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Abstract 

Cardiopulmonary bypass (CPB) and veno-arterial extracorporeal membrane oxygenation are critical tools in con-
temporary cardiac surgery and intensive care, respectively. While these techniques share similar components, 
their application contexts differ, leading to distinct immune dysfunctions which could explain the higher inci-
dence of nosocomial infections among ECMO patients compared to those undergoing CPB. This review explores 
the immune modifications induced by these techniques, comparing their similarities and differences, and discussing 
potential treatments to restore immune function and prevent infections. The immune response to CPB and ECMO 
involves both humoral and cellular components. The kinin system, complement system, and coagulation cascade 
are rapidly activated upon blood contact with the circuit surfaces, leading to the release of pro-inflammatory media-
tors. Ischemia–reperfusion injury and the release of damage-associated molecular patterns further exacerbate 
the inflammatory response. Cellular responses involve platelets, neutrophils, monocytes, dendritic cells, B and T 
lymphocytes, and myeloid-derived suppressor cells, all of which undergo phenotypic and functional alterations, 
contributing to immunoparesis. Strategies to mitigate immune dysfunctions include reducing the inflammatory 
response during CPB/ECMO and enhancing immune functions. Approaches such as off-pump surgery, corticoster-
oids, complement inhibitors, leukocyte-depleting filters, and mechanical ventilation during CPB have shown varying 
degrees of success in clinical trials. Immunonutrition, particularly arginine supplementation, has also been explored 
with mixed results. These strategies aim to balance the inflammatory response and support immune function, 
potentially reducing infection rates and improving outcomes. In conclusion, both CPB and ECMO trigger significant 
immune alterations that increase susceptibility to nosocomial infections. Addressing these immune dysfunctions 
through targeted interventions is essential to improving patient outcomes in cardiac surgery and critical care set-
tings. Future research should focus on refining these strategies and developing new approaches to better manage 
the immune response in patients undergoing CPB and ECMO.
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Graphical abstract
Although often considered similar, CPB and ECMO have distinct immune repercussions. Numerous immunomodula-
tory strategies have been tested in cardiac surgery patients undergoing CPB to mitigate the induced immunoparesis, 
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but no clinical trials have been conducted for patients on ECMO. C5aR (complement component 5a receptor), CPB 
(cardiopulmonary bypass), DC (dendritic cells), ECMO (extracorporeal membrane oxygenation), HLA-DR (human 
leukocyte antigen-DR isotype), NETs (neutrophil extracellular traps), PD-1 (program cell death protein 1), ROS (reactive 
oxygen species), TLR (toll-like receptor). Created with BioRender.com 

Introduction
Cardiopulmonary bypass (CPB) is commonly used in 
the operating room during cardiac surgery since its first 
use in 1953 by Gibbon [1]. It has been miniaturized and 
adapted for the Intensive Care Unit (ICU) as a critical 
tool for treating refractory cardiogenic shock and vari-
ous other conditions, a method known as veno-arterial 
extracorporeal membrane oxygenation (ECMO) [2]. 
For instance, coronary artery bypass grafting (which is 
mainly done with CPB) has an incidence rate of 62 per 
100,000 inhabitants in western European [3] countries 
and nearly 40,000 patients worldwide were treated with 
VA-ECMO [4] in 2022. However, postoperative infec-
tions are frequent after cardiac surgery and, nosocomial 
infections among those patients increase hospital length 
of stay, cost and mortality [5, 6]. Acquired immune 

dysfunctions, also known as immunoparesis, are asso-
ciated with the occurrence of nosocomial infections in 
the ICU [7]. Consequently, several studies have focused 
on CPB-associated inflammatory response, describ-
ing both humoral and cellular immunodepression fea-
tures associated with acquired infections and applying 
this knowledge to patients under ECMO. Nonetheless, 
despite similarities, CPB and ECMO exhibit significant 
differences that lead to variations in immune responses. 
A comprehensive examination of the immune disor-
ders induced by these two techniques will highlight the 
knowledge gap concerning ECMO’s immune repercus-
sions and underscore the need for dedicated translational 
research on ECMO alone. Therefore, the objective of this 
narrative review is to elucidate the immune modifica-
tions triggered by these two techniques and investigate 
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potential treatments aimed at restoring immune func-
tions and preventing nosocomial infections.

