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A comparison of estimates of glomerular filtration
in critically ill patients with augmented renal
clearance
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Introduction: Increasingly, derived estimates of glomerular filtration, such as the modification of diet in renal
disease (MDRD) equation and Cockcroft-Gault (CG) formula are being employed in the intensive care unit (ICU). To
date, these estimates have not been rigorously validated in those with augmented clearances, resulting in
potentially inaccurate drug prescription.

Methods: Post-hoc analysis of prospectively collected data in two tertiary level ICU’s in Australia and Portugal.
Patients with normal serum creatinine concentrations manifesting augmented renal clearance (ARC) (measured
creatinine clearance (CLCR) > 130 ml/min/1.73 m2) were identified by chart review. Comparison between measured
values and MDRD and CG estimates were then undertaken. Spearman correlation coefficients (rs) were calculated
to determine goodness of fit, and precision and bias were assessed using Bland-Altman plots.

Results: Eighty-six patients were included in analysis. The median [IQR] measured CLCR was 162 [145-190] ml/min/
1.73 m2, as compared to 135 [116-171], 93 [83-110], 124[102-154], and 108 [87-135] ml/min/1.73 m2 estimated by
CG, modified CG, 4-variable MDRD and 6-variable MDRD formulae. All of the equations significantly under-
estimated the measured value, with CG displaying the smallest bias (39 ml/min/1.73 m2). Although a moderate
correlation was noted between CLCR and CG (rs = 0.26, P = 0.017) and 4-variable MDRD (rs = 0.22, P = 0.047),
neither had acceptable precision for clinical application in this setting. CG estimates had the highest sensitivity for
correctly identifying patients with ARC (62%).

Conclusions: Derived estimates of GFR are inaccurate in the setting of ARC, and should be interpreted with
caution by the physician. A measured CLCR should be performed to accurately guide drug dosing.

Introduction
Accurate assessment of renal function in the critically
ill is essential, not only to detect acute kidney injury,
but also for the appropriate prescription of pharmaceu-
ticals and timely application of therapeutic strategies.
Although the kidneys have a range of functions in nor-
mal homeostasis, the glomerular filtration rate (GFR)
remains the most widely accepted index of renal func-
tion in both health and disease [1]. Largely, any assess-
ment of GFR in clinical practice focuses on identifying
renal impairment, where serum creatinine

concentrations are typically employed as a key biomar-
ker for this purpose. In respect to drug prescription,
elevated serum creatinine concentrations regularly trig-
ger dose reduction for renally excreted drugs, although
the converse-increasing drug dosing in response to low
serum values-is infrequently considered in clinical
practice.
To further improve the sensitivity of such measures to

screen for and monitor chronic kidney disease (CKD),
Levey and colleagues have developed a formula to esti-
mate the glomerular filtration rate (eGFR) from serum
creatinine concentrations and readily available demo-
graphic variables [2]. Although initially developed in a
cohort of ambulatory out-patients with CKD, the modi-
fication of diet in renal disease (MDRD) equation has
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been widely adopted in clinical practice, and is now rou-
tinely reported by laboratories worldwide. In particular,
there has been an increasing trend to use such measures
to modify drug dosing, although concerns have been
raised about such practice [3]. Perhaps a more familiar
estimate of renal function in optimising drug dosing is
that defined by the Cockcroft-Gault equation. Initially
described in 1976 in a small cohort of male patients [4],
this equation has been widely employed as a surrogate
of GFR in both clinical and research practice, although
its role in the critically ill remains uncertain.
Importantly, these mathematical estimates fail to con-

sider the important effects of the underlying disease
process and additional therapies provided, both of which
may significantly alter renal function from baseline.
Although ideal filtration markers (such as inulin) have
been employed in a research setting, they are infre-
quently available in clinical practice. Similarly, radio-
nucleotide measures of GFR are expensive and impracti-
cal in the ICU. As such, a measured renal creatinine
clearance (CLCR) is possibly the easiest and most accu-
rate measure of GFR routinely available to the intensive
care clinician.
Given the established concerns regarding the use of

estimates of GFR in the critically ill [3], this post-hoc
investigation was aimed at characterising the accuracy of
four commonly used equations in comparison with a
measured CLCR in a sub-group of patients exhibiting
augmented renal clearance (ARC) or ‘supra-normal fil-
tration’. The primary end-point was the precision and
bias of these estimates compared with CLCR measures.

