrosis and 

cell cycle activity, vasoactivity and cell proliferation 

(Table 3).

In vivo studies in diff erent models of AKI, intra venous 

IL-10 administration decreased TNF-α produc tion and 

prevented creatinine increase in mice [118]. Mesangial 

cells in vitro showed less production of TNF-α and IL-1β 

after stimulation with lipopolysaccharide in the presence 

of IL-10 [119]. Deng and colleagues [118] reported 

decreased ICAM-1 expression in mice during kidney 

injury and IL-10 injection; histological analysis also 

revealed decreased cast formation and leukocyte infi ltra-

tion. Contradictory to these fi ndings was an observation 

made by Chadban and colleagues [120] showing 

increased ICAM-1 expression on rat mesangial cells after 

stimulation with IL-10. In mice, administration of IL-10 

prevented both apoptosis and necrosis, mainly in the 

outer stripe of the kidney, after cisplatin and I/R-induced 

kidney injury. IL-10 also decreased cell cycle activity 

[118].

IL-10 addition to glomerular epithelial cells in vitro 

reduced VEGF, a potent modulator of capillary permea-

bility [121]. In vivo, IL-10 decreased iNOS, and in in vitro 

culture of cortical tubule cells, IL-10 exposure decreased 

nitrite formation [118].

In vitro experiments showed proliferation-stimulating 

eff ects of IL-10 on mesangial cells through platelet 

derived growth factor receptor α and β, but also up regu-

lation of IL-10 mRNA, suggesting a possible autocrine 

mechanism [122-124]. Th ese in vitro results were con-

fi rmed in vivo [124].

Soluble tumor necrosis factor-α receptor
Cleavage of the extracellular domain of the TNF-α 

receptor (TNF-αR) leads to soluble TNF-αR (sTNF-αR) 

capable of binding and thereby inactivating TNF-α. 

Blood sTNF-αR levels predicted acute renal failure in 

patients with septic shock and acute lung injury 

[125,126]. In rats subjected to ischemia reperfusion 

injury, sTNF-αR prevented loss of renal function, and 

prevented expres sion of TNF-α and monocyte chemo-

tactic protein (MCP)-1 [127]. Without changes in 

hypotension, apoptosis, leukocyte infi ltration or 

morphology, sTNF-αR preserved glomerular fi ltration 

rate, suggesting a role for vasoactive mediators [71]. 

Apoptosis of mesangial cells co-cultured with interferon-

γ-stimulated macrophages was inhibited by sTNF-αR in 

vitro [128]. In in vivo studies in rats with unilateral 

ureteral obstruction, administration of sTNF-αR 

decreased tubular and interstitial cell proliferation and 

apoptosis and prevented renal fi brosis (Table 3) [129,130].

Interleukin-1 receptor antagonist
IL-1 receptor antagonist (IL-1RA) is a physiological 

inhibitor of IL-1β activity through competitive binding to 

the IL-1β receptor. Recombinant IL-1RA administration 

during sepsis showed a mortality benefi t of almost 5% 

[131]. In mesangial cells addition of IL-1RA decreased 

gelatinase B, stromelysin, MCP-1 and IL-8 RNA and 

protein levels after stimulation with IL-1α and IL-1β 

[132,133]. In in vivo models of anti-glomerular basement 

membrane antibody glomerulonephritis and renal I/R 

treatment with IL-1RA resulted in improved kidney 

func tion, decreased expression of ICAM-1 and reduced 

renal histological damage, including decreased infi ltra-

tion of lymphocytes, neutrophils and macrophages and 

less apoptosis (Table 3) [134-138].

Chemotactic

Interleukin-8
Th e chemokine IL-8 is produced mainly by macrophages, 

but also by renal tubular epithelial cells, mesangial cells 

and podocytes [139-142]. IL-8 levels predict the develop-

ment of AKI, duration of MV and mortality in patients 

with AKI [104,143,144]. Exposure of mesangial cells to 

IL-8 in vitro leads to selective expression of cyclo-

oxygenase (COX)1, but not COX2, and subsequent syn-

thesis of PGE
2
 [145]. In vivo infusion of IL-8 in rats causes 

increased albuminuria, mediated through alterations of 

sulfate metabolism by the glomerular basement mem-

brane (Table 3) [146].

Macrophage infl ammatory protein-2
Macrophage infl ammatory protein (MIP)-2, a member of 

the superfamily of chemokines, is a potent chemotactic 

factor for neutrophils and stimulates the production of 

other infl ammatory mediators such as IL-1β and TNF-α 

[147]. In kidneys, mesangial cells and glomerular epi-

thelial cells stimulated by NO or IL-1β are capable of 
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synthesizing MIP-2 [148-150]. Exposure of mesangial 

cells to MIP-2 in vitro stimulates the release of MCP-1, 

RANTES and also MIP-2 [151]. Specifi c blocking of 

MIP-2 in in vivo models of shiga toxin-induced renal 

infl ammation and anti-glomerular basement membrane 

antibody glomerulonephritis prevented renal neutrophil 

infl ux and fi brin deposition and decreased proteinuria 

(Table 3) [152,153].

