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Abstract 

This review explores the complex interactions between sedation and invasive ventilation and examines the potential 
of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, many 
critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm function. 
Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves respiratory 
drive, potentially helping to maintain diaphragm function during prolonged periods of invasive ventilation. In turn, 
higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal volumes, potentially 
reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, inhaled sedation may 
allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-protective ranges. Par-
ticularly in patients who are expected to require prolonged invasive ventilation, in whom the restoration of adequate 
but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents an attractive option for lung- 
and diaphragm-protective sedation. A technical limitation is ventilatory dead space introduced by volatile anesthetic 
reflectors, although this impact is minimal and comparable to ventilation with heat and moisture exchangers. Further 
studies are imperative for a comprehensive understanding of the specific effects of inhaled sedation on respiratory 
drive and effort and, ultimately, how this translates into patient-centered outcomes in critically ill patients.
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Graphical abstract

Introduction
An early return of spontaneous breathing in invasively 
ventilated critically ill patients may prevent diaphragm 
disuse atrophy and expedite liberation from the ventilator 
[1–3]. However, overly vigorous respiratory efforts may 
induce potentially injurious high lung stress and strain, 
referred to as patient self-inflicted lung injury (P-SILI) 
[4]. Sedation and analgesia have substantial effects on 
respiratory drive and effort, yet their effects on outcomes 
of ventilated critically ill patients remain relatively unex-
plored [5, 6].

Until recently, sedation in invasively ventilated criti-
cally ill patients was restricted to the administration of 
intravenous sedatives, such as benzodiazepines, dexme-
detomidine, ketamine, or propofol, each of which has 
relevant side effects and contraindications. Inhaled seda-
tion with volatile anesthetics has gained popularity as 
an alternative to intravenous sedatives in intensive care 
unit (ICU) patients. Inhaled sedation may be particularly 
helpful for achieving lung- and diaphragm-protective 
ventilation or more specifically lung- and diaphragm-
protective sedation [7, 8]. This concept aims to integrate 
the contributions of mechanical ventilation, spontane-
ous breathing effort, and patient–ventilator interactions 
to protect against iatrogenic or self-inflicted injury to 
the respiratory system — both the lungs and respiratory 

muscles. Sedation strategies play a pivotal role in lung 
and diaphragm protection because of their effect on res-
piratory drive and effort.

In this review, we explore the potential benefits of 
inhaled sedation for achieving lung- and diaphragm-
protective sedation. We begin by introducing risks and 
benefits of spontaneous breathing and the relevance of 
sedation for lung and diaphragm protection in invasively 
ventilated patients. Next, we provide a synthesis of cur-
rent evidence on how inhaled sedation with volatile 
anesthetics may help to protect the lungs and diaphragm 
through its effects on respiratory drive and effort. Finally, 
we address the technical limitations of inhaled sedation 
in the ICU setting.

Methods
This is an expert opinion-based narrative review. Refer-
ences were thus included based on the authors’ subjective 
judgement on relevance to the field of research. Before 
synthesizing current evidence, the authors’ literature 
fundus was updated by searching PubMed with combi-
nations of the following terms: volatile, inhaled, sedation, 
spontaneous breathing, spontaneous ventilation, respira-
tory drive, and lung- and diaphragm-protective ventila-
tion. We additionally screened forward and backward 
citations of high-impact publications.
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Risks and benefits of spontaneous breathing
Vigorous respiratory efforts can worsen or may even 
induce lung injury, often referred to as ‘patient self-
inflicted lung injury’ (P-SILI) [4]. P-SILI may result from 
high tidal volumes and breath stacking dyssynchrony 
[9], although the latter has recently been challenged in a 
porcine model [10]. Forceful inspiratory effort may alter 
ventilation distribution and contribute to regional over-
distension from pendelluft [11–13]. Forceful exhalation 
may lead to alveolar derecruitment below functional 
residual capacity, potentially predisposing patients to 
atelectrauma [14]. Consistently, high driving pressure, as 
a surrogate for increased lung strain, is associated with 
adverse outcomes in assisted spontaneously breathing 
critically ill patients [15, 16]. Although clinical evidence 
for the existence of P-SILI remains indirect, it seems pru-
dent and highly biologically plausible to reduce excessive 
respiratory efforts, especially in patients with injured 
lung tissue.