Materials and methods
Study population
This study represents a post-hoc analysis of prospectively
collected data from two multi-disciplinary tertiary level
ICUs in Portugal (20 beds) and Australia (30 beds). The
only major patient groups not represented include: pae-
diatric, postoperative cardiac surgical patients and solid
organ transplant recipients. Patients enrolled in prospec-
tive antibacterial pharmacokinetic studies undertaken
between 2005 and 2009 at each centre were eligible for
inclusion. All patients had to display normal renal func-
tion, determined by serum creatinine concentrations less
than 1.4 mg/dl (124 μmol/l), without the requirement
for renal replacement therapy. Informed consent was
obtained from all participants or a surrogate decision
maker, and institutional ethics approval was provided at
each facility (Australia: Royal Brisbane and Women’s
Hospital Human Research Ethics Committee, References
2005/038, 2005/072, 2007/188, and Portugal: Innovation
and Development Unit, Coimbra University Hospital,
Reference 23/IDU/09/A). From this cohort, a sub-group
of patients demonstrating ARC (measured CLCR >130

ml/min/1.73 m2) were identified. Standard definitions
for SIRS, sepsis, severe sepsis or septic shock were
employed [5]. Diagnostic groups included trauma, sepsis,
respiratory failure without sepsis, post-operative patients
without sepsis and others.

Measurement of CLCR and calculation of mathematical
estimates
An 8-hour renal creatinine clearance was utilised in
Australia, while a 24-hour collection was employed in
Portugal, representing differing practice at each institu-
tion. This technique involves a standard urinary collec-
tion (via an indwelling catheter) for the defined time
period, following which the creatinine concentration is
measured in both urine and blood. The measured CLCR
is then calculated according to the equations presented
in Table 1. Both centres employ automated analysers
using a modified Jaffe technique (alkaline picrate).
Reported reference ranges for serum creatinine concen-
trations are 0.6-1.3 mg/dl (53-115 μmol/l) in Portugal,
and 0.8-1.2 mg/dl (73-108 μmol/l) in Australia. The
mathematical estimates of GFR chosen for comparison
included: Cockcroft-Gault (CG), modified CG, 4-variable
and 6-variable MDRD formulae (Table 1). As the studies
were conducted prior to implementation of an isotope
dilution mass spectrometry (IDMS) traceable assay, the
original ‘186’ 4-variable MDRD equation was employed
(see Table 1).

Statistical analysis
Data are presented as the mean (SD) or median [IQR]
as appropriate. Correlations were assessed using a scat-
ter graph and Spearman correlation coefficient (rs). A
Wilcoxon Signed Rank test was used to compare paired
data, where as one-way ANOVA, and Kruskal-Wallis
were used for sub-group analysis. Precision and bias

