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Abstract 

Background  Septic patients who develop acute respiratory failure (ARF) requiring mechanical ventilation repre-
sent a heterogenous subgroup of critically ill patients with widely variable clinical characteristics. Identifying distinct 
phenotypes of these patients may reveal insights about the broader heterogeneity in the clinical course of sepsis, 
considering multi-organ dynamics. We aimed to derive novel phenotypes of sepsis-induced ARF using observational 
clinical data and investigate the generalizability of the derived phenotypes.

Methods  We performed a multi-center retrospective study of ICU patients with sepsis who required mechanical ventilation 
for ≥ 24 h. Data from two different high-volume academic hospital centers were used, where all phenotypes were derived 
in MICU of Hospital-I (N = 3225). The derived phenotypes were validated in MICU of Hospital-II (N = 848), SICU of Hospital-I 
(N = 1112), and SICU of Hospital-II (N = 465). Clinical data from 24 h preceding intubation was used to derive distinct pheno-
types using an explainable machine learning-based clustering model interpreted by clinical experts.

Results  Four distinct ARF phenotypes were identified: A (severe multi-organ dysfunction (MOD) with a high likeli-
hood of kidney injury and heart failure), B (severe hypoxemic respiratory failure [median P/F = 123]), C (mild hypoxia 
[median P/F = 240]), and D (severe MOD with a high likelihood of hepatic injury, coagulopathy, and lactic acidosis). 
Patients in each phenotype showed differences in clinical course and mortality rates despite similarities in demo-
graphics and admission co-morbidities. The phenotypes were reproduced in external validation utilizing the MICU 
of Hospital-II and SICUs from Hospital-I and -II. Kaplan–Meier analysis showed significant difference in 28-day mortal-
ity across the phenotypes (p < 0.01) and consistent across MICU and SICU of both Hospital-I and -II. The phenotypes 
demonstrated differences in treatment effects associated with high positive end-expiratory pressure (PEEP) strategy.

Conclusion  The phenotypes demonstrated unique patterns of organ injury and differences in clinical outcomes, 
which may help inform future research and clinical trial design for tailored management strategies.
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Introduction
Sepsis is a heterogeneous syndrome that is characterized 
by life-threatening organ dysfunction due to a dysregu-
lated host response to infection [1]. Despite advances in 
our knowledge and improvements in management strate-
gies, sepsis continues to be one of the leading causes of 
death worldwide and remains a serious medical emer-
gency [2, 3]. Patients with sepsis who develop acute res-
piratory failure (ARF) requiring mechanical ventilation 
represent a unique and complex subgroup [4–6]. ARF is 
one of the most common complications in sepsis and one 
of the strongest risk factors for mortality. This subgroup 
of patients also has heterogeneous risk factors, etiologies, 
pathophysiology, and immunopathogenic responses that 
contribute to ARF, as well as divergent clinical courses 
and outcomes [7]. A typical manifestation of ARF in 
patients with sepsis is the acute respiratory distress syn-
drome (ARDS) [8]. In addition to ARDS, these patients 
also frequently develop other extra-pulmonary organ 
dysfunctions that lead to increased complications and 
high mortality.

Clinically recognizable phenomena that are widely 
observed in sepsis and ARF, such as vital sign abnormali-
ties (dyspnea, hypotension, tachypnea, oxygen desatura-
tion, etc.) and laboratory abnormalities (lactic acidosis, 
hypoxemia and/or hypercapnia on arterial blood gas, etc.), 
are only superficial representations of complex patho-
physiological and environmental interactions. Further-
more, they do not provide specific information regarding 
the heterogeneous clinical trajectories and outcomes, 
which contribute to the ongoing challenges in developing 
targeted management strategies and improving outcomes 
in sepsis-induced ARF. However, there may be subtle pat-
terns of physiologic data and clinical features that may be 
unclear to clinicians at the bedside but are uncovered with 
the aid of machine learning (ML) models. The ML models 
can help recognize these patterns as unique phenotypes 
within heterogeneous syndromes such as sepsis-induced 
ARF. While latent class analysis (LCA) techniques have 
been used to derive hyper- and hypo-inflammatory phe-
notypes in ARDS with potential differences in treatment 
responses, these phenotypes only apply to a specific sub-
set of patients with a key manifestation of ARF [9–11]. 
In addition to ARDS, there is a need to investigate other 
organ dysfunctions that are related to sepsis-induced ARF. 
Moreover, there is a need to identify generalizable phe-
notypes among patients with sepsis to elucidate possible 
mechanisms of complex clinical courses and targetable 
features pertaining to certain phenotypes.

We sought to utilize pre-intubation clinical data to 
develop generalizable phenotypes to investigate more com-
plex multi-organ failure trajectories observed within this 
cohort [8]. We further sought to compare the derived gen-
eralized sepsis-induced ARF phenotypes against the bina-
rized hyper- and hypo-inflammatory subphenotypes to 
characterize potential overlaps between these approaches. 
To understand the latent phenotypes in critically ill patients 
with sepsis-induced ARF, we developed a multi-phased 
unsupervised ML model to systematically identify novel 
phenotypes using multi-variable data collected from elec-
tronic medical records (EMR). Since the phenotyping 
involved multiple stages or phases, like imputation, feature 
scaling, feature selection, feature reduction, and k-means 
clustering, we termed it as “multi-phased” model.

Methods
Study design
This is a multi-center retrospective cohort study conducted 
at two high volume academic hospitals located in the 
southeastern United States (Atlanta, GA). Adult patients 
(≥ 18  years) admitted to the medical or surgical intensive 
care units (MICU or SICU) at either of these two metro-
politan academic hospitals, Emory University Hospital 
(Hospital-I) and Grady Memorial Hospital (Hospital-II) 
with sepsis (based on the sepsis-3 criteria [1]) between 2016 
and 2021 and developed ARF during their hospital admis-
sion were included [12]. Emory is a quaternary care hospital 
specializing in the care of adult critically ill patients, whereas 
Grady is known as a safety-net hospital. ARF was defined as 
requiring ≥ 24  h of invasive mechanical ventilation (IMV) 
for medical ICU patients. For surgical ICU patients, it is 
defined as ≥ 24 h of IMV even after 48 h from surgery.

