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Abstract

Introduction: Monitoring of hemodynamic and volumetric parameters after severe burns is of critical importance.
Pulmonary artery catheters, however, have been associated with many risks. Our aim was to show the feasibility of
continuous monitoring with minimally invasive transpulmonary thermodilution (TPTD) in severely burned pediatric
patients.

Methods: This prospective cohort study was conducted in patients with severe burns over 40% of the total body
surface area (TBSA) who were admitted to the hospital within 96 hours after sustaining the injury. TPTD
measurements were performed using the PiCCO system (Pulsion Medical Systems, Munich, Germany). Cardiac Index
(CI), Intrathoracic Blood Volume Index (ITBVI) (Stewart-Hamilton equation), Extravascular Lung Water Index (EVLWI)
and Systemic Vascular Resistance Index (SVRI) measurements were recorded twice daily. Statistical analysis was
performed using one-way repeated measures analysis of variance with the post hoc Bonferroni test for intra- and
intergroup comparisons.

Results: Seventy-nine patients with a mean age (±SD) of 9 ± 5 years and a mean TBSA burn (±SD) of 64% ± 20%
were studied. CI significantly increased compared to level at admission and was highest 3 weeks postburn. ITBVI
increased significantly starting at 8 days postburn. SVRI continuously decreased early in the perioperative burn
period. EVLWI increased significantly starting at 9 days postburn. Young children (0 to 5 years old) had a
significantly increased EVLWI and decreased ITBVI compared to older children (12 to 18 years old). EVLWI was
significantly higher in patients who did not survive burn injury.

Conclusions: Continuous PiCCO measurements were performed for the first time in a large cohort of severely
burned pediatric patients. The results suggest that hyperdynamic circulation begins within the first week after burn
injury and continues throughout the entire intensive care unit stay.

Introduction
Large burns over greater than one-third of the total body
surface area (TBSA) result in a massive inflammatory
response, which in turn causes severe and unique hemo-
dynamic and cardiovascular challenges. Early excision of
necrotic tissue and prompt coverage temper the postburn
hypermetabolic response, decrease excess fluid loss and
ultimately lead to improved survival [1-3]. Still, continued
hemodynamic support with appropriate fluid resuscita-
tion and administration of cardiovascular agents are

needed in the early postburn period to oppose hypervole-
mia, alterations in afterload and myocardial depression
[4-7], which can accelerate organ dysfunction [8].
Invasive hemodynamic monitoring via a pulmonary

artery catheter (PAC) permits the direct and continuous
measurement of central venous pressure (CVP), pulmon-
ary capillary occlusion pressure, cardiac output (CO),
Systemic Vascular Resistance Index (SVRI) and oxygen
delivery and consumption. However, the PAC is highly
invasive and associated with substantial risks that often
outweigh its benefits [9]. To overcome the disadvantages
of the PAC, less invasive techniques have been developed.
The PiCCO catheter (Pulsion Medical Systems, Munich,
Germany) combines advanced hemodynamic monitoring
and volumetric measures without the necessity of a right
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heart catheterization. It utilizes transpulmonary thermo-
dilution (TPTD), in which a cold saline bolus is injected
into the central venous circulation, and the subsequent
change in blood temperature is measured by a thermis-
tor-tipped arterial catheter, allowing for the determina-
tion of CO [10-12]. Additionally, TPTD estimates global
end-diastolic volume and Intrathoracic Blood Volume
Index (ITBVI), indicators of cardiac preload, and Extra-
vascular Lung Water Index (EVLWI), an index of pul-
monary edema [13]. The use of TPTD goal-directed
therapy based on ITBVI and EVLWI measurements in
critically ill patients has been studied in various prospec-
tive trials and has shown promising results [14]. Only
one prospective randomized study that compared goal-
directed therapy guided by TPTD measurements with
standard care (Baxter formula) in burn shock manage-
ment has been performed in adult burn patients [11].
At the Shriners Hospitals for Children in Galveston,

TX, USA, TPTD has been the standard of care for hemo-
dynamic monitoring of children with severe burns over
40% of the TBSA. The goals of this study were to report
the hemodynamic and volumetric status in severely
burned children within the first 3 weeks postburn, to
identify differences in hemodynamic parameters between
different age groups and to identify differences in hemo-
dynamic parameters between survivors and nonsurvivors.