Table 1 Calculations employed

Formulae

24 hour CLCR = (UCR × UVol/SCR × 1440) × 1.73/BSA

8 hour CLCR = (UCR × UVol/SCR × 480) × 1.73/BSA

BSA = 0.007184 × (Ht)0.725 × (Wt)0.425

CG CLCR = (140-Age) × Wt × 1.73/(SCR × 72 × BSA) × 0.85 if female

Modified CG CLCR = if SCR <1, use 1

4-variable MDRD eGFR = 186 × SCR
-1.154 × age-0.203 × 1.210 if black ×

0.742 if female

6-variable MDRD eGFR = 170 × SCR
-0.999 × BUN-0.17 × SAlb

0.318 × Age-
0.176 × 1.18 if black × 0.762 if female

BSA, body surface area (m2); BUN, blood urea nitrogen (mg/dl); CG CLCR,
Cockcroft-Gault creatinine clearance (ml/min/1.73 m2); CLCR , creatinine
clearance (ml/min/1.73 m2); eGFR, estimated glomerular filtration rate (ml/min/
1.73 m2); Ht, height (cm); MDRD, modification of diet in renal disease; SAlb,
serum albumin concentration (g/dl); SCR, serum creatinine concentration (mg/
dl); UCR, urinary creatinine concentration (mg/dl); UVol, urinary volume (ml); Wt,
weight (Kg).
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were assessed using a Bland-Altman plot, with the bias
representing the mean difference between each variable,
and precision being one SD from the mean. Statistical
significance was defined as a p-value < 0.05, and all sta-
tistical analysis employed SPSS 13.0® (SPSS, Chicago,
IL) and MedCalc 9.3.8 for Windows® (MedCalc, Maria-
kerke, Belgium).

Results
Two hundred and nine patients in total were enrolled in
studies at each centre. Demographic details of these
cohorts are provided in Table 2. Of these, 86 (Australia
n = 43, Portugal n = 43) were identified as manifesting
ARC (CLCR > 130 ml/min/1.73 m2). Demographic and
therapy specific data for this sub-group are also pre-
sented. All patients manifesting ARC (n = 86) demon-
strated a systemic inflammatory response syndrome
(SIRS) or sepsis on the day of measurement, with a
maximum serum creatinine concentration of 1.26 mg/dl
(111 μmol/l) being recorded. Of the patients, 58% were
admitted after a trauma, 27% with sepsis, 7% with
respiratory failure without sepsis, 3.5% were post-surgi-
cal without sepsis and 4.7% had another diagnosis (see
Table 2).

A direct comparison between each assessment techni-
que is presented in Table 3 and graphically in Figure 1.
As demonstrated, each mathematical estimate was sig-
nificantly lower than the median measured CLCR value.
Although a statistically significant correlation was noted
between CLCR and CG (P = 0.017), modified CG (P =
0.044) and 4-variable MDRD (P = 0.047) estimates, the
strength of these correlations was poor, with Spearman
coefficients (rs) less than 0.3. The modified CG esti-
mates demonstrate better correlation in the Portugal
cohort (P = 0.017), although this remains very weak (rs
= 0.36). Using a cut-off for ARC of more than 130 ml/
min/1.73 m2, CG estimates had the greatest sensitivity,
correctly identifying 53 (62%) of the cohort. The 4-vari-
able and 6-variable MDRD formulae were less accurate,
with sensitivities of 47% and 29%, respectively (see Fig-
ure 1 andTable 3).
Bland-Altman plots are presented in Figures 2, 3, 4

and 5. Summary values for each equation overall and at
each centre separately are presented in Table 4. As
demonstrated, all of the formulae had poor clinical uti-
lity in terms of their precision and bias, although CG
estimates appeared to perform better in the Australian
setting. Examining the relation between the observed

Table 2 Demographic data

Variable Portugal (n = 120) Australia (n = 89)

Male/Female, n (%) 87 (72.5)/33 (27.5) 64 (71.9)/25 (28.1)

Age, years, mean (SD) 55.9 (21.1) 40.0 (18.9)

APACHE II, mean (SD) 17.2 (6.1) 18.2 (7.4)

Diagnosis, n (%)

Trauma 56 (46.7) 40 (44.9)

Sepsis 38 (31.7) 39 (43.8)

Respiratory failure (without sepsis) 13 (10.8) 2 (2.2)

Post-operative (without sepsis) 7 (5.8) 3 (3.4)

Other 6 (5.0) 5 (5.6)

ARC Subgroup (n = 86)

Male/Female, n (%) 66 (76.7)/20 (23.3)

Age, years, median (IQR) 35 (25-51.2)

Weight, kg, median (IQR) 80 (70-90)

Height, m, median (IQR) 1.7 (1.68-1.76)