On the other hand, complete cessation of spontane-
ous breathing in invasively ventilated patients is detri-
mental to the diaphragm. Only 18 to 69 h of diaphragm 
inactivity under controlled mechanical ventilation results 
in marked diaphragm atrophy [17]. More specifically, 
diaphragmatic inactivity induces contractile weakness, 
ultrastructural fiber injury, and proteolysis in diaphragm 
tissue [18, 19]. In turn, excessive inspiratory effort can 
cause load-induced diaphragmatic injury, as shown in 
ultrasound studies on diaphragm thickness during inva-
sive ventilation [3]. Both disuse atrophy and load-induced 
injury of the diaphragm are associated with prolonged 
ventilation time and ICU length of stay [20, 21]. Conse-
quently, inspiratory efforts equivalent to those in healthy 
subjects at rest promise the highest probability for ven-
tilator liberation [20]. In addition, a greater proportion 
of time spent at spontaneous ventilation is associated 
with faster liberation from the ventilator, highlighting the 
importance of preserving spontaneous breathing efforts 
during invasive ventilation [1, 2].

In addition to the importance of spontaneous breath-
ing for maintaining diaphragm function, it reduces 
ventilation heterogeneity, thereby improving ventilation-
perfusion mismatch and reducing overdistension in non-
dependent lung regions [22, 23]. Lower intrathoracic 
pressures further improve hemodynamics, as evident 
from reduced utilization of vasopressors and better renal 
and hepatic perfusion during spontaneous breathing 
[23–25] (Fig. 1).

Monitoring of respiratory effort
Although extremes of respiratory effort, both high 
and low, may contribute to lung and diaphragm injury, 

inspiratory effort is rarely monitored in routine clinical 
care of ventilator-dependent patients. Insufficient effort 
is twice as common as excessive effort, with roughly half 
of invasively ventilated patients having insufficient effort 
needed to maintain diaphragm function, compared to 
one-fourth with excessive effort [3, 20, 26, 27]. Exces-
sive effort can be a sign of inadequately low ventilatory 
assistance, sedation, or analgesia, while insufficient effort 
often indicates ventilatory overassistance or undue seda-
tive/analgesic effects [8]. Sedation scales poorly correlate 
with inspiratory effort, as even unresponsive patients 
may exhibit high effort, while easily arousable patients 
may show low or no effort at all [26]. Thus, monitoring 
respiratory drive and effort is necessary to ensure that 
spontaneous breathing is safe.

Various measures of respiratory drive and effort have 
been proposed alongside traditional arousal scales as 
targets for lung- and diaphragm-protective ventilation 
and sedation [7, 8]. Occlusion pressures generated dur-
ing the initial 100 ms of inspiration  (P0.1) or during an 
end-expiratory hold  (Pocc) are the most broadly appli-
cable measures as required functions are integrated 
in most ventilators.  P0.1 more closely relates to drive 
and  Pocc to effort, while both have reasonable to excel-
lent diagnostic accuracy for extremes of lung stress and 
diaphragmatic inspiratory effort [28–30]. Esophageal 
manometry remains the gold standard for evaluating 
respiratory effort but is not widely available [31]. Surface 
electromyography of respiratory muscles correlates rea-
sonably well with esophageal pressure-derived measures 
but remains experimental [32].

In summary, the importance of restoring and preserv-
ing spontaneous breathing in invasively ventilated criti-
cally ill patients is increasingly recognized. Although 
monitoring of inspiratory efforts may help to increase 
the safety of spontaneous breathing, it is not routinely 
implemented.