Why exclude VV‑ECMO from this narrative review?
Although veno-venous ECMO (VV-ECMO) and VA-
ECMO share the same circuit, their applications and 
implications significantly differ. VV-ECMO is primarily 
used for Acute Respiratory Distress Syndrome (ARDS) 
caused by viral and/or bacterial infections [8]. These 
infections are known to elicit distinct immune responses. 
For instance, viral infections might trigger a robust 
interferon response, whereas bacterial infections often 
involve substantial activation of the innate immune sys-
tem with elevated levels of pro-inflammatory cytokines 
[9, 10]. Additionally, VV-ECMO is not limited to infec-
tious causes but can also be employed in non-infectious 
settings. Conditions such as hypercapnic ventilatory 
failure, which includes diseases like asthma and chronic 
obstructive bronchopathy [11], present with specific 
immune alterations. Asthma, for example, is often asso-
ciated with eosinophilic inflammation and a skewed Th2 
immune response, whereas chronic obstructive bron-
chopathy involves a more complex interplay of neutro-
philic inflammation and systemic immune modulation 
[12]. The patient population treated with VV-ECMO is 
markedly heterogeneous, encompassing a wide range 
of etiologies and immune responses. This diversity con-
trasts sharply with the indications for VA-ECMO, which 
is typically used for cardiogenic shock, conditions with 
more homogenous pathophysiological mechanisms. The 
fundamental differences in the underlying conditions and 
the consequent immune responses make direct compari-
son between VV-ECMO and VA-ECMO impractical.

CPB and ECMO: similarities and differences
Similarities
Both of these devices share the same objective: to sus-
tain blood circulation and ensure organ perfusion. They 
share common components, including a heparin-coated 
circuit, a primarily arterial pump, an oxygenator, and a 
heat exchanger (which is not always used during ECMO). 
These components lack endothelialization, leading to an 
inflammatory response that will be elaborated upon later. 
Nonetheless, CPB and ECMO have quite major differ-
ences thus leading to different immune modifications.

Differences
Patient factor
Initially, cardiopulmonary bypass (CPB) is employed in 
the context of cardiac surgery, whereas ECMO is utilized 
within the Intensive Care Unit (ICU) to address diverse 
medical conditions. In most cases, CPB is specifically 
used in patients undergoing surgical interventions who 

have not been subjected to any pre-existing immune 
challenges. Cardiac surgery with CPB can be performed 
in elective, urgent, or emergent situations. Most surgeries 
(around 60%) are elective, followed by urgent cases (35%) 
where the procedure is needed during the same hospi-
talization as the diagnosis. Emergent surgeries (5%) are 
conducted when the patient does not respond to medical 
treatment [13]. CPB in emergent situations could be con-
sidered a "second hit," but most studies on the immune 
impact of CPB exclude these patients. Even if the surgery 
and the anesthesia can induce immune changes [14, 15], 
the CPB, contrary to the ECMO, does not act as a “second 
hit”. Indeed, ECMO is usually used as part of the treat-
ment of refractory cardiogenic shock (from acute coro-
nary syndrome, myocarditis, cardiac arrhythmic storm) 
as a bridge to “recovery”, “transplantation” or “decision” 
in some cases [16]. Nonetheless, it is also implemented 
for the support of refractory cardiac arrests [17] or dur-
ing septic shock [18] as well as other causes detailed in 
Table  1. All of these diseases induce immune changes 
and the ECMO could act as a “second hit”. Furthermore, 
patients on ECMO often experience additional organ 
dysfunctions, such as acute kidney injury, gastrointestinal 
or cannula site bleeding, and hemolysis [19]. These com-
plications are less common during CPB [20], leading to a 
prolonged immune response and immune dysfunction in 
ECMO patients.

Machine factor
CPB commonly last for 1 to 2 h while the median dura-
tion of ECMO is 4 days [21]. Additionally, CPB neces-
sitates a bypass of the heart and lungs, resulting in 
ischemia. Following the conclusion of CPB, reperfusion 
occurs in these organs, initiating an ischemia–reperfu-
sion process that will be explained later on. A similar pro-
cess can occur, albeit to a lesser extent, during ECMO, 
given the multi-organ ischemia until ECMO initiation. 
On the other hand, ischemia–reperfusion can still occur 
during ECMO support due to the patient’s hemodynamic 
status and/or ECMO malfunction (pump malfunction, 
oxygenator failure, canula problem). This prolonged 
ischemia can impact specific organs such as the brain, 
lungs and heart and impact patient’s long term quality of 
life [22]. Finally, during cardiac surgery with cardiopul-
monary bypass (CPB), there is direct blood-air contact, 
unlike with ECMO. The typical CPB circuit includes an 
open venous reservoir and cardiotomy suction, which 
continuously expose the blood to atmospheric air and 
negative pressure. This exposure triggers neutrophil 
activation and cytokine release due to the direct con-
tact between blood and air, contributing to the inflam-
matory response observed in patients undergoing CPB 
[23]. Hence, the adoption of minimally invasive surgical 
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procedures, involving reduced extracorporeal circulation 
and no air-blood contact, is increasingly common across 
various medical operations. These techniques have been 
shown to provoke lesser immune responses and reduced 
mortality rates [24].

Management differences
As mentioned above, CPB is shorter and has fewer 
complications than ECMO. Therefore, patients on CPB 
receive less additional therapy, such as analgesics and 
sedatives, transfusions, or other extracorporeal support 
like renal replacement therapy [19, 20]. However, the 
anticoagulant dose during cardiac surgery is higher than 
during ECMO [25]. These differences, and other minors, 
are summarized in Table 1.