Materials and methods
Severely burned children admitted to the Shriners Hos-
pitals for Children between December 2005 and March
2008 were considered for entry into this study. Permis-
sion for conducting the study was obtained from the
Institutional Review Board at the University of Texas
Medical Branch, Galveston, TX, USA (protocol 08-289).
Informed written consent was obtained in all cases. The
following inclusion criteria were used: burn size equal to
or exceeding 40% of TBSA and at least 30% TBSA full
thickness burn, patients admitted within 120 hours of
injury and patients not septic at admission. Exclusion
criteria included any kind of cardiopulmonary illness.
All patients were weighed on admission, and calcula-

tion of all indexed values was based on the initial burn
size and the body surface area of the individual patient.
Analgesia and sedation were performed according to
routine guidelines followed at our institutions. If
mechanical ventilation was required, initial ventilator
settings included a pressure-controlled mode of ventila-
tion, a frequency of 10 to 15 breaths/minute, inspira-
tion/expiration time of 1:2 and initial positive end-
expiratory pressure (PEEP) of 4 cmH2O. PEEP was
adjusted according to the pulmonary function and oxy-
genation level of the patient. All patients underwent
staged early excision and grafting with autografts, allo-
grafts or both between 48 and 72 hours postburn and at

approximately weekly intervals thereafter. Expanded
autograft (meshed 1:4) with allograft overlay was applied
to as much of the burn area as was possible to cover.
The rest of the wound area was covered with unex-
panded fresh allograft (meshed 1:1.5). Donor sites were
recropped when healed, and the allograft was surgically
excised and consecutively replaced with autograft skin.

Demographics
Mortality rates, length of intensive care unit (ICU) stay,
cumulative length of hospital stay based on 95% healing
of grafts, total number of procedures performed during
acute admission and total operating room (OR) time
were recorded. Weights were measured within 5 days of
admission and at discharge using standard clinical
scales. The clinical scales were calibrated monthly.

PiCCO measurements
All patients had central venous (inferior or superior
vena cava) and arterial (brachial, radial or femoral
artery) access placed upon initial admission. TPTD mea-
surements were performed using the Pulsiocath 3- or 4-
French thermistor-tipped catheter (Pulsion Medical
Systems, Munich, Germany). Cardiac Index (CI), ITBVI
and ELWI were determined using an injection of 10 mL
of cooled saline solution (0°C to 6°C) into the central
venous catheter. SVRI was calculated based on mea-
sured CO, mean arterial pressure (MAP) and CVP.
Injections were performed manually and were not coor-
dinated with the respiratory cycle. Measurements were
taken at least twice daily. Each procedure consisted of
three injections via the venous access, and all saline
boluses were administered within a maximum time
span of 10 minutes. Results were calculated as the mean
of these three consecutive measurements. Heart rate
(HR), MAP and CVP were calculated on the basis of
the aforementioned variables or recorded directly by
the hardware at the same time points as the thermal
bolus injections. Data were recorded and exported to a
personal computer with PICCO-VoLEF-WIN software
(version 4.0; Pulsion Medical Systems) combined with
the Pulsion PICCOPlus device (PC 8100 software ver-
sion V6.0; Pulsion Medical Systems).

Statistics
For interindividual comparisons, all flow-related or
volume-related variables were normalized to TBSA. Con-
tinuous values were compared using Student’s t-test or
the Mann-Whitney U test, depending on their distribu-
tional properties. To test the influence of time on the
hemodynamic and volumetric variables, a two-way analy-
sis of variance was performed to determine the statistical
significance of the change over time of each of the vari-
ables and the influence of treatment. When a difference
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was detected, post hoc analysis was performed using the
Bonferroni correction. Differences in proportions, such
as mortality rate, infection rate and incidence of sepsis
were compared using the c2 test. In all cases, P < 0.05
was considered statistically significant.

Results
Between December 2005 and September 2008, 79 acutely
burned children were enrolled into the study. The demo-
graphics of the patient groups are listed in Table 1 (for
the complete cohort), Table 2 (for different age groups)
and Table 3 (for survivors and nonsurvivors).

Complete cohort
In the complete cohort of severely burned children, MAP
remained relatively unchanged with a mean value of 85
mmHg, CVP increased after the initial loading phase and
then gradually declined during the remainder of the mea-
surement period and HR remained elevated with tachy-
cardia during the entire acute ICU stay (data not shown).
CI was significantly increased compared to admission
values after the second day of admission and, overall,
continuously increased during the entire measurement
period (Figure 1). ITBVI and EVLWI measurements
showed similar patterns: a gradual increase over the
entire measurement period, reaching significance when
compared to day 0 or day 1 at 8 or 9 days postburn,
respectively (Figure 2A and 2B). SVRI values demon-
strated a continuous decrease during the measurement
period, also reaching significance after 9 days postburn
when compared to the first day postburn (Figure 3).