The concept of lung‑ and diaphragm‑protective sedation
The ideal sedative agent would ensure patient comfort 
while normalizing respiratory drive and effort for main-
taining diaphragm function. At the same time, it should 
be capable of avoiding high lung stress and strain or 
load-induced diaphragmatic injury. As shown in a recent 
physiological systematic review and in a vast number 
of preclinical and clinical investigations, the effects of 
sedatives on respiratory patterns vary substantially [5, 
6]. Thus, there may not be one standard sedative that is 
suitable on its own to ensure adequate respiratory drive 
and effort for the full bandwidth of respiratory patterns 
in critically ill patients.

The core concept of lung- and diaphragm-protec-
tive sedation is that both respiratory drive and patient 
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comfort are considered when choosing the sedative 
agent and its dose. Particularly in patients with inap-
propriately low or high inspiratory effort after the opti-
mization of ventilatory assistance at the prescribed 
sedation depth, the sedation strategy, including agent 
and dose, should be reconsidered. In addition, multi-
modal analgesia should be leveraged to minimize the 
need for high doses of sedatives in line with current 
guidelines [33]. Opioids mostly reduce the respira-
tory rate with limited effects on inspiratory effort [5, 
6, 34]. Utilization of short-acting opioids (e.g., sufenta-
nil, remifentanil) in invasively ventilated patients thus 
improves control over respiratory rate in spontaneously 
breathing patients while allowing rapid correction of 
overdoses to restore spontaneous breathing (Fig. 2).

Although supported by indirect evidence, there are 
currently no clinical trial data supporting any particu-
lar sedative strategies targeting respiratory drive and 
effort to improve patient-centered clinical outcomes. 
Lung- and diaphragm-protective sedation emphasizes 
individualized sedation strategies targeting safe ranges 
for both sedation depth and respiratory effort, thus 

rejecting a “one-sedative-fits-all” approach and calling 
for further research in this area.

Inhaled sedation preserves respiratory drive
Several factors can modulate respiratory drive, broadly 
classified as biochemical inputs (pH, carbon dioxide, 
oxygen), mechanical inputs (lung and chest wall mecha-
noreceptors), suprapontine inputs (pain, discomfort, 
anxiety, wakefulness), and possibly inflammatory inputs 
[35]. Respiratory drive can be roughly divided based 
on the most important stimuli: wakefulness, hypoxic, 
and hypercapnic drive. While sedation suppresses all of 
these factors to some extent, wakefulness and hypoxic 
drive are largely eliminated by sedation and supplemen-
tal oxygen, leaving arterial pH and carbon dioxide as the 
major physiological determinants of respiratory drive in 
sedated spontaneously breathing patients [36]. Although 
the effects of anesthetics on ventilation may be extrapo-
lated from perioperative clinical data, there is a scarcity 
of clinical investigations in critically ill patients [5].

Volatile anesthetics reduce tidal volumes and simul-
taneously increase respiratory rate in a dose-dependent 

Fig. 1 Pulmonary and hemodynamic effects of controlled ventilation and spontaneous breathing. During spontaneous breathing (lower left), 
contraction of the diaphragm will direct ventilation (blue arrows) to the dorsal lung regions where perfusion (orange arrows) is higher than in the 
ventral regions. This reduces the ventilation-perfusion mismatch which is more common in controlled ventilation (upper left). Controlled ventilation 
also increases intrathoracic pressures which will decrease venous return and cardiac output (upper right). Spontaneous breathing attenuates 
this deleterious hemodynamic effect by decreasing intrathoracic pressures during inspiration (lower right).  PAW, airway pressure generated 
by the ventilator;  PMUS, pressure generated by the respiratory muscles
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fashion [37–39], thus bearing the potential to reduce 
lung stress and strain in spontaneously breathing patients 
(Fig.  3). Notably, volatile anesthetics significantly sup-
press minute ventilation only at doses around and above 
1 MAC [6], which is higher than the approximate dose of 
0.5 MAC needed for intensive care sedation [40]. How-
ever, a pharmacodynamic study in 9 healthy volunteers 
demonstrated that sevoflurane and alfentanil synergisti-
cally decrease minute ventilation [41]. This suggests that 
the typical doses of volatile anesthetics used for sedation 
in intensive care settings are suitable to reduce excessive 
respiratory drive when opioids are co-administered.