These differences lead to distinct induced immune 
dysfunctions which could explain the higher incidence 
of nosocomial infections among patients under ECMO 
than CPB. Indeed, 5% of patients will develop a nosoco-
mial infection after cardiac surgery with CPB [5] whereas 

these infections occur in 65% of patients with ECMO 
[6]. Considering the elevated mortality associated with 
acquired infections [26, 27], addressing immune func-
tions could potentially mitigate morbidity linked to both 
CPB and ECMO. Consequently, evaluating immune dys-
functions becomes imperative in each unique clinical 
scenario.

Immunoparesis induced by CPB and ECMO
The immune system is traditionally categorized into 
humoral and cellular components. The humoral seg-
ment encompasses various tools, including the kinin sys-
tem, the complement system, the coagulation cascade, 
and antibodies. Conversely, the cellular segment of the 
immune system involves various cell types such as plate-
lets, neutrophils, monocytes, dendritic cells, lympho-
cytes, and others. The alterations induced by CPB/ECMO 
on the immune system are summarized in Table  2. The 
immune response to CPB/ECMO initiates shortly after 
blood comes into contact with the non-endothelial 
surface of the circuit, primarily through the humoral 

Table 1 CPB and ECMO differences

CPB ECMO

Patient factors

Terms of use Operating room ICU

Indication Cardiac surgery Refractory cardiogenic shock from:
 Acute coronary syndrome
Myocarditis
 Refractory cardiac arrhythmic storm
 Sepsis with profound cardiac depression
 Drug overdose/toxicity with profound cardiac depression
 Pulmonary embolism
 Cardiac trauma
 Acute anaphylaxis
Post cardiotomy
Post heart transplant
Refractory cardiac arrest

Machine factors

Ischemia–reperfusion Yes Yes (to a lesser level but can be prolonged)

Volume of blood into the circuit 700–1800 ml 600 ml

Surgical approach Yes No (a surgical approach of the scarpa can be needed 
for the ECMO implantation but is shorter than CPB)

Cardiac protection Yes (cardioplegia solution) No

Air/blood interface Yes (no air/blood interface in minimal 
extracorporeal circuit)

No

Filters and reservoirs Yes No

Reinfusion of aspirated blood Yes No

Management

Duration (median) 1–2 h 4 days

Complications related associated treatment Rare Frequent

Anticoagulation High levels Low levels
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response. Additionally, the subsequent ischemia–rep-
erfusion process further influences this response. These 
two mechanisms influence the cellular components of 
the immune system. Additionally, the underlying disease 
that necessitated the ECMO placement also impacts the 
immune system (cardiac surgery also, though to a lesser 
extent). This review aims to provide a comprehensive 
analysis of the similarities and differences of the immune 
alterations induced by CBP and ECMO. The interaction 
between the CPB/ECMO and the immune system is elab-
orated in the Fig. 1.

The humoral immune response
Kinin system
The kinin system is a plasma protease cascade which acti-
vates the proinflammatory kallikrein-kinin system and 
the procoagulant intrinsic coagulation pathway. The first 
step is the activation of the coagulation factor XII (FXII) 
into FXIIa as it encounters the negatively charged sur-
faces of the circuit. Afterwards, FXIIa converts Prekal-
likrein into Kallikrein which also activates FXII into FXIIa 
creating a positive feedback loop. This activation of FXII 
is quick as its peak is obtained within the first 10  min 

Fig. 1 CPB/ECMO immune response.  In the initial moments following blood contact with non-endothelial surfaces within circulatory circuits, 
activation of the kinin system, complement system, and coagulation cascade occurs. This triggers the activation of endothelial cells, platelets, 
and neutrophils. Platelets form direct bonds with neutrophils and monocytes, while also releasing both pro- and anti-inflammatory cytokines. 
Furthermore, the ischemia-reperfusion process prompts the release of damage-associated molecular patterns and translocation of LPS 
from the gut, activating various cellular components of the immune system (including dendritic cells, monocytes, neutrophils, and T-cells). 
These cells also release pro- and anti-inflammatory cytokines, elucidating the interplay among cellular components. Ultimately, Myeloid 
Derived Suppressor cells are mobilized from the bone marrow, inhibiting T-cell functions. The immune modifications induced by CPB/ECMO are 
summarized at the bottom of the figure (gray: observed only after CPB, purple: observed only after ECMO, green: observed in both). BK (bradykinin), 
C5aR (complement component 5a receptor), CPB (cardiopulmonary bypass), DAMPs (damaged associated molecular patterns), DC (dendritic cells), 
ECMO (extracorporeal membrane oxygenation), HLA-DR (human leukocyte antigen-DR isotype), HWK (high weigh kininogen), KK (kallikrein), LPS 
(lipopolysaccharide), MDSCs (myeloid derived suppressor cells), NETs (neutrophil extracellular traps), PD-1 (program cell death protein 1), PD-L1 
(program death ligand 1), PKK (prekallikrein), ROS (reactive oxygen species), TLR (toll-like receptor). Created with BioRender.com



Page 6 of 15Lesouhaitier et al. Critical Care          (2024) 28:300 

after CPB is started [28]. Kallikrein activates neutrophils 
and produces bradykinin from high mass weight kinino-
gen. Finally, bradykinin enhances vascular permeability 
after binding to the B2 receptor on endothelial cells. The 
activation of the kinin system is transient as bradykinin 
levels return to baseline 24 h after surgery with CPB [28]. 
While the activation of the kinin system has been exten-
sively investigated during surgeries involving CPB, there 
is currently a lack of data pertaining to ECMO. We can 
assume that the surfaces of the circuit can activate FXII, 
however, as bradykinin is degraded mainly in the lungs 
(which is not bypassed during ECMO), its concentration 
may be lower than during surgery with CPB [29].