Participants
IMV patients included in our cohort were adult patients 
admitted to the hospital who were diagnosed with sep-
sis and during their hospital course required mechanical 
ventilation as well as adult surgical patients whose post-
operative course was complicated, requiring post-surgical 
IMV lasting at least 24  h. Here, post-surgical IMV refers 
to initial IMV, re-ventilation or remaining in IMV state 
after 48th hour from the surgery completion. Due to our 
interests in identifying the phenotypes early in the course 
of sepsis-induced ARF, we utilized up to 24 h of data pre-
ceding the time of index IMV (or post-surgical IMV) in 
the study. Data collected from the EMR including labo-
ratory values and vital signs, were used for phenotyping. 
A complete list of these clinical factors or features can 
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be found in Supplementary file 1: Table  E1 in the online 
data supplement. All factors represent clinical values that 
were routinely collected and recorded in the EMR. A set 
of demographic variables (e.g., age, sex, race, ethnicity), 
mortality, and comorbidity information were also included 
for further analysis of derived phenotypes. We created 
two separate datasets corresponding to MICU and SICU 
patients. We defined index time of IMV in the MICU 
dataset as the time at which the first mechanical ventila-
tion parameters [positive end-expiratory pressure (PEEP), 
tidal volume, and/or plateau pressure] were recorded in 
the EMR in patients who met the above inclusion crite-
ria; while for SICU dataset, it is the time of first ventilation 
parameters recorded from 48-h mark after the surgery.

We excluded patients who did not meet sepsis-3 cri-
teria, patients admitted to neurological ICUs, patients 
admitted to the ICU post-operatively who were ventilated 
only for ≤ 24 h after 48 h from their surgeries, or those 
whose EMR data did not include any hourly collected 
physiological data up to 24  h prior to IMV. To derive 
enriched phenotypes for sepsis-induced ARF, we devel-
oped a high-fidelity unsupervised ML-based approach 
that incorporates a broad set of routinely collected clini-
cal variables. The overall study pipeline is shown in Fig. 1.

Procedure
We adopted a multi-center derivation and validation 
study design by first deriving phenotypes using medi-
cal ICU (MICU) data from Emory University Hospital, 
and then validating this phenotyping algorithm against 
MICU data collected from Grady Memorial Hospital. 
The phenotyping was further validated with surgical ICU 
(SICU) data from both the hospitals. The two hospitals 
serve unique and diverse patient populations located 
within the metropolitan southeast United States. Data 
used to derive and validate our algorithm were collected 
from the same years across the two hospitals.

In our study, we used EMR variables to implement 
sepsis-3 criteria for the identification of sepsis patients 

[1]. The implementation involves four major steps: (a) 
calculation of six individual Sequential Organ Failure 
Assessment (SOFA) scores for different organ systems, 
(b) suspicion time estimation based on administration 
of antibiotics (oral or parenteral) and blood cultures, (c) 
estimation of acute SOFA increase by two, and (d) sep-
sis-3 time estimation within a specified period around 
the suspicion time. By following this approach, sepsis 
patients were identified [1].

We applied the median aggregation across all routinely 
collected clinical features over the 24-h pre-ventilation 
period for each patient in our cohort. The motivation for 
using all readily available clinical features was to enable 
the model to achieve data-driven separability based on 
multi-organ dynamics. We dropped features that were 
missing in > 85% of patients in the aggregated data. To 
handle the outliers, they were treated as missing entries. 
Subsequently, we used multivariate imputation by 
chained equations (MICE) algorithm on the training data 
[13] to impute missing data.

Finally, we performed a Pearson’s correlation analysis, 
where a coefficient threshold of 0.75 was used to drop 
certain highly correlated features, resulting in 50 clini-
cal features (listed in the Supplementary file 1: Table E1). 
We then normalized the data and used Uniform Mani-
fold Approximation and Projection (UMAP) method to 
reduce dimensionality of the multivariate dataset and 
project onto a two-dimensions [14]. The optimal num-
ber of clusters and transformed feature dimension were 
decided by achieving a combination of highest silhou-
ette score, highest Calinksi-Harabasz score and low-
est Davies–Bouldin score for the clustering. UMAP and 
principal component analysis (PCA) transformations 
were explored in feature dimensionality reduction for 
various dimensions and clusters. Additionally, recon-
struction error between the reconstructed data from 
transformation-embedding and the original data was also 
evaluated. Finally, we used a k-means (centroid-based) 
clustering algorithm that yielded four clusters. The 

Fig. 1  Overall study pipeline of our ARF phenotyping approach showing data extraction, preprocessing, feature reduction, model development 
for clustering, phenotype analysis and potential usage
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derived clusters were analyzed for their most important 
features using SHapley Additive exPlanations (SHAP) 
values [15]. The derived phenotypes were then examined 
and interpreted by physicians P.Y., C.M.D. and C.M.C.

Validation of the phenotypes in external dataset
We trained a multivariate and multiclass logistic regres-
sion (LR) ML model for phenotype prediction on the 
derivation data with high accuracy. We used a scaled 
feature-set of 50 selected variables, from the derivation 
data, as input to the model. The data was randomly split 
into training (80%) and testing (20%) sets, respectively. 
The LR model outperformed other ML models such as 
random forests, support vector machines (SVM) and 
Gaussian Naïve Bayes classifier on the test-set. As per the 
TRIPOD guidelines, more details can be found in Sup-
plementary file 1: Tables E4 and E5, and Figures E5 and 
E6 in the online data supplement. Finally, we applied this 
trained classifier model to the validation datasets. The 
purpose was to evaluate the robustness of the classifier 
in identifying similar phenotypes in ‘unseen’ and external 
data from a different medical center.