Age groups
Patients were divided into three age groups (Table 2).
HR was significantly increased in the youngest children
compared to the oldest age group until 10 days post-
burn (Figure 4A). No significant differences in CI

measurements were observed between age groups after
day 1 postburn (Figure 4B). SVRI initially was signifi-
cantly lower in the youngest age group compared to
both older patient groups. This difference, however, was
not sustained after the end of the volume loading phase
on day 2 postburn (Figure 4C). CVP in the youngest
patient group compared to older children showed
increased values throughout the measurement period.
The differences, however, reached significance levels
only sporadically (Figure 4D). ITBVI and EVLWI
showed an opposing pattern in the youngest children
versus the oldest patient group: a significant increase in
ITBVI was observed in the oldest patient group com-
pared to the youngest group (Figure 5A), while EVLWI
displayed significantly higher values in the youngest
patient group compared with the older patient group
throughout most of the measurement period (Figure
5B).

Survivors versus nonsurvivors
Patients were subdivided into those who survived and
those who died during the acute stay (Table 3). MAP
and preload and afterload parameters showed no signifi-
cant differences between groups (Figure 6A to 6D). On
the other hand, EVLWI was significantly higher in the
nonsurvivors compared to the survivors (Figure 7).

Complications
One child developed an arterial embolism in the left leg
approximately 1 week after arterial catheter placement.
However, since the patient also had coagulopathy, it is
not clear whether the catheter placement or the coagu-
lopathy caused the embolism.

Discussion
Early excision and debridement of burn-injured tissues,
coupled with prompt coverage, are an integral part of
burn management [1-3]. Adequate fluid resuscitation in
the first 24 to 48 hours postburn to overcome hypovole-
mia and restore hemodynamic and cardiovascular func-
tion remains a pivotal part of acute burn care [15].
Formulas for the calculation of resuscitation fluid
requirements (Parkland, Brooke and Galveston formu-
las) have been established, and the needs of the indivi-
dual patient are addressed based on constant
reassessment of urinary output and volume status [8].
For the first time in a large cohort of severely burned
children, hemodynamic and volumetric parameters were
assessed for the first 3 weeks of ICU stay. Patterns of
hemodynamic measurements were established using the
PiCCO catheter, a novel technology based on TPTD.
In the phase of early resuscitation after a severe burn,

it is of paramount importance to promptly restore vas-
cular volume and to preserve tissue perfusion but

Table 1 Entire cohort demographicsa

Demographic variable Statistics

Number of patients 79

Age, yr 9.2 (9.3)

TBSA burn, % 64.0 (35.0)

TBSA full thickness burn, % 50.0 (45.5)

Type of burn, %

Flame 70%

Scald 25%

Other 5%

Male:female ratio 2.3:1

Length of stay, days 28.6 (23.6)

Survivors, % 80%
aTBSA, total body surface area. Data are presented as medians (interquartile
range).
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minimize tissue edema [16]. The primary goal of therapy
is to replace the massive intravascular volume loss due
to the pathophysiological response to thermal injury.
Resuscitation formulas such as Evans, Brooke and Park-
land have been developed over the past decades as
initial guides for volume replacement therapy applied to
preserve adequate organ perfusion [15]. After the first
72 hours postburn, fluid management needs to be fre-
quently reevaluated to avoid hypovolemia, hypervolemia
and edema or organ dysfunction. Clinical monitoring of
burn shock resuscitation and general fluid management
has traditionally been carried out on the basis of the
clinical assessment of cardiovascular status, urine output
and biochemical parameters as indicators of vital organ
perfusion. HR, blood pressure, CVP, electrocardio-
graphic recording and baseline laboratory measurements
(complete blood count, electrolytes, glucose, albumin
and base deficit [17]) are the primary modalities for
monitoring the volumetric and cardiovascular status in
any patient. Fluid balance during burn shock resuscita-
tion is typically monitored by measuring hourly urine
output via an indwelling bladder catheter. A general
recommendation during the early postburn period is to
administer volume support to produce urinary output
between 30 and 50 mL/hour in adults [18] and between
1.0 and 1.5 mL/kg/hour in patients weighing less than
30 kg [19]. It has been demonstrated, however, that
overresuscitation is associated with adverse outcome
and increased mortality in burn patients [19].