The complement system
The complement system is a group of proteins that can 
be activated by three different pathways [30]. In the 

course of CPB, the alternative pathway undergoes rapid 
activation (within 1 h) due to the interaction between C3 
and the surfaces of the circuits lacking inhibitory pro-
teins specific to this activation pathway [31]. Therefore, 
C3 activation leads to the production of C3a and C5a 
which are pro-inflammatory as they activate neutro-
phils and increase vascular permeability [32]. Moreover, 
the complement activation finally leads to the formation 
of the C5b-9 membrane attack complex which activate 
platelets [33]. Research on complement activation during 
ECMO traces back to the 1990s, a period marked by less 
biocompatible circuits that exhibited complement activa-
tion in vitro [34]. Furthermore, while cardiogenic shock 
is known to activate the complement system [35], there is 
a lack of data comparing complement system activation 
between patients admitted for cardiogenic shock with 
and without ECMO support.

Table 2 Immune modifications during CPB/ECMO

Humoral immune components

CPB ECMO References

Upregulation/
downregulation

Immune interaction Upregulation/
downregulation

Immune interaction

Kinin system Upregulation Coagulation cascade
Endothelial cells

– – [28, 29]

Complement system Upregulation Neutrophils
Endothelial cells
Platelets

Upregulation Neutrophils
Endothelial cells
Platelets

[31, 34]

Coagulation cascade Upregulation Platelets
Endothelial cells

Upregulation Platelets
Endothelial cells

[36, 37]

Cellular immune components

CPB ECMO References

Number Phenotype Function Number Phenotype Function

Platelets ↓ ↑ CD40
↑ CD62P

↑ Release secretory granules ↓ – – [49, 49, 53]

Neutrophils ↑ Mature ↑ ROS production
↑ NETs release
↑ Degranulation

↓ Immatures
↓ C5aR

– [55, 56, 57, 58, 61, 62]

Monocytes  → ↓ HLA-DR
↓ TLR2
↓ TLR4

↓Cytokine production
↓Differenciation ability

 →  → HLA-DR – [62, 65, 66, 68, 69, 72, 73]

Dendritic cells  → ↓ HLA-DR
↓ CD80
↓ CD40
↓ CD86

↓ Cytokine production  →  → HLA-DR [62, 74]

B cells ↓ – ↑ Antibodies production – – – [76, 77]

T cells ↓ ↑ PD1
↓ CD25
↓ CD45RO
↓ CD11
↓ ICAM

↑ Apoptosis
↓ Proliferation

↓ – ↑ Apoptosis
↓ Proliferation

[62, 77, 78, 79, 80, 81, 93, 94, 96]

MDSCs ↑ ↑ PD-L1 ↑ IL-10 production
↑ Arginase activity
↓ T cells proliferation

↑ – – [62, 93, 96]
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Coagulation activation
The contact between blood and the circuit surfaces initi-
ates the activation of FXII, marking the initial phase of 
the intrinsic pathway within the coagulation cascade. 
Additionally, the extrinsic pathway is triggered. For 
instance, during cardiac surgery, endothelial cells release 
tissue factor due to vascular injuries [36] and even in 
the absence of endothelial damage during ECMO, com-
plement system activation prompts monocytes and 
endothelial cells to generate tissue factor [37]. Conse-
quently, the coagulation system is activated, ultimately 
leading to thrombin production. Thrombin, apart from 
its role in thrombus formation, also induces the expres-
sion of P- and E-selectin on endothelial cells, thereby 
activating neutrophils and platelets.