BSA, m2, median (IQR) 1.93 (1.81-2.07)

APACHE II, mean (SD) 14.8 (5.8)

SIRS (on day of study), n (%) 86 (100)

Septic (on day of study), n (%) 65 (75.6)

Mechanical ventilation (on day of study), n (%) 83 (96.5)

Vasoactive drugs (on day of study), n (%) 24 (27.9)

Diuretic (on day of study), n (%) 35 (40.7)

Fluid balance (on day of study), ml, mean (SD) 311 (1640)

Serum creatinine, mg/dl (μmol/l), median (IQR) 0.7 (0.6-0.9) (62 (53-80))

Measured CLCR, ml/min/1.73 m2, median (IQR) 162 (145-190)

APACHE, acute physiology and chronic health evaluation; ARC, augmented renal clearance; BSA, body surface area; CLCR, creatinine clearance; IQR, interquartile
range; SD, standard deviation; SIRS, systemic inflammatory response syndrome.
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difference (as a percentage) and the average value, weak
correlations were identified for CG (rs = -0.34, P =
0.002), 4-variable MDRD (rs = -0.31, P = 0.004), and 6-
variable MDRD (rs = -0.32, P = 0.003) estimates, sug-
gesting a small negative proportional error. No correla-
tion was identified with the modified CG formula (see
Figures 2, 3, 4 and 5 and Table 4).
There was no significant correlation between fluid bal-

ance (rs = 0.16, P = 0.13) or acute physiology and
chronic health evaluation (APACHE) II score (rs = 0.03,
P = 0.776) and the measured CLCR. Although the daily
fluid balance was considerably more negative in those
who received diuretics (-541 (1207) ml vs 895 (1651)
ml, P<0.001), there was no significant difference in
CLCR (158 (141-179) vs 164 (147-208) ml/min/1.73 m2,
P = 0.20). Neither fluid balance (P = 0.31), nor CLCR (P
= 0.17) were significantly different between diagnostic
categories, and there was no difference in CLCR in those

receiving vasoactive medications (159 (141-169) vs 166
(150-196) ml/min/1.73 m2, P = 0.11).

Discussion
Our results demonstrate that in critically ill patients
exhibiting ARC, mathematical estimates of GFR are
insensitive in identifying this phenomenon. Clinicians
will often consider renal function in both their choice
and dose of pharmaceuticals, in particular antibacterial
agents. For example, using a previously published popu-
lation pharmacokinetic model of vancomycin in the cri-
tically ill [6], required daily dosing could vary by as
much as 1000 mg when using estimated versus mea-
sured values. Significantly, lower dose selection could
predispose to sub-therapeutic drug exposure, treatment
failure or the selection of drug-resistant strains [7], and
as such, clinicians should be cautious when employing
such estimates of GFR in this setting.

Table 3 Correlation between different measures of glomerular filtration

Median (IQR)
(All, n = 86)

rs (P-value)
(All, n = 86)

rs (P-value)
(Portugal, n = 43)

rs (P-value)
(Australia, n = 43)

Measured CLCR, ml/min/1.73 m2 162 (145-190)

CG, ml/min/1.73 m2 135 (116-171)* 0.26 (0.017) 0.29 (0.059) 0.29 (0.056)

Modified CG, ml/min/1.73 m2 93 (83-110)* 0.22 (0.044) 0.36 (0.017) 0.05 (0.732)

4-variable MDRD, ml/min/1.73 m2 124 (102-154)* 0.22 (0.047) 0.22 (0.161) 0.24 (0.122)

6-variable MDRD, ml/min/1.73 m2 108 (87-135)* 0.18 (0.097) 0.25 (0.105) 0.11 (0.490)

* P<0.01 when compared with measured CLCR.

CG, Cockcroft Gault; CLCR, creatinine clearance; IQR, interquartile range; MDRD, modification of diet in renal disease; rs = Spearman correlation coefficient.