Keratinocyte chemoattractant
Keratinocyte chemoattractant (KC), also known as 

growth related oncogene or CXCL1, in mesangial cells 

increased production of pro-infl ammatory mediators 

such as MCP-1, RANTES, MIP-2 and KC [151]. KC 

exhibited neutrophil-attracting properties as shown in a 

mouse model of shiga toxin-induced renal injury [153]. In 

vitro KC stimulated proliferation of inner medullary 

collecting duct cells [154]. KC also stimulates mesangial 

cells to produce COX1 and enhances PGE
2
 synthesis 

(Table 3) [145].

Monocyte chemotactic protein-1
MCP-1, or chemokine ligand 2, stimulates IL-6 synthesis 

in vitro through NF-κB and activator protein-1 activation 

[155]. In vitro and in several animal models of chronic 

kidney injury, MCP-1 has been shown to increase 

ICAM-1 expression leading to increased chemotaxis, 

haptotaxis, directional cell motility up a gradient of 

cellular adhesion sites, and leukocyte infi ltration; macro-

phages and monocytes were mainly involved [155-165]. 

In rats transfected with a MCP-1 antagonist and protein 

overload proteinuria, decreased numbers of apoptotic 

cells were observed compared to wild type [164]. In 

models of crescentic nephritis and glomerulonephritis, 

blocking MCP-1 was shown to decrease collagen type I 

and IV deposition and decrease transforming growth 

factor-β levels [165,166]. Additionally, MCP-1 increased 

fi bronectin production in mesangial cells, whereas 

fi nbronectin levels decreased in diabetic MCP-1 knock-

out mice [167]. In vitro studies of podocytes showed 

decreased levels of nephrin, which is necessary for the 

proper functioning of the renal fi ltration barrier, after 

exposure to MCP-1 (Table 3) [168].

Coagulation and fi brinolysis

Plasminogen activator inhibitor-1
In patients with acute lung injury, PAI-1 is a prognostic 

factor for the development of acute renal failure [126]. In 

PAI-1 knock-out models or models overexpressing PAI-1 

with anti-glomerular basement membrane glomerulo-

nephritis, PAI-1 increases leukocyte infi ltration, crescent 

formation, fi brin deposits, fi bronectin synthesis and 

collagen accumulation [169-171]. Similar results were 

found in rodents with unilateral ureteral obstruction with 

increased transforming growth factor-β1 levels and 

decreased levels of urokinase [172]. Functionally, PAI-1 

knock-out mice showed decreased albuminuria in a 

diabetes model (Table 3) [173].

Tissue type plasminogen activator
Similar to PAI-1, tPA is mainly involved in fi brosis 

through matrix metalloproteinase (MMP)-9 stimulation, 

myofi broblast activation and prevention of apoptosis of 

myofi broblasts and fi broblasts [174]. In tPA knock-out 

studies in I/R or unilateral ureteral obstruction models, 

tPA was shown to increase neutrophil infl ux, but other 

eff ects mainly concerned tissue remodeling, although 

confl icting reports exist [175-178] (Table 3).

Activated protein C
In patients with severe sepsis, baseline activated protein 

C (aPC) levels were inversely associated with worsening 

renal function and/or subsequent dialysis and treatment, 

whereas treatment with aPC was associated with 

improved renal function [179]. Th e anti-infl ammatory 

eff ects of aPC are shown in the downregulation of the 

expression of TNF-α, IL-6, IL-8 and IL-18 [180-182]. By 

decreasing KC and MIP-2 protein and MCP-1 mRNA, 

aPC potentially prevents infl ammatory cell recruitment 

[181-183]. Additionally, aPC suppresses leukocyte rolling 

and adhesion [184]. Histologically this leads to decreased 

leukocyte infl ux and also decreased renal myelo per-

oxidase levels [180,181]. In the same histological speci-

mens, aPC prevented renal necrosis and apoptosis of 

glomerular and endothelial cells and podocytes [180-

185]. In a model of diabetes, Isermann and colleagues 

[185] found aPC to have an antioxidant eff ect, decreasing 

nitrosative stress by decreasing kidney nitrotyrosine 

levels. Positive hemodynamic eff ects have been observed 

in various models, whereby aPC increased renal blood 

fl ow and peritubular fl ow, potentially by the observed 

decrease in adrenomedullin, iNOS, angiotensinogen 

mRNA, Ang converting enzyme and Ang-II [184]. 

Vascular permeability is also decreased by aPC [180,181]. 

Th e anticoagulant properties of aPC are highlighted by a 

decrease in circulating fi brin degradation products and 

decreased extracellular matrix depositions [180,185]. 

Combined, these eff ects of aPC preserve renal function 

as measured by creatinine, blood urea nitrogen levels and 

proteinuria (Table 3) [181-184].

Miscellaneous

Vascular endothelial growth factor
In a rodent model of ventilator-induced lung injury, Choi 

and colleagues [18] indicated a role for VEGF in endo-

thelial NOS-mediated vasopermeability in lungs and 

kidneys. VEGF is a potent endothelial cell mitogen, pro-

motes endothelial cell diff erentiation and survival, 
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stimulates angiogenesis and enhances vascular permea-

bility. While deleterious in some forms of renal disease, 

VEGF may contribute to recovery in others [186,187].