Ischemia–reperfusion, damaged associated molecular 
patterns (DAMPs) and endotoxemia
DAMPs are molecular patterns released during tissue 
damage, they initiate an inflammatory response after 
being recognized by receptors expressed by all immune 
cells such as Pattern Recognition Receptors (PPR) (Toll-
like Receptors and Nod-like Receptors) and Non-PPR 
(CD44, CD91 and Receptor for Advanced Glycation End 
products) [38]. This leads to the production and release 
of pro-inflammatory cytokines (TNF-α and IL-1), vaso-
active amines (histamine and serotonin) and Reactive 
Oxygen Species (ROS) by immune cells. In cardiac sur-
gery involving CPB, the circuit bypass both the heart and 
lungs, resulting in ischemia for these organs, even though 
the heart is safeguarded by a cardioplegia solution [39, 
40]. Moreover, the surgical procedure itself contributes to 
tissue damage and the release of DAMPs. Before ECMO 
implantation, the refractory cardiac shock induces a 
multi-organ ischemia [41]. Cell metabolism is therefore 
switched to anaerobic glycogenolysis which may induce 
multiple ionic modifications (such as the accumulation 
of H+ and  Ca2+ inside the cells) [42, 43], thus weaken-
ing immune cells and leading to the production of ROS. 
Once CPB is over, or ECMO is started, reperfusion of 
the organs occurs with enriched oxygen blood, increas-
ing ROS production [44], which is responsible for cell 
damages and DAMPs release. Ischemia–reperfusion also 
disrupts the intestinal barrier, enabling the translocation 
of lipopolysaccharide (LPS) into the bloodstream [45]. 
This endotoxemia activates the complement system [46], 
many components of the cellular immune system and 
promotes the production of pro-inflammatory cytokines 
[47].

The cellular immune response
Platelets
Platelets play a crucial role in in the inflammatory 
response by bridging humoral and cellular immune 
responses. They release pro-inflammatory molecules 
and directly interact with other immune cells to acti-
vate them. Platelets are activated by the coagulation cas-
cade and the complement system during CPB [48]. They 
release secretory granules which contain chemokine 
C-X-C motif ligand 1 (CXCL1), CXCL4 and CXCL7 
which increase neutrophils recruitment and other pro-
inflammatory molecules such as platelets-activating 
factor, thromboxane A2 and IL-1ß which activate neutro-
phils, monocytes, dendritic cells and T-lymphocytes [49]. 
Moreover, activated platelets express CD40L and CD62P 
which allow them to bind to monocytes and neutrophils. 
This interaction activates the latter and facilitates their 
extravasation through the endothelium [50, 51]. There 
is a notable absence of data concerning the impact of 
ECMO on the immune aspects of platelets. Existing stud-
ies predominantly concentrate on thrombocytopenia 
during ECMO support and the pro-aggregation activity 
of these cells [52]. Additionally, assessing the interaction 
between platelets and leukocytes through flow cytom-
etry poses challenges, as ex-vivo platelet activation is 
common and may result in the subsequent formation of 
platelet-leukocyte aggregates [53].

Neutrophils
Neutrophils are the first leucocytes to be recruited to 
an inflammatory site and they can eliminate countless 
pathogens by different means [54]. In cardiac surgery 
with CPB, there is a notable increase in the number of 
neutrophils within the initial 24  h. Intriguingly, flow 
cytometry analysis revealed a predominance of mature 
neutrophils in the bloodstream in this situation [55]. 
Furthermore, examination of the bone marrow com-
partment and neutrophil progenitors in the same study 
showed no alterations induced by CPB. Consequently, 
the mature neutrophils observed 24  h post-CPB are 
recruited through a demargination process [55]. Neu-
trophils are also activated during CPB. Multiple stud-
ies have shown an increase of Reactive Oxygen Species 
(ROS) production [56], a higher Neutrophils Extracellu-
lar Traps (NETs) release and blood levels of elastase and 
lactoferrin, which are contained in neutrophils’ granules, 
were greater after CPB [57]. All of these functions are 
essential for killing bacteria. However, when exposed to 
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Staphylococcus aureus, neutrophils’ phagocytosis and 
bactericidal activities were not heightened [55]. As pre-
viously mentioned, the complement system becomes 
activated shortly after the commencement of CPB. In 
the context of sepsis, it is established that C5a promotes 
the activation of neutrophils [58], and it can be inferred 
that a similar mechanism occurs during CPB. Moreover, 
pro-inflammatory cytokines which activate neutrophils 
such as IL-6, IL-8 and TNF-α are released during CPB 
[59]. Finally, the ischemia–reperfusion process induces 
the release of Damaged Associated Molecular Patterns 
(DAMPs) [60] which also activate neutrophils.

The studies on the impact of ECMO on neutrophils 
were mainly done in newborns and they show opposite 
effects compared to CPB. The number of circulating neu-
trophils decreases within the first 24 h after initiation and 
regains 7  days after [61]. In our study, we investigated 
phenotypic changes in major cellular immune subset, 
including neutrophils, dendritic cells, monocytes and T 
lymphocytes, among patients undergoing ECMO for car-
diogenic shock. We assessed these changes just before 
ECMO initiation and at 1 and 7  days afterward. Addi-
tionally, we compared these findings to patients admit-
ted for cardiogenic shock but treated without ECMO. We 
confirmed the decrease of circulating neutrophils among 
adults but most importantly, flow cytometry analysis 
showed that neutrophils were immature and their C5a 
receptors expression was decreased as well [62]. This 
alteration in phenotype has also been observed during 
sepsis and has been linked to a diminished capacity to 
eliminate gram-positive bacteria [63].