Invasive hemodynamic monitoring has been used in ICU
settings for the past three decades. The advent of pulmon-
ary artery catheterization permitted the direct measure-
ment of CVP, pulmonary capillary wedge pressure, CO,
SVRI, oxygen delivery and oxygen consumption. PAC-
guided therapy has been studied most extensively in
trauma and critically ill adult surgical patients. Although
controversial, some suggest that hemodynamic data
derived from the PAC are beneficial to ascertain cardio-
vascular performance in certain situations, such as in
patients with inadequate noninvasive monitoring or when
end points of resuscitation cannot be clearly defined [20].
Investigators in two studies reported that PAC-guided
monitoring with resuscitation to hyperdynamic end points
decreased ICU stay, ventilator days and incidence of organ
failure when compared to patients resuscitated to normal
hemodynamic values [21,22]. In burn patients, studies of
the use of PAC for goal-directed burn shock resuscitation
have shown a benefit of more aggressive resuscitation to
hyperdynamic end points, with decreased mortality and
ICU stay [23]. However, the general practicability, risk-
benefit ratio and lack of mortality reduction associated
with using PAC have been widely criticized. In the past
decade, its use in the United States has decreased signifi-
cantly [9]. So far, no prospective study of the use of goal-
directed PAC therapy has been conducted in a pediatric
burn population.

Table 2 Age group demographicsa

Age group 0 to 4.9 years 5 to 11.9 years 12 to 18 years P value

Number of patients 21 31 27 ns

Age, years 3 (2) 8 (4) 15 (3) < 0.05

Time from burn to admission, hours 44 (36) 29 (45) 42 (67) ns

TBSA burn, % 64 (41) 61 (31) 73 (32) ns

TBSA third-degree burn, % 60 (43) 48 (33) 53 (51) ns

Male:female ratio 2:1 5.3:1 1.3:1 ns

Length of stay (days) 29 (25) 28 (22) 31 (23) ns
aTBSA, total body surface area; ns, not significant. Data are presented as medians (interquartile range).

Table 3 Demographics of survivors versus nonsurvivorsa

Group Survivors Nonsurvivors P
value

Number of patients 64 15

Age, yr 8 (9) 12 (8) ns

Time from burn to admission,
hours

33 (31) 61 (71) ns

TBSA burn, % 58 (30) 87 (11) < 0.001

TBSA third-degree burn, % 46 (41) 81 (16) < 0.001

Male:female ratio 1.7:1 1.5:1 ns

Length of stay, days 28 (19) 33 (39) ns
aTBSA, total body surface area; ns, not significant. Data are presented as
medians (interquartile range).
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Figure 1 Cardiac Index (CI) levels for the entire patient cohort
between burn (day 0) and day 21 postburn. Data are expressed
as means ± standard error of the mean. *P < 0.05 versus day 0. †P
< 0.05 versus day 1.
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The PiCCO catheter was developed in Germany by
Ulrich Pfeiffer in the 1980s [24]. Briefly, it represents a
combination of two techniques for advanced hemody-
namic and volumetric management without the neces-
sity of a right heart catheterization. It utilizes TPTD, in
which a cold saline bolus is injected into the central
venous circulation, and the subsequent change in blood
temperature is picked up by a thermistor-tipped arterial
catheter [25]. CO is calculated by means of the Stewart-
Hamilton equation using data derived from the area of
the TPTD curve. Stroke volume variation and SVRI data

are derived from the arterial pulse contour. ITBVI and
EVLWI measurements are derived from, respectively, (1)
the mean transit time and CO and (2) the down slope
time of the thermodilution curve. The limitations of this
technology include the presence of an intracardiac right-
left shunt [25]. In our patient cohort, there was no evi-
dence of intracardiac shunts (data not shown).
There is limited information on goal-directed therapy

using TPTD measurements in burn patients. Holm et
al. [11] used TPTD goal-directed therapy for the initial
resuscitation of burn shock in adult burn patients
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Figure 2 Intrathoracic blood volume and extravascular lung water. (A)Intrathoracic Blood Volume Index (ITBVI) levels and (B) Extravascular
Lung Water Index (ELWI) levels for the entire patient cohort between burn (day 0) and day 21 postburn. Data are expressed as means ±
standard error of the mean. *P < 0.05 versus day 0. †P < 0.05 versus day 1.
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compared to controls who were resuscitated according
to the Baxter formula. TPTD-directed resuscitation was
associated with increased fluid requirements compared
to controls during the first 48 hours following burn
injury. One conclusion might be that TPTD results
in more aggressive fluid infusion, which could be detri-
mental. However, TPTD was shown to reduce the inci-
dence of hypovolemia compared to the Baxter formula,
and EVLWI was not different [11]. So far, no