Estimation of treatment effects of high PEEP 
within phenotypes
We performed an exploratory analysis to examine 
whether the phenotypes would demonstrate different 
outcomes or clinical patterns in relation to high PEEP 
(PEEP ≥ 10) treatment. We conducted an analysis to esti-
mate the effects of high PEEP (PEEP ≥ 10) on the deriva-
tion set using a propensity score matching (PSM) scheme 
on 28-day short-term mortality, by considering lab-val-
ues, vitals, demographics, and clinical scorings as con-
founding variables (see  Supplementary file 1: Table E13). 
More details of our analysis are available in the Sup-
plementary file 1: Table  E14. We estimated the average 
treatment effects (ATE) along with the effect size. After 
matching, we also plotted Kaplan–Meier curves between 
patients who received high PEEP and those who did not 
within each of the phenotypes.

To further investigate how the contributed phenotypes 
compare to the existing work in the field, we sought to 
compare the proposed sepsis-induced ARF phenotypes 
to the ARDS hyper- and hypo-inflammatory subtypes 
[9–11, 16]. More details can be found in Supplementary 
file 1: Appendix-1 (A1.1) of the Online Data Supplement.

Analysis on COVID‑19
We evaluated the distribution of data collected during 
COVID-19 years (2020–2021) and pre-COVID-19 years. 
We also analyzed the diagnosis codes to find COVID-19 
patients within our study cohort and their distribution 
across phenotypes.

Statistical analysis
Statistical analyses were performed using python librar-
ies. Patient characteristics and endotype factors that 
represent continuous variables were analyzed using a 
Kruskal–Wallis test. Categorical variables were analyzed 
using a Chi-squared test. A multivariate log rank test was 
performed when comparing multiple variables and a p 
value of ≤ 0.05 was used for statistical significance.

Results
Patient characteristics
In this retrospective study, a total of 3349 encounters 
from 3225 unique patients admitted to MICU at Emory 
University Hospital (Atlanta, GA) were selected from the 
derivation data for initial phenotyping. The cohort in our 
study consists of patients across a wide range of demo-
graphic variables, such as age (mean: 62.3 ± 15.3  years), 
sex (male: 53.1%), and race (Caucasian: 42.2%, African 
American: 47.4%). For validating our phenotyping algo-
rithm, 867 encounters from N = 848 unique and diverse 
patients were selected from the MICU of Grady Memo-
rial Hospital (Atlanta, GA). Characteristics of these 
cohorts are described in Tables 1 and 2. For validation of 
multi-ICU generalization, we used SICU patients from 
Emory [1128 encounters (N = 1112)] and Grady [466 
encounters (N = 465)] hospitals, who required intubation 
even after 48 h of completion of their surgeries. Charac-
teristics of these SICU patients are available in the Sup-
plementary file 1: Tables E6 and E7.

Phenotyping results
Our clustering algorithm for deriving enriched ARF phe-
notypes characterized by various risks profiles yielded 
four clusters on the derivation data with a silhouette 
score of 0.418, Calinksi–Harabasz score (variance ratio 
criterion) of 3516.74, and Davies–Bouldin score of 0.79. 
More insights on selecting optimal number of clusters 
and UMAP dimension are provided in the Supplemen-
tary file 1: Table E2. Also, a bar graph is shown in Sup-
plementary file 1: Figure E1 illustrating mean square 
reconstruction error (MSE) for various UMAP dimen-
sions. The obtained MSEs are 0.2959, 0.2850, 0.2735 
and 0.2683 for dimensions 2, 3, 4 and 5, respectively. 
We observed a quite small change in MSE (~ 0.01), fur-
ther supporting our selection of UMAP dimension of 
2. The patient distributions are shown in Fig.  2 using a 
2-D UMAP representing formed clusters and variations 
of important clinical features across these distributions. 
SHAP values were used to identify the important fea-
tures that distinguished one cluster from another. SHAP 
plots are available in Supplementary file 1: Figure E4 in 
the online data supplement. For more details on SHAP, 
please refer to Supplementary file 1: Appendix-2 in the 
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online data supplement. Subsequently, critical care phy-
sician experts helped interpret and characterize the four 
clusters as phenotypes based on their characteristics.

Table  1 summarizes the clinical and demographic 
variables for each of the four derived ARF pheno-
types along with their mortality outcomes. The first 
phenotype (N = 825 patients) has ARF patients with 
multiple laboratory abnormalities, such as highest 
median levels of creatinine (median: 3.47, IQR: 1.89–
5.74 mg/dL), blood urea nitrogen (BUN) (median: 56, 

IQR: 34–80.25  mg/dL) and B-type natriuretic peptide 
(BNP) (median: 750.5, IQR: 251.25–1775.5  pg/mL). 
Based on the characteristics, we named this pheno-
type A (MOD-1) with severe multiple organ dysfunc-
tion (MOD) showing a high likelihood of kidney injury 
and heart failure. The second phenotype (N = 689 
patients) consists of patients with severe hypoxia and 
clinical characteristics suggestive of non-radiographic 
features of severe ARDS (low partial pressure of oxy-
gen (PaO2) to fraction of inspired oxygen (FiO2) ratio 

Table 1  Summary of patient characteristics of the derivation cohort (Emory MICU) and its phenotypes

For clinical variables, this table lists the medians and interquartile ranges (IQR: Q1–Q3) for each phenotype as well as for the whole cohort. The p value is also provided 
for each variable to indicate the statistical significance of the differences among the phenotypes. For evaluating statistical significance, Kruskal–Wallis test was 
performed for continuous variables and Chi-squared test was used for categorical variables. *Mortality was computed with respect to patients (not encounters). 
Abbreviations used—count, total encounters; mean, average; std, standard deviation; m, median; IQR, interquartile range; PaO2, partial pressure of oxygen; SpO2, 
peripheral oxygen saturation level; FiO2, fraction of inspired oxygen; P/F, PaO2/FiO2 ratio; S/F, SpO2/FiO2 ratio; PaCO2, partial pressure of carbon dioxide in arterial 
blood; MAP, mean arterial blood pressure; Resp., respiration; BNP, B-type natriuretic peptide; BUN, blood urea nitrogen; SOFA, sequential organ failure assessment; 
GCS, Glasgow coma scale. Measurement units—P/F ratio, PaO2, PaCO2, and MAP: mmHg; S/F ratio and FiO2: unitless; creatinine and bilirubin total: mg/dL; albumin: 
g/L; lactic acid: mmol/L; D-dimer: ng/mL; platelets: × 103/µL; hemoglobin: g/dL; BNP: pg/mL; BUN: mg/dL