Monocytes
Monocytes migrate towards the inflammation site where 
they differentiate into dendritic cells and macrophages 
who will fill multiples roles (pathogens eradication, anti-
gen presentation, healing orchestration…) [64]. The 
number of monocytes does not fluctuate after CPB. Nev-
ertheless, there is a shift in their phenotype characterized 
by a reduced expression of TLR2 and TLR4 [65, 66]. TLR 
are essential for the activation of monocytes as they allow 
these cells to recognize Pathogens Associated Molecu-
lar Patterns (PAMPs) [67]. In the same study, the ex-vivo 
production of IL-6, IL-8 and TNF-α by the monocytes 
was reduced after CPB. Moreover, TLR2 expression was 
associated with the occurrence of nosocomial pneumonia 
after surgery [66]. At the surface of monocytes, another 
receptor is down-regulated after CPB: the Human Leuco-
cyte Antigen D-related (HLA-DR) [68, 69]. This receptor 
is crucial for antigen presentation, playing a mandatory 
role in the activation of the cellular adaptive immune 
response. The monocyte’s decrease expression of HLA-
DR has also been widely studied during sepsis and is one 

key feature of the sepsis induced immunoparesis [70]. It 
has been associated with nosocomial infections among 
ICU patients [71]. Finally, the ability of monocytes to 
differentiate into dendritic cells is also impaired ex-vivo 
up to three months after CPB [72]. As for neutrophils, 
data about the impact of ECMO on monocytes come 
from one study on neonates. In this study where both 
VV-ECMO and VA-ECMO were analyzed, the authors 
observed a down-regulation of HLA-DR was during the 
whole time of the ECMO support compared to healthy 
subjects [73]. However, analyzing cardiogenic shock with 
and without ECMO among adults, there was no differ-
ence in the absolute number of monocytes or in their 
HLA-DR expression between the two groups or during 
ECMO support [62].

Dendritic cells
Dendritic cells play a sentinel role as they infiltrate nearly 
all organs and are antigen presenting cells. The number 
of dendritic cells remains stable during cardiac surgery 
with CPB, but significant phenotypic and functional dys-
functions emerge afterwards. First of all, the expression 
of HLA-DR at their surface is down-regulated as well as 
the expression of other receptors such as CD80, CD40 
and CD86 [74]. These receptors act as co-stimulatory 
receptors crucial for the activation of lymphocytes by 
dendritic cells and their down-regulation attests a weak-
ened immune response [75]. Moreover, the ex-vivo abil-
ity to produce pro-inflammatory cytokines such as IL-6 
and TNF-α is decreased after CPB [74]. In the sole study 
focusing on dendritic cells during ECMO, no dispari-
ties were observed in either the absolute number or the 
expression of HLA-DR at their surface [62].

B lymphocytes
Although the number of B lymphocytes was lower after 
cardiac surgery with CPB [76, 77], patients who under-
went cardiac surgery without CPB had an even lower 
absolute count of B lymphocytes compared to those 
undergoing cardiac surgery with CPB [76]. This suggests 
that these cells are more sensitive to surgery itself than 
to CPB itself. Additionally, the production of antibod-
ies, which is one of the main functions of B-cells, was 
enhanced after CPB [77]. Finally, there is currently no 
data regarding the impact of ECMO on these cells.

T lymphocytes
CPB and ECMO share similarities regarding their impact 
on T lymphocytes. The number of T lymphocytes 
decreases after CPB [77–80] and 24 h after the initiation 
of the ECMO [81]. With the elevated neutrophil count 
following CPB, the neutrophil/lymphocyte ratio has been 
employed and found to be correlated with organ failures, 
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including acute kidney injury and atrial fibrillation, as 
well as with the length of hospital stay [82]. Moreover, 
persistence of lymphopenia 5 days after its initiation was 
associated with mortality among patients with ECMO 
[81]. The observed T-cell lymphopenia can be attributed 
to increased apoptosis of T-cells occurring both after 
cardiac surgery with CPB [76] and during the initial four 
days of ECMO [62]. T-cell apoptosis is also noted dur-
ing sepsis and has been linked to poor outcomes among 
patients admitted to the ICU for sepsis [83]. In-vitro 
studies have demonstrated that macrophages and den-
dritic cells produce fewer pro-inflammatory cytokines 
and more anti-inflammatory cytokines after engulfing 
apoptotic bodies [84]. Moreover, in a mouse model of 
sepsis, the translocation of apoptotic bodies resulted in 
decreased survival [85]. Surgery itself [86–88] and medi-
cations used during the procedure such as propofol [89] 
or opioids [90] can induce T-cell apoptosis. However, 
Shi et  al. have compared T-cell apoptosis among chil-
dren undergoing cardiac surgery with and without CPB 
and have shown an increased apoptosis in the CPB group 
[91]. Besides, dobutamine, which is used as the treatment 
for cardiogenic shock, is known to induce T-cell apopto-
sis [92]. However, in our study, we compared T-cell apop-
tosis between patients with cardiogenic shock treated 
with ECMO and those treated without ECMO. Our find-
ings demonstrated that the T-cell apoptosis was higher in 
patients receiving ECMO support than in those who did 
not undergo ECMO [62]. Besides T-cell apoptosis, car-
diac surgery with CPB also induces phenotype alteration 
such as an increased expression of Program cell Death 1 
(PD1), which is correlated to the duration of CPB [93], 
and a decreased expression of activation markers (CD25 
and CD45RO) and adhesion markers (CD11 and ICAM) 
[94]. PD1 has been widely studied in the cancer field is 
known to promotes T-cell exhaustion [95]. Finally, CPB 
and ECMO decreases T-cell proliferation ex-vivo [62, 93, 
96]. This phenomenon has also been extensively observed 
during sepsis and has been correlated to nosocomial 
infection and mortality among ICU patients [97, 98].