randomized clinical trials have been performed using
TPTD-guided therapy for acute burn shock in severely
burned pediatric patients. Furthermore, there have been
no reports on the continuous use of TPTD for hemody-
namic and cardiovascular monitoring in burn patients
during their entire ICU stay.
In the present study, the PiCCO catheter was used to

measure critical hemodynamic and volumetric para-
meters over time following severe burn injury in pedia-
tric patients. We sought to determine the influence of
age on the hemodynamic response to burn injury, as
well as how information obtained by the PiCCO cathe-
ter could be used as a predictive tool for determining
mortality.
With regard to the entire patient cohort, CO continu-

ously increased over the entire study period. This hyper-
metabolic circulation has been shown to persist for
more than 2 years postburn [26]. The product of
increased HR and decreased SVRI results in the flow
phase postburn, which has been demonstrated to have a
major impact on burn patient outcomes.
We were able to demonstrate significant differences

between our youngest patients (mean age, 3 years) and
the oldest group (mean age, 15 years). The youngest
patient group showed markedly elevated EVLWI (up to
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Figure 3 Systemic Vascular Resistance Index (SVRI) levels for
the entire patient cohort between burn (day 0) and day 21
postburn. Data are expressed as means ± standard error of the
mean. *P < 0.05 versus day 0. †P < 0.05 versus day 1.
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Figure 4 Heart rate, cardiac index, vascular resistance and venous pressure by age group. (A) Heart rate, (B) Cardiac Index, (C) Systemic
Vascular Resistance Index and (D)central venous pressure (CVP) measurements in three different age groups between burn (day 0) and day 21
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25 mL/kg in some cases) compared to the older
patients. Our results are in agreement with those of
Schiffmann et al. [27], who demonstrated that critically
ill infants had mean EVLWI of over 27 mL/kg. These
authors speculated that increased EVLWI was related to
the severity of the underlying disease. However, they
also acknowledged that since normal EVLWI values are
not defined for infants, apart from single case reports
[28], the underlying cause remains unclear.
The effect of an increase in EVLWI on mortality is

well-established in ICU patients [29]. Furthermore, pro-
tocols using EVLWI as a monitor to guide volume and
other cardiovascular support have been shown to
decrease length of ICU stay [30] and mortality when

employing a fluid restriction approach [29]. In general,
fluid restriction therapy in ICU patients with acute lung
injury improves lung function and shortens the duration
of mechanical ventilation [31]. The key finding in our
large cohort of severely burned children is consistent
with that of Eisenberg et al. [29], who showed that
increased EVLWI is associated with mortality. It remains
to be determined whether goal-directed approaches
using EVLWI as a primary end point to direct fluid sup-
port in severely burn-injured children will indeed have
an influence on mortality. The use of a normalized and
validated morbidity score, such as the Pediatric Logistic
Organ Dysfunction score [32,33], to support an interpre-
tation of organ failure is another way to determine how
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the use of the PiCCO catheter can be used as a predic-
tor of morbidity and mortality. A prospective study is
currently underway at our institution to determine the
effects of the use of TPTD on clinical outcomes, includ-
ing organ function.

Conclusions
Burn patients show an impairment of ventricular compli-
ance consistent with experimental models of burn injury
[34-38], and this impairment is more pronounced in the
youngest patient group. After the initial volume loading,
ongoing fluid replacement schemes may not be adequate

for the very young patient (under age 3 years), as seen in
this study with regard to the measurement of EVLWI.
Overall, TPTD measurement is a rapid, safe and easy-to-
install method for minimally invasive hemodynamic
monitoring. The obtained CO and preload and afterload
variables have been validated in multiple studies
[12,39-42]. Compared to the PAC, the PiCCO methodol-
ogy may represent a superior method to direct fluid ther-
apy support, since ITBVI is a more sensitive and specific
indicator of cardiac preload than pulmonary artery occlu-
sion pressure or CVP [42]. This is likely due to the higher
preload specificity of volume versus pressure.

Key messages
• Key volumetric and hemodynamic parameters such
as CO, ITBVI, EVLWI and SVRI can be measured in
severely burned pediatric patients with the TPTD
technique, which is less invasive than PAC techniques.
• Severely burned children up to 5 years old have
significantly increased EVLWI levels and significantly
decreased ITBVI values compared to those of chil-
dren between 12 and 18 years of age, which under-
scores the importance of tightly controlled fluid
management in the burn injured child.
• The hyperdynamic state in a burned patient begins
within the first week after burn injury and continues
throughout the entire ICU stay.
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CI: cardiac index; CVP: central venous pressure; EVLWI: Extravascular Lung
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