In rodent models of glomeruolonephritis, intravenous 

VEGF decreased MCP-1 and ICAM-1 levels with a 

subsequent decrease in infi ltrating leukocytes [188]. 

VEGF prevented glomerular and tubulointerstitial cell 

apoptosis and necrosis in models of hemolytic uremic 

syndrome and mesangio-proliferative nephritis, which 

was confi rmed in vitro [189-192]. In vivo VEGF stimu-

lated endothelial nitric oxide synthase expression in rats 

in a remnant kidney model, and in glomerular endothelial 

cells this increased NO expression [193,194]. One of the 

characteristics of VEGF is enhancement of vascular 

permeability; this was confi rmed in vitro [195,196]. Th e 

proliferative eff ects of VEGF have been well described, 

both in vivo and in vitro, but these properties are likely of 

limited interest for the development of AKI (Table 3).

Soluble Fas ligand
sFasL is up to 1,000-fold less active than membrane-

bound FasL in inducing apoptosis and has even been 

suggested to have antagonistic properties [197,198]. 

However, Imai and colleagues [10] showed apoptotic 

activity of serum of mechanically ventilated rabbits on 

renal tubular cells in vitro, which could be blocked by an 

anti-sFasL Fas:Ig fusion protein (Table 3).

Mediators - theory or causal relationship?

Central in the biotrauma hypothesis is the increase in 

intra-pulmonary mediator levels and the spill-over of 

these mediators from the lung into the systemic circu la-

tion. Several mediators are systemically increased during 

MV (Tables 1 and 2), although the exact cellular origins 

of the systemically measured mediators remains unknown 

[7]. Most of the mediators increased during MV have 

potential and well described eff ects on the kidney.

Most studies have focused on pro-infl ammatory and 

chemotactic mediators, especially TNF-α, IL-6 and 

MIP-2. Th e eff ects of these pro-infl ammatory mediators 

on the kidney have been studied to varying degrees. In 

vivo evidence indicates that TNF-α can cause and 

contributes to AKI, in contrast to IL-1β and MIP-2, for 

which suffi  cient in vivo data are lacking. IL-6 has been 

shown to be involved in AKI, but confl icting reports exist 

and no defi nite conclusion can be drawn. Much is known 

about the eff ects of anti-infl ammatory and chemotactic 

media tors on the kidney. Strong evidence indicates a 

protective role for anti-infl ammatory mediators, espe-

cially IL-10, in the development of AKI, but insuffi  cient 

evidence exists to indicate a direct role in AKI for 

chemotactic mediators. Little is known about the poten-

tial eff ects on the kidney of some frequently studied 

mediators released during MV,  such as soluble ICAM, 

soluble VCAM and sFasL. Th e potential of these 

mediators will remain unknown in the absence of studies 

on their possible eff ects on the kidney. Other mediators, 

for example, aPC and VEGF, have several well known 

eff ects on the kidney but have received little attention in 

studies on mediator release during MV. Studies of aPC 

and VEGF during MV have great potential to further 

delineate the eff ects of these mediators on the kidney.

IL-10, IL-8 and aPAI-1 all have predictive value for the 

development of AKI or AKI-associated mortality. Despite 

this, few studies have focused on the role of MV and, 

even though their increase may be an epiphenomenon, 

little is known about their potential role in the 

pathophysiology of AKI. Interestingly, we did not identify 

studies using specifi c blocking of mediators in vivo or 

specifi c knock-out models that could establish a causal 

relationship between MV-induced mediator release and 

AKI. However, we describe a multi tude of potential 

eff ects on the kidney of several mediators that can be 

blocked rather specifi cally now in both animal models 

and humans. For example, anakinra, a synthetic IL-1RA, 

and infl iximab, a monoclonal antibody against TNF-α, 

have found their way into clinical practice.

Before targeting mediators to prevent AKI in patients, 

care must be taken to learn from past experiences. 

Attempting to alter the course of sepsis, numerous 

studies have targeted a variety of mediators in critically ill 

patients, mainly suff ering from sepsis. Th e rather dis-

appointing results of these studies have led to insights 

into the possible mechanisms of failure in these studies. 

Several issues should be taken into account. Th e agent’s 

biological activity, shown in vitro or in simple animal 

models, may not be replicable in humans. Dosage, timing 

and duration of the novel therapy are usually unknown. 

In most trials in critical care medicine the target popu-

lation is heterogeneous, also including genetic poly-

morphisms. Th e complexity of mediator interdependency 

may also require the targeting of multiple mediators 

simultaneously or combined targeting of pro- and anti-

infl ammatory mediators.

Conclusion

From a theoretical point of view, the systemic release of 

several mediators induced by MV may play an important 

role in the pathophysiology of AKI. However, evidence 

supporting this hypothesis or showing causal relation-

ships is lacking for the studied mediators. Future studies 

should therefore not only focus on the release of 

mediators during MV and a possible relationship with 

AKI, but should also study in-depth the pathophysiology 

by which these mediators may contribute to AKI.
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