Myeloid derived suppressor cells (MDSCs)
MDSCs are immunosuppressive myeloid cells that were 
first described in the tumor microenvironment [99]. 
They have also been identified during sepsis and are cor-
related to nosocomial infections among ICU patients 
[100]. There are two types of MDSCs: monocytic MDSCs 
(M-MDSCs) and granulocytic MDSCs (G-MDSCs). 
They are recruited from the bone marrow in response 
to a significant and/or prolonged inflammatory stimu-
lus. Indeed, GM-CSF and IL-6 are both released during 
the immune response in order to recruit neutrophils and 

monocytes from the bone marrow. However, these two 
cytokines also recruit MDSCs. MDSCs mainly impact 
T-cells and inhibit their activation through different 
mechanisms. They release anti-inflammatory cytokines 
such as IL-10 and TGF-β and express Program Death 
Ligand 1 (PD-L1) that inhibits T-cell activation. Moreo-
ver, they catabolize nutrients (arginine, tryptophan) that 
are essential for T-cell proliferation. MDSCs also pro-
duce ROS and nitric oxide that degrade T-cell receptor 
which is vital for antigen recognition. Finally, they release 
adenosine which decrease T-cell cytotoxic activity and 
degrade T-cell receptor (CD62L, CD44 and CD164) 
which prevent their endothelium adhesion and their 
migration towards lymphatic nodes [101].

The total number of MDSC increases after cardiac sur-
gery with CPB and is correlated with nosocomial infec-
tions [93]. Interestingly, only M-MDSC are recruited 
during cardiac surgery whereas the number of G-MDSC 
remains unchanged [96]. Along these lines, arginine lev-
els in blood are decreased after CPB such as tryptophan 
whereas IL-10 in increased. Finally, MDSC upregulate 
their PD-L1 expression. Interestingly, when MDSC are 
depleted in-vitro, T-cells functions improve leading to the 
conclusion that CPB induces the recruitment of MDSC 
that inhibits T-cells. In our study, we inhibited MDSC 
main function with IL-10 antibody, PD-L1 blocking anti-
body, Indoleamine 2,3 dioxygenase (which catabolize 
tryptophane) inhibitor and arginine supplementation in 
the culture media. Arginine supplementation was the 
only treatment that restored T-cell proliferation in-vitro. 
MDSCs are also recruited during ECMO but their impact 
on T-cells remain unclear [62].

Acquired immune dysfunction under CPB/ECMO: 
perspectives
Both CPB and ECMO trigger an initial inflammatory 
immune response followed by an immunoparesis phase, 
potentially contributing to the susceptibility of nosoco-
mial infections. Consequently, two strategies have been 
explored to reduce infection acquisition in these patients. 
Numerous clinical trials have sought to either restrain 
the inflammatory response during CPB to mitigate its 
anti-inflammatory repercussions or enhance the compro-
mised immune system to restore its functions.

Limiting the immune response during CPB/ECMO
The limited data from patients under ECMO
There is a substantial disparity in the available data 
between CPB and ECMO. Immune responses during 
cardiac surgery with CPB have been extensively docu-
mented, providing both phenotypic changes and mech-
anistic insights due to the homogeneous population 
studied. Conversely, data on ECMO are sparse, primarily 
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because most studies have focused on neonates. In the 
sole study comparing immune responses in patients with 
cardiogenic shock with and without ECMO, we dem-
onstrated that the immune response differs from that 
observed in CPB patients [62]. Therefore, it is essential to 
distinguish between CPB and ECMO in terms of immu-
noparesis. Consequently, various experimental immu-
nomodulation strategies have been investigated through 
clinical trials in patients undergoing cardiac surgery with 
CPB. In contrast, the data concerning patients on ECMO 
primarily consists of retrospective analyses, case reports 
and cohort studies.

The “off‑pump” surgery
Since CPB induces an inflammatory response that ulti-
mately led to an immunoparesis state, the idea of cardiac 
surgery without CPB has emerged. Indeed, some surgery 
can be done without the opening of the heart (e.g. coro-
nary artery bypass). Therefore, numerous studies have 
shown that “off-pump” cardiac surgery reduces cytokines 
levels [102], complement activation [103], as well as the 
activation of neutrophils [104] and of the endothelium 
[105]. Those results were correlated with decreased 
blood transfusion rates, lower cardiac damages and 
shorter hospital stay [106, 107]. However, those studies 
were tested among young patients without comorbidi-
ties. Recent studies among older patients failed to show 
any benefits with “off-pump” surgery [108].