On the other hand, volatile anesthetics better preserve 
respiratory drive than common intravenous alternatives. 
Proper functioning of chemosensitive brainstem neu-
rons, particularly those in the retrotrapezoid nucleus 
expressing Phox2b, plays a vital role in maintaining spon-
taneous breathing during sedation [42]. Interestingly, 

preclinical experiments showed that the volatile anes-
thetics isoflurane and sevoflurane enhance, whereas 
propofol suppresses the excitability of these neurons [43, 
44]. Consistently, both volatile anesthetics induce less 
respiratory depression than equipotent doses of propofol 
in animals and healthy human subjects [45–47]. Further 
studies with healthy volunteers showed that subanes-
thetic concentrations of isoflurane and sevoflurane (0.1 
minimum alveolar concentration (MAC)) significantly 
inhibit hypoxic drive but leave hypercapnic drive largely 
unaffected [48–51].

To date, the largest randomized clinical trial compar-
ing isoflurane to propofol sedation in critically ill patients 
–– the Sedaconda trial –– found that 50% of patients 
sedated with isoflurane were spontaneously breathing 
on day one versus 37% with propofol sedation (isoflu-
rane n = 150, propofol n = 151; odds ratio: 1.7 [95% CI: 
1.1, 2.6], p = 0·013) [40]. The corresponding subgroup 

Fig. 2 Concept of lung- and diaphragm-protective sedation
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analysis including 66 patients from a center with stand-
ards aiming at facilitation of early spontaneous breathing 
reported twice the probability of assisted spontaneous 
breathing within the first 20 h after randomization to iso-
flurane versus propofol (risk ratio: 2.4 [95% CI: 1.5, 3.7], 
p < 0.001) [52] (Fig. 4). One may argue that higher arterial 
carbon dioxide pressures resulting from increased dead 
space ventilation with volatile anesthetic administration 
devices or opioid sparing effects have contributed [40, 
53–57]. However, a mediation analysis supported that 
better preservation of spontaneous breathing was a direct 
drug effect of isoflurane independent of indirect effects 
mediated through increases in arterial carbon dioxide or 
a reduction in opioid utilization (mediator-adjusted risk 
ratio: 2.2 [95% CI: 1.4, 3.3], p < 0.001) [52].

In addition, retrospective studies and case series 
showed that spontaneous breathing activity is well-pre-
served under inhaled sedation. In a retrospective cohort 
study involving 38 patients who underwent continuous 
lateral rotational therapy, isoflurane sedation more often 
preserved spontaneous breathing efforts than did propo-
fol or midazolam [58]. In a case series of 62 patients with 
moderate to severe acute respiratory distress syndrome, 
spontaneous breathing efforts were preserved 91% of the 
time in prone position, despite deep sedation with sevo-
flurane [59]. Similarly, a high proportion of time spent 
at assisted spontaneous breathing (96%) was reported in 
15 prone-positioned COVID-19 patients sedated with a 
combination of sevoflurane and ketamine [60]. A com-
prehensive list of clinical studies reporting data on the 
effects of inhaled sedation with volatile anesthetics on 

spontaneous breathing in critically ill patients is pre-
sented in Table 1.