Parameters Whole cohort A B C D p value

Count (%) 3349 (100) 845 (25.2) 692 (20.7) 993 (29.7) 819 (24.4) –

Mortality* 1295, 40.2% 337, 40.9% 353, 51.2% 205, 21.4% 400, 49.6% –

Age, mean (std) 62.3 (15.5) 64.8 (14.6) 62.0 (15.0) 61.7 (16.7) 60.8 (15.0) < 0.001

Males, count (%) 1814 (54.2) 492 (58.2) 363 (52.5) 547 (55.1) 412 (50.3) –

Race: African Ameri-
can or Black, count 
(%)

1624 (48.5) 457 (54.1) 337 (48.7) 469 (47.2) 361 (44.1) < 0.001

Race: Caucasian 
or White, count (%)

1442 (43.1) 341 (40.4) 280 (40.5) 453 (45.6) 368 (44.9)

Ethnicity: Hispanic, 
count (%)

129 (3.9) 23 (2.7) 38 (5.5) 30 (3.0) 38 (4.6) < 0.001

Ethnicity: Non-His-
panic, count (%)

2975 (88.8) 770 (91.1) 589 (85.1) 903 (90.9) 713 (87.1)

P/F ratio, m (IQR) 240.0 [162.0, 334.9] 302.3 [226.7, 406.4] 123.3 [90.0, 185.0] 240.0 [185.0, 317.7] 266.5 [196.5, 346.7] < 0.001

S/F ratio, m (IQR) 245.0 [188.5, 315.6] 250.0 [240.0, 326.7] 120.8 [97.5, 154.8] 248.8 [232.5, 320.4] 247.5 [220.0, 325.0] < 0.001

FiO2, m (IQR) 0.4 [0.3, 0.5] 0.4 [0.3, 0.4] 0.8 [0.6, 1.0] 0.4 [0.3, 0.4] 0.4 [0.3, 0.4] < 0.001

PaO2, m (IQR) 94.0 [77.0, 124.0] 107.0 [86.0, 146.1] 81.0 [67.0, 102.0] 92.0 [77.7, 116.1] 99.2 [79.6, 125.9] < 0.001

PaCO2, m (IQR) 37.0 [32.0, 43.0] 37.0 [32.0, 43.0] 38.5 [33.0, 45.0] 39.0 [34.0, 46.9] 33.0 [29.0, 38.0] < 0.001

MAP, m (IQR) 82.0 [75.0, 90.2] 79.0 [73.0, 87.5] 85.0 [77.0, 94.0] 87.0 [80.0, 95.0] 77.0 [72.0, 84.0] < 0.001

Creatinine, m (IQR) 1.4 [0.9, 2.9] 3.5 [1.9, 5.7] 1.3 [0.8, 2.1] 1.1 [0.8, 1.5] 1.4 [0.9, 2.5] < 0.001

Bilirubin total, m (IQR) 0.7 [0.5, 1.4] 0.8 [0.5, 1.4] 0.6 [0.4, 1.0] 0.6 [0.4, 1.1] 1.2 [0.6, 4.1] < 0.001

Albumin, m (IQR) 3.0 [2.6, 3.5] 2.9 [2.5, 3.3] 3.1 [2.7, 3.5] 3.4 [3.0, 3.8] 2.6 [2.2, 2.9] < 0.001

Lactic acid, m (IQR) 1.6 [1.2, 2.6] 1.5 [1.2, 2.1] 1.6 [1.2, 2.3] 1.4 [1.1, 2.0] 2.3 [1.4, 4.7] < 0.001

D-dimer, m (IQR) 2678.2 [1141.2, 
9258.5]

3177.0 [1427.0, 
6981.5]

1573.0 [979.0, 4622.0] 1686.5 [897.8, 5183.0] 9828.0 [3187.0, 
27,545.0]

< 0.001

Platelets, m (IQR) 184.0 [110.2, 265.8] 175.0 [112.0, 245.0] 209.0 [143.0, 286.0] 213.0 [149.0, 291.0] 118.0 [53.0, 202.8] < 0.001

Hemoglobin, m (IQR) 9.8 [8.2, 12.0] 8.8 [7.8, 10.3] 11.0 [9.0, 12.8] 11.5 [9.7, 13.4] 8.6 [7.7, 10.2] < 0.001

BNP, m (IQR) 328.0 [100.0, 915.0] 750.5 [251.2, 1775.5] 142.8 [60.0, 441.8] 279.0 [82.0, 664.0] 396.0 [147.5, 966.0] < 0.001

BUN, m (IQR) 30.0 [19.0, 50.0] 56.0 [34.0, 80.2] 28.0 [17.5, 46.0] 22.0 [14.0, 33.0] 28.0 [18.0, 42.0] < 0.001

SOFA max total, m 
(IQR)

7.0 [4.0, 9.0] 8.0 [5.0, 10.0] 6.0 [4.0, 8.0] 5.0 [3.0, 7.0] 8.0 [6.0, 11.0] < 0.001

GCS total score, m 
(IQR)

14.0 [12.0, 15.0] 14.0 [12.0, 15.0] 15.0 [11.2, 15.0] 14.0 [12.0, 15.0] 14.0 [11.0, 15.0] < 0.001