Figure 1 Comparison of median measured and estimated
glomerular filtration rate. Median values (95% confidence interval)
for measured and estimated glomerular filtration rate. All
mathematical equations significantly underestimate the measured
value,’star’ indicates P<0.01 when compared with measured
creatinine clearance (CLCR). The modified Cockcroft-Gault (modCG)
formula performs the most poorly in this setting. CG, Cockcroft-
Gault; MDRD_4, 4-variable modification of diet in renal disease
equation; MDRD_6, 6-variable modification of diet in renal disease
equation.

Figure 2 Bland-Altman plot of CLCR vs Cockcroft Gault formula.
Comparison of the difference between the measured creatinine
clearance (CLCR) and Cockcroft Gault (CG) formula (as a percentage)
on the y-axis, versus the average value obtained on the x-axis. The
solid line represents the bias (mean percentage difference obtained
across the range of values), where as the dashed lines are the limits
of agreement (+/- 1.96 × standard deviation (SD)). square, Australia
cohort; cross, Portugal cohort. The Spearman correlation coefficient
(rs) for the percentage difference and average value is provided in
the top left hand corner (outliers excluded).
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Ours is not the first study to raise concerns about the
validity of these equations in the non-CKD population.
Herrera-Gutierrez et al. in their work comparing 2-hour
versus 24-hour CLCR measurements in the ICU, also
examined the accuracy of Cockcroft-Gault estimates [8].
In 359 recently admitted patients, the mean 24-hour
CLCR was 100.9 ± 4.21 ml/min/1.73 m2, as compared
with 87.4 ± 3.05 ml/min/1.73 m2 when determined by
Cockcroft-Gault [8]. The reported bias was 21.87 ml/
min/1.73 m2 with a precision of ± 58.27 ml/min/1.73
m2. Importantly, this was largely generated by those
patients with a CLCR of more than 100 ml/min/1.73 m2

[7], and compares favourably with our study. A similar
result was also noted by Martin et al. in 109 critically ill
patients, where only a weak correlation was demon-
strated between 24-hour measured CLCR and Cockcroft-
Gault estimates [9].
Cherry et al. have also examined measured CLCR ver-

sus mathematical estimates in a cohort of critically ill
and traumatised patients. In 100 patients (45 trauma
victims), Cockcroft-Gault estimates significantly under-
estimated the mean 24-hour CLCR (CLCR = 103.2 ± 5.7
ml/min vs CG CLCR = 86.2 ml/min ± 4.2) [10], although
separate investigators have suggested a modified Cock-
croft-Gault equation is reliable in stable trauma patients
[11]. In comparison, although approximately 60% of the

Figure 3 Bland-Altman plot of CLCR vs modified Cockcroft
Gault formula. Comparison of the difference between the
measured creatinine clearance (CLCR) and modified Cockcroft Gault
(modCG) formula (as a percentage) on the y-axis, versus the average
value obtained on the x-axis. The solid line represents the bias
(mean percentage difference obtained across the range of values),
where as the dashed lines are the limits of agreement (+/- 1.96 ×
standard deviation (SD)). square, Australia cohort; cross, Portugal
cohort. The Spearman correlation coefficient (rs) for the percentage
difference and average value is provided in the top left hand corner
(outliers excluded).

Figure 4 land-Altman plot of CLCR vs 4-variable modification of
diet in renal disease equation. Comparison of the difference
between the measured creatinine clearance (CLCR) and 4-variable
modification of diet in renal disease equation (MDRD_4) (as a
percentage) on the y-axis, versus the average value obtained on the
x-axis. The solid line represents the bias (mean percentage
difference obtained across the range of values), where as the
dashed lines are the limits of agreement (+/- 1.96 × standard
deviation (SD)). square, Australia cohort; cross, Portugal cohort. The
Spearman correlation coefficient (rs) for the percentage difference
and average value is provided in the top left hand corner (outliers
excluded).