In essence, the mechanistic understanding and clinical 
evidence suggest that inhaled sedatives better preserve 
respiratory drive than the common intravenous alterna-
tives propofol and midazolam, even in a setting of mod-
erate to deep sedation requirements. At the same time, 
higher doses of volatile anesthetics are capable of reduc-
ing tidal volumes with compensatory increases in res-
piratory rate. This suggests that inhaled sedation might 
facilitate the titration of respiratory drive to maintain 
sufficient inspiratory effort at lower doses while reduc-
ing lung stress and strain at higher doses when clinically 
indicated. However, it remains to be determined whether 
volatile anesthetics are suitable for adequately controlling 
respiratory drive in critically ill patients with extremes of 
inspiratory effort, particularly in patients with acute res-
piratory failure.

Inhaled sedation may facilitate ventilator liberation
Diaphragm function is fundamental for liberation from 
the ventilator. A single day of diaphragmatic inactiv-
ity under mechanical ventilation induces significant 
diaphragm atrophy with rapid progression throughout 
longer ventilation periods [17–19]. After the initiation of 
invasive ventilation, sedation impedes the return of spon-
taneous breathing, with diaphragm activity returning in 
only half of sedated critically ill patients within two days 
[61]. The WEAN SAFE study showed in 5869 patients 
that deep sedation was independently associated with 
failure of liberation from the ventilator [62].

Fig. 3 Effects of volatile anesthetics on spontaneous ventilation. All modern volatile anesthetics exert similar dose-dependent effects on respiratory 
parameters, with decreases in tidal volume and concurrent increases in respiratory rate. Mean values are presented. MAC, minimum alveolar 
concentration. The data were extracted from previous studies performed in healthy volunteers and patients scheduled for surgery [37–39]
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Of note, the association between deep sedation and 
delayed ventilator liberation was shown for the most 
widely used intravenous sedatives, propofol and mida-
zolam, both of which typically suppress respiratory 
drive at deep sedation levels [5, 63]. Clinical trials have 
shown that sedatives with a low impact on respiratory 
drive, such as dexmedetomidine, may support liberation 
from the ventilator [64], presumably due to  improved 
patient-ventilator synchrony and better preservation of 
diaphragm activity with dexmedetomidine than with 
propofol [63, 65, 66]. Although other factors, such as 
wake-up times and neurocognitive recovery after the 
discontinuation of sedation surely contribute, evidence 
accumulates that sedation-induced impairment of spon-
taneous breathing efforts delays ventilator liberation. 
Better preservation of respiratory drive with volatile 
anesthetics than with propofol or midazolam sedation, 
as outlined in detail in the previous chapter, suggests that 

patients with marginal or no effort could benefit from 
sedation with volatile anesthetics [52]. However, those 
with excessive effort may benefit from the strong respira-
tory depressant effects of propofol [5, 63].

In addition to better control of respiratory drive and 
effort, volatile anesthetics are eliminated through exhala-
tion, independent of frequently impaired kidney and liver 
function in critically ill patients. The possibility of moni-
toring exhaled concentrations further allows for tight 
control of sedation depth and helps to predict awakening. 
Clinical trials confirmed that this translates into short 
wake-up times and early cognitive recovery upon ces-
sation, even after deep or prolonged periods of inhaled 
sedation [40, 67]. The Sedaconda trial revealed that the 
median wake-up was significantly faster after isoflurane 
than propofol sedation on day 2 (20 min [IQR 10–30] 
vs 30 min [11–120]; p = 0.001). Subgroup and post hoc 
analyses revealed that isoflurane sedation increases the 

Fig. 4 Percentage of spontaneously breathing patients over the first 20 h after randomization to isoflurane or propofol in a substudy 
of the Sedaconda trial. Numbers at the bottom of the figure represent the total patients included at the respective time points on the x-axis. 
The given risk ratio (RR) describes the effect of isoflurane versus propofol sedation on spontaneous breathing and is adjusted for sufentanil dose 
and arterial carbon dioxide partial pressure. 95%CI, 95% confidence interval. Reprinted under the terms of the Creative Commons Attribution License 
from [52]
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number of ICU- and delirium-free days, although a ben-
efit for ventilator liberation remains unclear [68, 69].