PEEP, m (IQR) 6.0 [6.0, 10.0] 6.0 [6.0, 8.0] 8.0 [6.0, 11.0] 6.0 [6.0, 8.0] 6.0 [6.0, 8.0] < 0.001
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[P/F ratio] [median: 123, IQR: 90–185  mmHg] and 
high FiO2 [mean: 0.8, IQR: 0.6–1]) and has the high-
est mortality (51%). We called it phenotype B (severe 
hypoxemic respiratory failure). The third pheno-
type (N = 959 patients) consists of patients with no 
evidence of organ failure other than mild hypoxia 
(median P/F ratio: 240 [IQR: 185–317.7]) and normal 
lactic acid levels (median: 1.42  mmol/L). We called it 
phenotype C (mild hypoxia). The fourth phenotype 
(N = 806) consists of ARF patients with highest total 

bilirubin (median: 1.2, IQR: 0.6–4.1 mg/dL) and high-
est D-dimer levels, lowest platelets (median: 118, IQR: 
53–202.8 × 103/µL) and highest lactic acid (median: 
2.35, IQR: 1.43–4.67 mmol/L) suggesting multi-system 
organ dysfunction. As such, we named this phenotype 
D (MOD-2) with severe MOD showing a high likeli-
hood of hepatic injury, coagulopathy and lactic acido-
sis. From Table  1, we observed that phenotype B has 
the highest mortality (51%), followed by phenotype 
D (49.6%) and phenotype A (40.9%). The relatively 

Table 2  Summary of patient characteristics of the validation cohort (Grady MICU) and its phenotypes

For clinical variables, this table lists the medians and interquartile ranges (IQR: Q1–Q3) for each phenotype as well as for the whole cohort. The p-value is also 
provided for each variable to indicate the statistical significance of the differences among the phenotypes. For evaluating statistical significance, Kruskal–Wallis test 
was performed for continuous variables and Chi-squared test was used for categorical variables. *Mortality was computed with respect to patients (not encounters). 
Abbreviations used—count, total encounters; mean, average; std, standard deviation; m, median; IQR, interquartile range; PaO2, partial pressure of oxygen; SpO2, 
peripheral oxygen saturation level; FiO2, fraction of inspired oxygen; P/F, PaO2/FiO2 ratio; S/F, SpO2/FiO2 ratio; PaCO2, partial pressure of carbon dioxide in arterial 
blood; MAP, mean arterial blood pressure; Resp., respiration; BNP, B-type natriuretic peptide; BUN, blood urea nitrogen; SOFA, sequential organ failure assessment; 
GCS, Glasgow coma scale. Measurement units—P/F ratio, PaO2, PaCO2, and MAP: mmHg; S/F ratio and FiO2: unitless; creatinine and bilirubin total: mg/dL; albumin: 
g/L; lactic acid: mmol/L; D-dimer: ng/mL; platelets: × 103/µL; hemoglobin: g/dL; BNP: pg/mL; BUN: mg/dL

Parameters Whole cohort A B C D p value

Count (%) 867 (100) 214 (24.7) 49 (5.7) 404 (46.6) 200 (23.1) –

Mortality* 294, 34.67% 80, 38.28% 34, 69.39% 83, 20.75% 97, 48.5% –

Age, mean (std) 59.6 (15.1) 61.6 (13.9) 64.2 (13.1) 59.0 (16.1) 57.7 (14.3) 0.007

Males, count (%) 531 (61.2) 128 (59.8) 26 (53.1) 257 (63.6) 120 (60.0) –

Race: African Ameri-
can or Black, count 
(%)

670 (77.3) 171 (79.9) 35 (71.4) 307 (76.0) 157 (78.5) 0.273

Race: Caucasian 
or White, count (%)

126 (14.5) 22 (10.3) 9 (18.4) 69 (17.1) 26 (13.0)

Ethnicity: Hispanic, 
count (%)

39 (4.5) 18 (8.4) 2 (4.1) 9 (2.2) 10 (5.0) 0.029

Ethnicity: Non-His-
panic, count (%)

818 (94.3) 194 (90.7) 46 (93.9) 389 (96.3) 189 (94.5)

P/F ratio, m (IQR) 267.5 [197.2, 343.6] 300.6 [242.5, 387.5] 104.0 [88.0, 154.5] 256.7 [200.0, 340.0] 272.0 [185.9, 327.6] < 0.001

S/F ratio, m (IQR) 245.0 [200.0, 250.0] 250.0 [242.5, 250.0] 100.0 [94.8, 106.6] 245.0 [227.5, 250.0] 245.0 [198.0, 250.0] < 0.001

FiO2, m (IQR) 0.4 [0.4, 0.5] 0.4 [0.4, 0.4] 1.0 [0.9, 1.0] 0.4 [0.4, 0.4] 0.4 [0.4, 0.5] < 0.001

PaO2, m (IQR) 110.0 [87.0, 141.0] 131.0 [99.0, 159.0] 91.0 [75.0, 108.0] 107.0 [85.0, 136.0] 111.5 [87.0, 138.0] < 0.001

PaCO2, m (IQR) 36.0 [31.0, 41.0] 34.0 [30.0, 39.0] 35.0 [30.0, 45.0] 38.0 [33.5, 43.0] 33.0 [29.0, 37.0] < 0.001

MAP, m (IQR) 86.0 [78.0, 96.0] 82.1 [75.0, 89.9] 83.0 [77.5, 92.0] 92.8 [85.0, 103.1] 79.0 [74.0, 86.0] < 0.001

Creatinine, m (IQR) 1.4 [0.9, 2.8] 4.1 [1.7, 6.9] 1.6 [1.1, 3.1] 1.1 [0.8, 1.6] 1.4 [0.8, 2.4] < 0.001

Bilirubin total, m (IQR) 0.7 [0.5, 1.4] 0.6 [0.4, 1.1] 0.9 [0.5, 2.5] 0.7 [0.5, 1.2] 1.2 [0.6, 3.7] < 0.001

Albumin, m (IQR) 3.0 [2.5, 3.6] 2.9 [2.5, 3.3] 3.0 [2.6, 3.5] 3.5 [3.1, 4.0] 2.2 [1.9, 2.6] < 0.001

Lactic acid, m (IQR) 2.3 [1.7, 3.7] 2.1 [1.6, 3.2] 2.6 [1.9, 4.3] 2.2 [1.7, 3.3] 3.0 [2.0, 5.0] < 0.001

D-dimer, m (IQR) 5220.0 [2041.0, 
15,974.0]

5631.0 [2370.5, 
21,648.0]

4898.0 [2668.0, 
10,731.5]

3953.0 [1551.0, 
7646.0]

