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Abstract 

Background  Impaired microcirculation is a cornerstone of sepsis development and leads to reduced tissue oxygena-
tion, influenced by fluid and catecholamine administration during treatment. Hyperspectral imaging (HSI) is a non-
invasive bedside technology for visualizing physicochemical tissue characteristics. Machine learning (ML) for skin 
HSI might offer an automated approach for bedside microcirculation assessment, providing an individualized tissue 
fingerprint of critically ill patients in intensive care. The study aimed to determine if machine learning could be utilized 
to automatically identify regions of interest (ROIs) in the hand, thereby distinguishing between healthy individuals 
and critically ill patients with sepsis using HSI.

Methods  HSI raw data from 75 critically ill sepsis patients and from 30 healthy controls were recorded using TIVITA® 
Tissue System and analyzed using an automated ML approach. Additionally, patients were divided into two groups 
based on their SOFA scores for further subanalysis: less severely ill (SOFA ≤ 5) and severely ill (SOFA > 5). The analysis 
of the HSI raw data was fully-automated using MediaPipe for ROI detection (palm and fingertips) and feature extrac-
tion. HSI Features were statistically analyzed to highlight relevant wavelength combinations using Mann–Whitney-U 
test and Benjamini, Krieger, and Yekutieli (BKY) correction. In addition, Random Forest models were trained using 
bootstrapping, and feature importances were determined to gain insights regarding the wavelength importance 
for a model decision.

Results  An automated pipeline for generating ROIs and HSI feature extraction was successfully established. HSI raw 
data analysis accurately distinguished healthy controls from sepsis patients. Wavelengths at the fingertips differed 
in the ranges of 575–695 nm and 840–1000 nm. For the palm, significant differences were observed in the range 
of 925–1000 nm. Feature importance plots indicated relevant information in the same wavelength ranges. Combining 
palm and fingertip analysis provided the highest reliability, with an AUC of 0.92 to distinguish between sepsis patients 
and healthy controls.
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Introduction
Sepsis and septic shock persist as formidable, life-
threatening conditions where the survival of critically 
ill patients hinges upon effective hemodynamic therapy 
[1, 2]. Hemodynamic therapy’s primary objective is 
to ensure tissue oxygen supply to sustain metabolic 
functions [3]. Despite extensive research, bedside 
microcirculation monitoring technology has not yet been 
routinely integrated into clinical practice in intensive 
care medicine [3–5]. The future challenge revolves 
around facilitating non-invasive, straightforward, and 
reliable bedside assessment, along with quantitative 
analysis of the microcirculation to enable personalized 
tissue perfusion guided therapy in critically ill patients 
[3]. To bridge the chasm between research and 
clinical application in microcirculation monitoring, 
machine learning (ML)-based analysis has emerged 
as a compelling avenue [1, 6]. Hyperspectral Imaging 
(HSI), a non-invasive optical imaging technology offers 
great potential for automated image processing and 
data analysis to efficiently distinguish between different 
tissue types or changes in tissue condition using artificial 
intelligence [7, 8]. Few studies have examined skin HSI 
in critical care or perioperative settings, but the results 
suggest that bedside skin HSI technology may expand 
the possibilities for microcirculation monitoring in the 
future [9–12]. Initial studies on skin HSI in intensive 
care medicine showed that HSI can clearly distinguish 
septic patients from healthy volunteers [9, 11]. HSI can 
provide spatially visualized information on the quality of 
oxygenation, adequacy of perfusion and water content of 
the tissue area under investigation [8, 13–15]. In addition 
to its ability to detect clinically relevant microcirculatory 
disorders, initial clinical and experimental studies have 
suggested that HSI monitoring may provide feedback on 
tissue perfusion and oxygenation during resuscitation 
therapy, including detection of adverse fluid and 
vasopressor effects [9–12, 16, 17].

Our group previously investigated the association 
between the severity of organ dysfunction, as assessed 
by the Sequential Organ Failure Assessment (SOFA) 
scoring, and palmar skin HSI in critically ill COVID-19 
patients in a monocentric observational study. Based 
on the HSI parameters provided by the TIVITA® Tissue 
camera system, the most prominent observations were 
the persistent reduction in oxygenation parameters 

and evidence of increased tissue water content. Further 
regression analyses showed a relationship between 
HSI perfusion and oxygenation parameters with organ 
dysfunction severity as well as associations to vasopressor 
support, lactate levels and arterial oxygen saturation [12].

Studier-Fischer et al. have previously demonstrated the 
potential of automated organ recognition using organ-
specific HSI patterns or spectral fingerprints in animal 
experiments using raw spectral data acquired with the 
TIVITA® device and machine learning analysis [18].

We hypothesized that the potential of the HSI 
technology used to monitor skin microcirculation 
in critical care has not yet been fully exploited. The 
available raw spectral data on which the algorithms for 
the TIVITA® parameters are based may contain clinically 
relevant but methodologically underutilized information, 
which could further improve HSI applicability as 
microcirculation monitoring. This study was conducted 
as a proof of concept to investigate whether automatic 
identification of regions of interest (ROIs) in the hand 
and machine learning analysis of raw spectral data could 
be used to distinguish between healthy controls and 
patients with sepsis.