Corticosteroids
Corticosteroids are commonly used for numerous 
inflammatory states as they reduce both cellular and 
humoral immune response [109]. Although corticoster-
oids decrease cytokines levels [110], complement activa-
tion [111] and endothelial damage [112] during cardiac 
surgery with CPB, numerous clinical trials have failed to 
show any clinical improve. Indeed, among 13 randomized 
clinical trials, only 2 concluded to a diminution of post-
operative complications with corticosteroids whereas all 
of the other failed to show any improvement concerning 
mortality, organ dysfunction and length of hospital stay 
[113]. Moreover, a meta-analysis published in 2011 con-
cluded that corticosteroids during cardiac surgery with 
CPB does not improve the mortality nor do they reduce 
the cardiac and pulmonary damages [114]. Since then, 
multiple meta-analysis have been made and only one 
found a decreased incidence of atrial fibrillation and kid-
ney injury with a low dose of corticosteroids [115] which 
was only seen in small trials [116]. However, mortality 
was the same regardless of the use of steroid [115–118].

Complement inhibitors
As described before, the complement activation is one 
of the first step of the immune response during cardiac 
surgery with CPB. Therefore, pexelizumab, which inhib-
its the production of C5a and C5b which are essential for 
the formation of the membrane attack complex, has been 
studied in cardiac surgery with CPB. Two clinical trials 
showed no differences in term of mortality and post-
operative infarcts compared to placebo [119].

Leucocytes‑depleting filters and hemoadsorption
In order to remove the most abundant activate cells dur-
ing cardiac surgery with CPB, leucocytes-depleting fil-
ters, which reduces the number of activated neutrophils, 
have been developed in the late 90s. Numerous studies 
have conflicting results on both biological and clinical 
variables. Moreover, depending on the type of filter and 
its position on the CPB circuit, the effects are different 
and summarized in other specific reviews [120, 121]. 
Hemoadsorption is designed to remove low molecular 
weight molecules such as cytokines. The CytoSorb® sorb-
ent has been evaluated in a clinical trial, which showed 
that cytokine levels remained consistent regardless of 
CytoSorb® usage; however, IL-10 demonstrated a more 
prolonged anti-inflammatory effect [122]. Furthermore, 
no differences in clinical outcomes were observed [122], 
a finding corroborated by a recent systematic review 
[123]. Nonetheless, case reports and smaller studies have 
reported positive outcomes in high-risk patients [124]. 
These studies suggest that hemoadsorption may be ben-
eficial in specific scenarios by enhancing hemodynamic 
stability and lowering cytokine levels, though more 
comprehensive research is required to universally vali-
date these findings. In a recent cohort study, the use of 
hemoadsorption during ECMO support was associated 
with an accelerated recovery of multiorgan and microcir-
culatory dysfunction and lower risk of early death [125].

Mechanical ventilation during CPB
Since CPB mechanically circulates and oxygenates blood 
bypassing the heart and lungs, usual procedure during 
CPB is to stop mechanical ventilation. However, Gaudriot 
et  al. suggested that maintaining mechanical ventilation 
may improve immune dysfunction parameters such as 
the expression of monocytic HLA-DR [69]. Additionally, 
the application of low tidal volume—low frequency ven-
tilation could decrease the production of pro-inflamma-
tory cytokines such as interleukin 10 and tumor necrosis 
factor-α [126]. In two clinical trials, maintaining mechan-
ical ventilation did not decreased nosocomial infections 
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after cardiac surgery with CPB [127, 128]. However, these 
studies did not use the occurrence of postoperative infec-
tions as their primary endpoints. Therefore, the clinical 
relevance of maintaining the mechanical ventilation dur-
ing CPB is still on debate although recommended [129] 
(ClinicalTrials.gov Identifier: NCT0337217).

Restoring immune functions during CPB/ECMO: 
immunonutrition for patients under cardiac surgery 
with CPB
Immunonutrition (mainly Arginine supplementation) 
has already been investigated among patients with car-
diac surgery with CPB and showed conflicting results. 
Indeed, in a prospective, randomized, monocentric, 
double-blind, placebo-controlled study, patients were 
treated with 5 days of Arginine (or placebo). There was 
a significant reduction of nosocomial infections among 
treated patients and a higher expression of monocytic 
HLA-DR compared to the placebo group [130]. How-
ever, these results have never been confirmed in other 
studies and arginine supplementation have failed to 
correct hypoargininemia in other inflammatory situa-
tions [131].

Conclusion
Despite shared characteristics between immunopare-
sis induced by CPB and immune dysfunction brought 
about by ECMO, it is essential to address these two 
situations separately, considering ECMO as a "second 
hit." Furthermore, attempts to limit the inflammatory 
response to reduce immunoparesis have not yielded 
to conclusive results over the past decade. There-
fore, strategies focused on restoring immune func-
tions should be considered for clinical trials, mirroring 
approaches for other patients in the intensive care unit 
(ICU) [132].
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