8468.0 [2529.4, 
22,770.5]

< 0.001

Platelets, m (IQR) 188.0 [119.0, 260.5] 178.5 [110.8, 255.5] 147.0 [97.0, 235.0] 213.5 [150.8, 276.2] 154.0 [83.5, 232.5] < 0.001

Hemoglobin, m (IQR) 10.9 [8.7, 12.9] 9.4 [7.9, 11.4] 11.0 [8.9, 12.7] 12.2 [10.9, 14.0] 9.0 [7.7, 10.4] < 0.001

BNP, m (IQR) 269.0 [105.0, 873.5] 590.0 [247.0, 1501.0] 222.0 [77.0, 653.0] 213.0 [92.0, 736.0] 215.5 [103.8, 675.5] < 0.001

BUN, m (IQR) 27.5 [16.0, 51.0] 62.0 [40.0, 92.0] 34.0 [20.0, 52.0] 19.5 [13.0, 31.6] 23.0 [15.0, 41.0] < 0.001

SOFA max total, m 
(IQR)

6.0 [4.0, 9.0] 8.0 [6.0, 10.0] 7.0 [5.0, 10.0] 5.0 [3.0, 7.0] 8.0 [5.0, 10.0] < 0.001

GCS total score, m 
(IQR)

14.0 [11.0, 15.0] 14.0 [10.0, 15.0] 14.0 [12.0, 15.0] 14.0 [10.0, 15.0] 14.2 [12.0, 15.0] 0.117

PEEP, m (IQR) 8.0 [5.0, 8.0] 8.0 [5.0, 8.0] 10.0 [8.0, 10.0] 8.0 [5.0, 8.0] 8.0 [5.0, 8.0] < 0.001
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healthier phenotype B had a mortality of 21.4%. Phe-
notype D is also characterized by the highest propor-
tion of patients with septic shock (n = 651 patient 

encounters (79.5%), whereas C consists of the low-
est proportion of septic-shock patients (450 encoun-
ters, 45.3%). Thus, our phenotypes not only identified 

Fig. 2  UMAP projections showing distribution of the derivation data for ARF phenotyping and feature variations. a UMAP representing all ARF 
phenotypes, and b–f UMAP representations showing variabilities in P/F ratio (mmHg), bilirubin total (mg/dL), creatinine (mg/dL), BNP (pg/mL), 
and platelets (× 103/µL), respectively
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distinct patterns of organ injury in patients with sep-
sis-induced ARF, but also different rates of mortality 
and septic-shock distributions. We also used diagnosis 
codes to highlight the most frequently occurred dis-
eases per phenotype for further validating our charac-
terization and naming of phenotypes. They are listed 
in the Supplementary file 1:  Table  E3. To confirm 
more insights of MOD profiles in phenotypes, a set of 
all six individual SOFA were analyzed from the pre-
intubation window for each phenotype. The maximum 
method was used for their aggregation. Supplementary 
file 1:  Table E9 presents SOFA score-maps for Emory 
MICU data, where the findings clearly align with our 
phenotype characterizations.

Boxplots were drawn to illustrate the variabilities in 
certain prominent features such as creatinine (renal), 
total bilirubin (hepatic), P/F ratio and FiO2 (respira-
tory), BNP (cardiac), and platelets (coagulopathy), as 
shown in Fig. 3a–f. We also calculated the age-adjusted 
Charlson Comorbidity Index based on admission diag-
nosis ICD-9 codes for all four phenotypes, and they are 
2.3 (95% CI 2.21, 2.4), 1.94 (95% CI 1.84, 2.05), 1.99 (95% 
CI 1.9, 2.07) and 2.06 (95% CI 1.97, 2.16), respectively.

External and multi‑specialty validation of sepsis‑induced 
ARF phenotypes
To validate our phenotyping algorithm, we utilized an 
external hospital’s MICU cohort from Grady Memorial 

Hospital, Atlanta, GA. Our methodology involves train-
ing a supervised learning (logistic regression) classifier 
on the derivation dataset to predict the corresponding 
phenotype. Thereafter, we employed the trained model 
on the validation dataset to determine the phenotype for 
each patient encounter. We summarize the phenotype 
validation results in Table  2. These results indicate that 
most features across the four phenotypes remain consist-
ent in the validation dataset, highlighting the reliability 
and generalizability of our phenotyping approach.

For further analysis of the phenotypes, Supplementary 
file 1: Figure E2 in the online data supplement shows 
radar diagrams illustrating average variations of all clini-
cal feature values across four formed phenotypes of the 
derivation and validation data, where all features are nor-
malized in the range 0–1. Additionally, radar diagrams in 
Supplementary file 1: Figure E3 in the online data sup-
plement presents distributions of demographic variables 
and mortality outcomes across various phenotypes of the 
derivation and validation data. Additionally, our pheno-
typing approach was also validated on SICU cohorts of 
both Emory and Grady hospitals. Their phenotyping 
results are listed in the Supplementary file 1:  Tables E6 
and E7. From the phenotyping results, we observed the 
following points: (a) all phenotypes were identified in 
validation cohorts; (b) the prevalence of the phenotypes 
had marked differences across datasets, with phenotype 
B prevalence being very low (< 6%) across all validation 

Fig. 3  Visualization of feature variations across different ARF phenotypes of the derivation data. a–f boxplot representations 
of different phenotypes showing variabilities in creatinine (mg/dL), bilirubin total (mg/dL), P/F ratio (mmHg), FiO2, BNP (pg/mL), and platelets 
(× 103/µL), respectively to show fitness of individual organs. Presented phenotyping results were significant (p < 0.001, Kruskal–Wallis test) for each 
of the variables
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sets; and (c) some of the differences in phenotype preva-
lence may reflect differences in patient case mix across 
the ICUs. We also analyzed aggregated pre-intubated 
individual SOFA for these datasets, and the results are 
listed in Supplementary file 1: Tables E10–E12. They 
show consistency in earlier results obtained from the 
derivation data. Results on further characterization of the 
proposed phenotypes as hyper- or hypo-inflammatory 
can be found in Supplementary file 1: Appendix-1 (A1.2) 
of the online data supplement.