Figure 5 Bland-Altman plot of CLCR vs 6-variable modification
of diet in renal disease equation. Comparison of the difference
between the measured creatinine clearance (CLCR) and 6-variable
modification of diet in renal disease equation (MDRD_6) (as a
percentage) on the y-axis, versus the average value obtained on the
x-axis. The solid line represents the bias (mean percentage
difference obtained across the range of values), where as the
dashed lines are the limits of agreement (+/- 1.96 × standard
deviation (SD)). square, Australia cohort; cross, Portugal cohort. The
Spearman correlation coefficient (rs) for the percentage difference
and average value is provided in the top left hand corner (outliers
excluded).
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patients in this study were victims of trauma, significant
numbers required mechanical ventilation, vasoactive
medications or were septic on the day of the study.
Hoste et al. examined the relation between a mea-

sured 1-hour CLCR and Cockcroft-Gault, 6-variable and
4-variable MDRD estimates in recently admitted criti-
cally ill patients with normal serum creatinine concen-
trations [12]. Twenty-eight older (median age 58 years)
moderately sick (median APACHE II 21) patients were
included, with a measured CLCR of 86 (62.6-121.6) ml/
min/1.73 m2 [12]. Of note, only the 6-variable MDRD
equation had any degree of statistical correlation with
the measured value (R = 0.466, P = 0.012), and biases
were much lower than reported in our study (Cock-
croft-Gault -6.2, 6-variable MDRD 11.2, 4-variable -9.4
ml/min/1.73 m2) [12]. Importantly, a significant number
of these patients (n = 13) had renal impairment (CLCR
<80 ml/min/1.73 m2), despite a normal serum creatinine
concentration. This is in agreement with data provided
by Poggio et al. noting similar levels of bias in ill hospi-
talised patients with moderate renal dysfunction, as
compared with iothalamate measures of GFR [13].
More recently, Martin et al. have examined the use of

MDRD and Cockcroft-Gault estimates in a cohort of
primarily head injured or burnt patients with normal
serum creatinine concentrations. Measured 8-hour CLCR
values were significantly elevated (median 163 (124-199)
ml/min), and substantial bias was reported with both
mathematical formulae (-12 ml/min/1.73 m2 4-variable
MDRD, 17 ml/min Cockcroft-Gault CLCR) [14]. Of
note, significant improvement in MDRD performance
was seen with correction for anthropomorphic measures
[14]. Conil et al. have also noted the pitfalls of using
such equations in patients with burn injuries, reporting
a mean measured 24-hour CLCR of 119 ± 53 ml/min/
1.73 m2, compared with 98 ± 38 ml/min/1.73 m2, and
101 ± 52 ml/min/1.73 m2 with 4-variable MDRD and
Cockcroft-Gault estimates, respectively [15]. A signifi-
cant negative bias was noted with both equations.
These data confirm that these commonly employed

estimates of GFR are largely flawed in the critically ill,
and should be viewed with caution in this setting. Our
study extends this prior work, with analysis in a selected
population of patients exhibiting ARC (CLCR >130 ml/

min/1.73 m2). Although a relatively new term, ARC
reflects supra-normal renal excretion of circulating
solute [16], and is being increasingly recognised in the
ICU environment [17,18], largely as a consequence of
the underlying inflammatory state and therapeutic inter-
ventions provided [19]. Of note, the sub-group manifest-
ing ARC in our analysis were primarily young male
traumatised patients, and is in keeping with recent work
by Minville et al., demonstrating elevated CLCR in poly-
trauma victims [20].
The implications of this phenomenon primarily relate

to the potential for sub-therapeutic drug exposure, and
treatment failure. This is reinforced by research demon-
strating a close correlation between drug elimination
and CLCR [21,22], in addition to data provided by the
Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI), demonstrating that mathematical estimates
of GFR can result in up to about 20% discordance in
drug-dosing recommendations, depending on the equa-
tion employed [23]. This is likely to be even higher in
those manifesting ARC, because the population reported
had significantly lower measured GFRs (mean (standard
deviation) GFR-75 (44) ml/min) [23], compared with
those observed in this analysis.
This study has a number of potential limitations.