Taken together, inhaled sedation with volatile anesthet-
ics in combination with short-acting opioids may allow 
for more precise control of the respiratory pattern (i.e., 
effort and rate) and faster cognitive recovery upon dis-
continuation, with intriguing benefits for lung and dia-
phragm protection and early ventilator liberation.

Technical limitations of inhaled sedation
In the following, we focus on ventilation-related limita-
tions of inhaled sedation. A comprehensive list of advan-
tages and disadvantages, which were discussed in various 
recent review articles [70–74], are presented in Fig. 5.

Reflection systems allow the efficient administration 
of volatile anesthetics via open-circuit ventilators. The 
technical details of three available commercial systems 
have been described elsewhere (Sedaconda ACD-S and 

ACD-L by Sedana Medical, Danderyd, Sweden; and 
Mirus®, Medcaptain, Nijmegen, The Netherlands [75]). 
In short, volatile anesthetic is either directly injected 
into the inspired breathing gas or infused into a hollow 
rod called the evaporator [76, 77]. An anesthetic reflec-
tor, inserted between the Y-piece and the patient, adsorbs 
the expired anesthetic and releases it during subsequent 
inspiration in a process called reflection [78]. Approxi-
mately 90% of the volatile anesthetic is reflected under 
dry conditions [77], which is reduced to roughly 80% 
under the influences of humidity and carbon dioxide, 
meaning that approximately 20% is lost during exhala-
tion [79]. These losses are directly proportional to min-
ute ventilation, and large changes in minute ventilation 
may require adjustments in the anesthetic infusion rate 
to keep the end-tidal concentration stable. As a rule of 
thumb, an isoflurane infusion rate of 3 mL/h with a min-
ute ventilation of 6 L/min will yield a concentration of 

Table 1 Clinical studies reporting effects of inhaled sedation on spontaneous breathing in critically ill patients

RCT  Randomized Controlled Trial, ECMO Extra Corporal Membrane Oxygenation, ARDS Acute Respiratory Distress Syndrome, RR Risk Ratio

References Design Sedatives Duration N Percentage of 
spontaneously 
breathing patients

Specifics

Soukup [57] RCT Sevoflurane vs. propofol/
midazolam

 > 48 h
Max: 183 h

79 n/a Reduced time to spon-
taneous breathing 
after discontinuation: 
26 vs. 375 min, p < 0.001

Bansbach [60] Retrospective case series Sevoflurane + esketamine Mean: 174 h 15 100% COVID-19 ARDS, spon-
taneous breathing dur-
ing 96% of prone position 
time

Müller-Wirtz [88] Retrospective cohort 
study

Isoflurane vs. propofol  > 48 h
Max: 179 h

64 n/a Isoflurane tripled 
the probability 
of increased respiratory 
drive after discontinuing 
prolonged sedation:
31 vs. 12%; RR: 2.9 [95%CI 
1.3, 6.5], p = 0.010

Müller-Wirtz [52] Subgroup of RCT (Meiser 
2021)

Isoflurane vs. propofol First 20 h 
after randomi-
zation

66 94 vs. 58% Isoflurane doubled 
the probability of sponta-
neous breathing:
RR: 2.2 [95%CI 1.4, 3.3], 
p < 0.001

Meiser [40] RCT Isoflurane vs. propofol Max: 54 h 301 50 vs. 37% Large RCT reporting 
differences in sponta-
neous breathing rates 
across multiple centers

Heider [59] Retrospective case series Sevoflurane  > 24 h
Mean: 70 h

62 100% Severe ARDS, spontane-
ous breathing during 91% 
of prone position time

Meiser [58] Retrospective cohort 
study

Isoflurane vs. propofol/
midazolam

 > 24 h 38 90 vs. 16% Severe ARDS, continuous 
lateral rotation

Meiser [87] Retrospective case series Isoflurane 24 h 6 100% Severe ARDS, ECMO 
therapy
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0.5 Vol% in steady state (3 divided by 6 equals 0.5). One 
commercial device (Mirus) automatically adjusts the 
anesthetic infusion rate to maintain the end-tidal concen-
tration at a set target value [76], although the end-tidal 
concentration does not correlate well with the clinically 
assessed sedation depth.