Short‑term survival analysis
Trajectory of short-term outcomes can provide a bet-
ter differentiation among phenotypes. For a 28-day 
short-term analysis, average vent-free days (VFD) were 
found as 10.4, 8.6, 15.4 and 8.5, respectively for pheno-
types A to D of the derivation set. To evaluate the sur-
vival probability of patients in each phenotype, we 
plotted Kaplan–Meier curves [17] for a 28-day period 
following intubation, as shown in Fig. 4. The analysis was 

performed for derivation and validation datasets, where 
survival traces of phenotype D of Emory SICU (N = 12) 
and B of Grady SICU (N = 5) were omitted here due to 
having their small sample sizes. We observed that the 
mortality trends across various phenotypes were con-
sistent for MICU and SICU of both centers (p value for 
trend < 0.001), with phenotype C having the best survival 
followed by A, and phenotypes B and D having the poor 
survival rates in both centers. This suggests that our phe-
notyping approach is generalizable in identifying the least 
and the most critical phenotypes in terms of short-term 
survival for ARF patients with different demographic 
characteristics.

Exploratory analyses of clinical differences 
among the phenotypes
Within phenotypes, 16.7% in A, 49.6% in B, 24% in 
C, and 16.2% in D were administered with PEEP 
≥ 10 regime on mechanical ventilator. After propen-
sity score matching, the matching sizes for the four 

Fig. 4  Kaplan–Meier curve showing 28-day survival rates for ARF patients stratified by phenotypes developed for a derivation set: Emory MICU 
data, and b validation set: Grady MICU data, c validation set: Emory SICU data, and d validation set: Grady SICU data. Survival was analyzed 
from the time of intubation. Survival probabilities (solid line) with their confidence intervals (faded region) are represented for different phenotypes 
via different color-codes
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phenotypes  were found to be 132, 201, 201 and 129, 
respectively. The ATE with 95% confidence inter-
vals were obtained as 0.04 (− 0.08, 0.16) for A, − 0.04 
(− 0.14, 0.06) for B, 0.07 (− 0.02, 0.17) for C, and − 0.03 
(− 0.15, 0.08) for D. A negative ATE suggests reduced 
mortality outcomes for the treated group. We also plot-
ted the effect sizes (standardized mean differences) of 
variables for each phenotype before and after matching 
(see Supplementary file 1: Figures  E8–E11). Kaplan–
Meier curves were also plotted in Fig.  5 to show the 
effect of high PEEP within each of the phenotypes.

In phenotype B with severe hypoxic respiratory fail-
ure, higher PEEP (≥ 10) was associated with better sur-
vival (negative ATE) than lower PEEP (< 10), but the 
opposite association was seen in phenotype C. Among 
both MOD phenotypes, higher PEEP was found effec-
tive for D, whereas it was ineffective for A. We must 
emphasize that this analysis was purely exploratory in 
nature and was carried out to examine the feasibility 
of further research on the treatment effects of various 
therapies.

Practice variance during COVID‑19
When evaluating the derivation strategy independently 
during the 2020–2021 data, we found that they were 
consistent with that of pre-COVID-19  years, with-
out significant variance in the distribution of the phe-
notypes. Relevant details on the sensitivity analyses 
are available in Supplementary file 1: Figure E7 in the 
online data supplement. With the ICD-10 diagnosis 
codes, we observed that out of 3349 patient encounters, 
568 were diagnosed with COVID-19 on the derivation 
set. The year-wise distribution of COVID-19 patients 
was found to be 356 and 212 from years 2020 and 2021, 
respectively. A majority of these patients (289, 42% of 
692) were under phenotype B, whereas 73 (9% of 845), 
137 (14% of 993) and 69 (8% of 819) were found in phe-
notypes A, C and D, respectively. Details on validation 
sets can be found in the Supplementary file 1: Table E8. 
A major portion of the COVID-19 patients come under 
phenotype B in all ICUs, except in Grady SICU possibly 
due to the scarcity of data. Thus, COVID-19 could be 
related to the prevalence of Phenotype B.

Fig. 5  Kaplan–Meier survival curves showing treatment effects of high PEEP (PEEP ≥ 10) and low PEEP (< 10) regimes on propensity matched 
ARF phenotypes from the derivation dataset. Survival probabilities (solid line) with their 95% confidence intervals (faded region) are represented 
for treated and untreated cohorts within each phenotype
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Discussion
In this study, we performed UMAP projection and unsu-
pervised clustering to derive novel phenotypes of sepsis-
induced ARF. The phenotypes derived using early clinical 
data from the pre-intubation phase of sepsis-induced 
ARF not only demonstrated unique patterns of organ 
injury, but also correlated with differences in mortality 
and exhibited potential differences in outcomes in rela-
tion to High vs. Low PEEP strategy. Furthermore, the 
characteristics of the phenotypes remained consistent in 
the validation datasets. The performance was evaluated 
on comprehensive datasets including rich and diverse 
cohorts of patients with varying comorbidities across dif-
ferent demographics.

Sepsis and ARF are both heterogeneous syndromes 
with diverse risk factors, etiologies, clinical presenta-
tions, prognosis, pathophysiology, and immune response 
mechanisms that continue to pose limitations for 
improving outcomes. The present study is unique in that 
it identified novel phenotypes in a broader population 
of patients with sepsis-induced ARF, and provides valu-
able information about their distinct clinical character-
istics, outcomes, and potential differences in treatment 
responses. Prior studies have tried to address this issue 
by deriving phenotypes separately in sepsis and in ARDS, 
but have not focused on phenotypes of sepsis-induced 
ARF [11, 18]. For example, Aliberti et al. described four 
phenotypes of patients with community-acquired pneu-
monia (CAP) in presence of ARF or severe sepsis (SS): 
CAP without ARF or SS, CAP with ARF only, CAP with 
SS only and CAP with both ARF and SS [19]. Essay et al. 
presented an algorithm for phenotyping ARF patients 
using remotely monitored ICU (tele-ICU) data from 
more than 200 patients and validated it using a large 
cohort EMR data from 46 ICUs in southwest United 
States [20]. The validation was done by comparing the 
output of the phenotyping algorithm to a manual review, 
and the common causes of misclassification were noted 
[21]. Unlike our work, this study does not characterize 
various degrees of MOD associated with ARF and the 
severity of such outcomes. It only characterizes patients 
based on the sequence of different respiratory support 
they received. The set of features analyzed is also limited; 
in contrast, this work considers an expanded set of clini-
cal features for phenotyping. While many of these stud-
ies identify phenotypes in sepsis at large [22–26], they 
have not examined phenotypes that may exist specifi-
cally within sepsis-induced ARF. Similarly, LCA-derived 
phenotypes of ARDS have been well-studied, but do not 
directly apply to ventilated patients with sepsis who do 
not satisfy the Berlin definition of ARDS.