Firstly, it represents a post-hoc analysis of prospectively
collected data. Secondly, an 8-hour CLCR was employed
in Australia, while a 24-hour collection was performed
in Portugal, although previous authors have demon-
strated acceptable agreement when using either techni-
que [10,24]. Importantly, our data demonstrate that
mathematical estimates have poor clinical utility in com-
parison to either measure. Thirdly, calibration of creati-
nine assays can also introduce systematic bias, but as
both laboratories use the same analytical process, this
should be limited. Fourthly, it could be considered that
our patients were not at ‘steady-state’ and as such, the
serum creatinine concentrations are systematically lower
than might be expected. However, there was no signifi-
cant correlation between fluid balance and CLCR, and
vasoactive medications, diuretic administration, and
admission diagnosis had no influence on the measured
value. Finally, although CLCR is not considered a gold
standard measure of GFR (due to tubular secretion of

Table 4 Precision and bias between measured CLCR and mathematical estimates

All patients(n = 86) Portugal patients (n = 43) Australia patients (n = 43)

Bias Precision Bias Precision Bias Precision

CG, ml/min/1.73 m2, (%) 39 (23) ± 75 (33) 50 (34) ± 47 (28) 28 (12) ± 96 (34)

Modified CG, ml/min/1.73 m2, (%) 84 (57) ± 70 (26) 83 (61) ± 42 (21) 85 (53) ± 93 (30)

4-variable MDRD, ml/min/1.73 m2, (%) 48 (30) ± 76 (34) 56 (38) ± 52 (30) 41 (22) ± 97 (36)

6-variable MDRD, ml/min/1.73 m2, (%) 68 (45) ± 76 (35) 73 (52) ± 48 (29) 63 (37) ± 99 (38)

CG, Cockcroft Gault; CLCR, creatinine clearance; MDRD, modification of diet in renal disease.
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creatinine at lower filtration rates) [25], in the popula-
tion under study (CLCR >130 ml/min/1.73 m2), this is
unlikely to be a major cause of error.
Examining our data closely, two patients appeared to

have CLCR values that were well outside the ‘normal’
range, and as such, lack biological plausibility (Figures 2,
3, 4 and 5). These ‘outliers’ likely represent a random
error in measurement, although on repeated inspection,
no specific fault could be identified. These results are
reported in order to maintain the integrity of the data-
set, but must be viewed with caution. Repeating the ana-
lysis after removing these values (n = 84), continued to
demonstrate clinically unacceptable bias and precision
(Cockcroft-Gault CLCR 30 ± 47 ml/min/1.73 m2, modi-
fied Cockcroft-Gault CLCR 75 ± 39 ml/min/1.73 m2, 4-
variable MDRD 40 ± 52 ml/min/1.73 m2, and 6-variable
MDRD 59 ± 49 ml/min/1.73 m2) as compared with the
measured values.

Conclusions
In conclusion, this study has demonstrated that com-
monly employed estimates are inaccurate in quantifying
GFR in a sub-group of critically ill patients with ARC.
Both Cockcroft-Gault and MDRD derived values signifi-
cantly underestimate the measured CLCR and are insen-
sitive in identifying this phenomenon. This has
important ramifications for adequate dosing of various
pharmaceuticals in this setting, particularly antibacterial
agents. Clinicians should be cautious in altering pre-
scriptions on the basis of mathematical estimates alone.
Instead we recommend the routine use of measured
CLCR as a surrogate of GFR in the ICU.

Key messages
• A significant proportion of critically ill patients will
have creatinine clearances well above the normal
reference range, a phenomenon termed ARC.
• Creatinine clearance is closely correlated with renal
drug elimination.
• Mathematical estimates of GFR and creatinine
clearance are flawed in the critically ill, and will tend
to significantly under-estimate renal function in
those with ARC.
• Altering drug prescription on the basis of these
estimates is likely to lead to sub-therapeutic drug
concentrations, promoting the possibility of treat-
ment failure.
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