All reflectors increase dead space ventilation, first 
because of their internal volume (50 mL for ACD-S, 100 
mL for ACD-L and Mirus) and second because of partial 
carbon dioxide reflection [80]. The additional increase 
in tidal volume needed to overcome this effect has been 
called reflective dead space and can reach 35–40 mL with 
a Sedaconda ACD-L [80–82] or 25 mL with Sedaconda 
ACD-S and Mirus devices [80, 81]. In laboratory stud-
ies, when using dry conditions without volatile anesthet-
ics, the extent of carbon dioxide reflection may be highly 
overestimated, which has led some researchers to caution 
against the use of these devices in ARDS patients [54, 83]. 
However, in a substudy of the SEDACONDA trial, the 
use of the larger Sedaconda ACD-L was only associated 
with slightly greater arterial carbon dioxide partial pres-
sures (3.4 mmHg), respiratory rates (1.2 bpm) and tidal 
volumes (44 mL) than ventilation with heat and mois-
ture exchangers with internal volumes of 35 mL, whereas 
no difference was detected between ventilation with 
the smaller Sedaconda ACD-S and heat and moisture 
exchangers [53] (Fig. 6).

According to their technical specifications, Sedaconda 
ACD-S and Mirus are limited to use with tidal volumes 
of at least 200 mL, and Sedaconda ACD-L with tidal vol-
umes of at least 300 mL. All reflection systems comprise 
passive humidification with low moisture loss (approxi-
mately 5  mg of water per liter of breathing gas) [84]. 
They cannot be combined with active humidification. 

Nebulizers can be connected between the reflector and 
the patient; however, some medications may bind to the 
reflector and increase resistance, in which case the reflec-
tor needs to be exchanged.

The use of anesthetic reflectors in patients undergoing 
extracorporeal membrane oxygenation is possible under 
consideration of the technique’s inherent limitations [85, 
86]. With drastically reduced minute ventilation, volatile 
anesthetic administration rates must be similarly reduced 
to avoid overdosing [87]. If the tidal volume is less than 
100 mL, gas monitoring of the end-tidal concentration 
will be inaccurate, and the sedation depth can only be 
monitored clinically. Modern membrane oxygenators 
made of polymethyl-pentene are not permeable to vola-
tile anesthetics. Thus, volatile anesthetics can currently 
only be administered and eliminated via the lung.

Conclusions
Safe spontaneous breathing efforts are crucial for pre-
venting diaphragm disuse atrophy in invasively ventilated 
critically ill patients. Clearly, the approach to sedation 
in the ICU should move from a “one-sedative-fits-all” 
model towards an individualized strategy that considers 
the patient’s respiratory drive and effort as a means for 
achieving lung- and diaphragm-protective sedation and 
ventilation.

Inhaled sedation with volatile anesthetics compared to 
common intravenous alternatives offers superior preser-
vation of respiratory drive with the potential to prevent 
diaphragm disuse atrophy. Concurrently, higher doses 
of volatile anesthetics reduce  the size of spontaneously 
generated tidal volumes, presenting an opportunity to 
mitigate lung stress and strain. Inhaled sedation may thus 

Fig. 5 Advantages and disadvantages of inhaled sedation in the ICU. Graphic design by Marco Rosetti 
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allow for titrating respiratory drive to facilitate lung- and 
diaphragm-protective sedation and help to expedite lib-
eration from the ventilator.

Further research is needed to understand the pre-
cise role of inhaled sedation with volatile anesthetics for 
modulation of respiratory drive and effort and how these 
effects translate into clinical outcomes.
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