Although previously studies have highlighted the lim-
itations in using EMR for phenotyping such as complex, 

inaccurate, and missing data problems [27, 28], our 
approach uses a wide range of clinical features from 
EMR data and has been shown to work efficiently in 
both derivation and validation datasets. Our study phe-
notypes show results consistent with the corresponding 
MODs. For example, the high mortality of phenotype 
B (severe hypoxic respiratory failure) is 51%, which is 
close to the numbers reported (34–46%) in previous 
studies [3]. Our phenotyping algorithm from EMR data 
with high richness has been shown to be generalizable 
and consistent across multiple patient groups from dif-
ferent hospitals, also suggested by prior studies [29, 30].

The unique clinical characteristics of the derived phe-
notypes and the results of our exploratory analyses are 
highly informative and can be hypothesis-generating 
for future research. For example, phenotype A and D 
appear to suffer from multi-system organ failure (with 
differences in the organs involved), and may require tai-
lored interventions according to their specific patterns 
of organ injury. Our results also showed that patients 
in phenotype A and D were likely to exhibit hyperin-
flammatory characteristics. However, ARF patients in 
A had better survival than patients in D overall (Fig. 4). 
Notably, those who received PEEP ≥ 10 had much bet-
ter survival than those who did not in phenotype D, but 
this difference in survival was not better in phenotype 
A, further suggesting potential differences between the 
two MOD phenotypes. Phenotype B (severe hypoxemic 
respiratory failure) is characterized by the most severe 
degree of hypoxia and associated with the highest mor-
tality. Higher PEEP strategy was also associated with 
better survival in phenotype B. This could represent the 
phenotype in which adjunctive treatments for ARDS 
and severe hypoxemia are needed most often and may 
be useful for predictive and prognostic enrichment in 
future clinical trials for ARDS and severe hypoxic res-
piratory failure. Lastly, phenotype C (mild hypoxia) 
represents the phenotype with only modest degree of 
hypoxemia, no other organ injury, and the best out-
comes. It was also observed that patients in phenotype 
C were likely to be hypoinflammatory. We propose that 
these differences between the phenotypes are wor-
thy of further investigation in future validation stud-
ies and clinical trials, and have the potential to provide 
valuable information regarding potential complications 
and prognosis, in addition to aid in developing tailored 
management strategies. Furthermore, the present study 
phenotypes were identified using early clinical data 
from the pre-intubation phase of sepsis-induced ARF, 
which may facilitate prompt classification of patients 
and candidate selection in future research, as well as 
timely implementation of tailored management strate-
gies when applied to real clinical settings.
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This study has several limitations. First, only routinely 
collected clinical features in the EMR were used to derive 
the phenotypes, and integration with other data such as 
protein biomarkers, clinicians’ impression, immune cell 
expression or pathogen features during derivation could 
change assignments of ARF phenotypes. Second, our 
method relies on the analysis of 24-h pre-intubation data 
for each patient using median aggregation on each of the 
features, causing potential loss of temporal information. 
Third, as the missingness in data was common for some 
features included in the phenotyping model, MICE-based 
multivariate imputation strategy was used in the initial 
analysis. However, features with high missing values were 
excluded. Fourth, patients who were started on invasive 
mechanical ventilation (IMV) in the field or in the ED 
were excluded. Fifth, clinical phenotypes were identified 
and characterized from a single high-volume integrated 
health system in the USA with MICU patients. However, 
a large range of data collection years was considered. 
Although obtained phenotypes were observed to be gen-
eralizable in other hospital system data examined across 
multiple ICUs, further exploration and extensive valida-
tion are required, especially using data from randomized 
clinical trials, prospective studies, low- and middle-
income countries, and longitudinal cohorts.

Our proposed model with explainable artificial intel-
ligence (AI) has an ability to identify important features 
out of all clinical variables and lab values, which need 
to be focused specifically to group sepsis-induced ARF 
patients. The strengths of this study include the usage 
of large comprehensive datasets from multiple hospitals 
across multiple ICU, derivation and validation of pheno-
types with different hospitals’ data, inclusion of a broad 
set of routinely collected clinical variables, and map-
ping of MOD, ARF severity, and mortality outcomes. 
The consistency in characteristics of the phenotypes in 
the validation datasets supports the generalizability and 
reproducibility of our results. Thus, the proposed deri-
vation pipeline for patients with sepsis-induced ARF 
was found helpful in identifying unique and potentially 
unclear patterns as well as patient characteristics that 
can then be utilized both for clinical management and for 
future research.

In conclusion, we have derived novel phenotypes of 
sepsis-induced ARF with distinct clinical characteris-
tics and outcomes. The phenotypes are associated with 
distinct patterns of organ injury, such as cardiac/renal 
dysfunction, hepatic dysfunction and coagulopathy, and 
severe hypoxemic respiratory failure resembling ARDS. 
The phenotypes also demonstrated potential differences 
in treatment responses to common clinical interven-
tions for sepsis and ARF. Our method can offer valuable 
knowledge into the diversity of ARF patients with regard 

to their clinical presentation, prognosis and likelihood 
of additional complications, which may have a signifi-
cant impact on the development of tailored management 
strategies, discussions about goals of care, and patient 
selection for future clinical trials.
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