Material and methods
This monocentric, prospective observational study was 
designed during the COVID-19 pandemic to include 
critically ill patients with COVID-19 [12]. To include 
septic, critically ill patients who were not affected by 
COVID-19 and a healthy control group, the study pro-
tocol was amended twice during the investigation (Eth-
ics Committee number: 20-9242-BO, with amendments 
on September 2 and September 23, 2021). Figure 1 pro-
vides a structured overview of the study process. The 
study adhered to the principles outlined in the Declara-
tion of Helsinki and received approval from the Ethics 
Committee of the Medical Faculty of the University of 
Duisburg-Essen. It was registered in the German Clinical 
Trials Registry (DRKS-ID: DRKS00022441). Recruitment 
spanned from April 2020 to July 2023 at the intensive 
care unit of the Department of Anesthesiology and Inten-
sive Care Medicine, University Hospital Essen, University 
of Duisburg-Essen.

Skin HSI measurements adhered to standardized con-
ditions, conducted within the first 24 h after ICU admis-
sion. Further details on measurements can be found in 

Conclusion  Based on this proof of concept, the integration of automated and standardized ROIs along with auto-
mated skin HSI analyzes, was able to differentiate between healthy individuals and patients with sepsis. This approach 
offers a reliable and objective assessment of skin microcirculation, facilitating the rapid identification of critically ill 
patients.
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Fig. 1  HSI measurements of the inside of the patient’s hand are carried out within 24 h after admission to ICU. At the same time, demographic data, 
clinical data and the SOFA score are recorded in order to assess the patient’s state of health. Automatic ROI detection and a machine learning-based 
analysis of the raw HSI data were performed
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Kuhlmann et  al. [12]. All groups were measured under 
the same environmental conditions and room lighting 
was dimmed according to the system’s integrated stray 
light warning system. In healthy volunteers, a single skin 
HSI examination of the palm was performed analogous to 
the examinations in critically ill patients. The SOFA score 
(SOFA) was modified to consider sedated patients in the 
ICU [19]. To reflect the assessment of disease severity 
in ARDS patients undergoing extracorporeal membrane 
oxygenation (ECMO) treatment, we have added an addi-
tional point to the SOFA score in the lung region in the 
presence of ECMO therapy, increasing the theoretical 
maximum score from 24 to 25 [12].

Hospital setting and patients recruitment
In an initial recruitment phase, we were able to include 
52 seriously ill septic COVID-19 patients. Most of the 
critically ill COVID-19 patients required venovenous 
ECMO therapy with a high SOFA score. However, due 
to two patients not receiving HSI within the initial 24 h 
of ICU admission, the sample size for this secondary 
analysis was adjusted to 50 patients with COVID-
19. A detailed description of the COVID-19 patients 
is provided by Kuhlmann et  al. [12]. During a second 
recruitment phase, we were able to include 25 additional 
patients with sepsis without COVID-19. In addition, 30 
healthy controls were included (see Fig. 1). The number 
of patients with sepsis and the healthy control group for 
the secondary analysis was chosen based on feasibility 
and practicability.

All patients or their legal guardians gave their consent 
to participate in the study. In cases where patients 
without legal guardians were unable to give consent, an 
independent medical advisor agreed to their participation 
in the study, following local institutional regulations. 
After their recovery, patients who were previously 
unable to give consent were asked to participate in the 
study. Exclusion criteria were patient refusal, expected 
discharge from the ICU within 72  h of admission, 
pregnancy, a palliative care approach or imminent death 
of the patient. In addition, our control cohort consisted of 
hospital staff from our department, all of whom willingly 
participated in the study.

Hyperspectral imaging and feature extraction
HSI was performed using the CE marked TIVITA® 
Tissue System (Diaspective Vision GmbH, Am Salzhaff, 
Germany), which is a medical Class I product. The 
operating principle, technical specifications and data 
analysis of the HSI camera system are explained in detail 
by Holmer et al. [13, 15]. The system was used according 
to producer operating instructions.

Additional to a Red–Green–Blue (RGB) image, the 
camera system records a spectrum for each pixel, 
covering wavelengths from 500 to 1000  nm with a 
spectral resolution of 5  nm, within a spatial resolution 
of 640 × 480 pixels, resulting in a three-dimensional data 
cube with 100 measured wavelengths per pixel. From 
this hyperspectral data cube, a set of four parameters is 
generated by processing the spectrum within specified 
wavelength ranges, utilizing only selected spectral 
information. Each parameter is represented as a two-
dimensional image [13, 14].

For this study we developed an approach to automati-
cally detect and localize regions of interest (ROIs) in RGB 
images. After this first step, we seamlessly extract fea-
tures from the raw HSI data by utilizing the ROIs identi-
fied in the RGB image. This process involves a seamless 
transfer of information from the RGB image into the HSI 
data cube, as shown in Fig. 2.

To identify the anatomical landmarks, MediaPipe’s 
[20] landmark detection was used. We defined circles 
in the fingertips and palm as representative ROIs. The 
corresponding anatomical reference points are listed in 
Table 1.

The generated landmarks enable the automatic genera-
tion of ROIs with any combination of reference points. 
For the fingertips, the detected landmarks were defined 
as center points and the radius of the ROI was set to 10 
pixels. For the palm, the center point was determined 
from the triangle of the wrist and the two metacar-
pophalangeal joint landmarks, and the radius was set 
to 75 pixels. To exclude pixels in the ROIs that contain 
interfering factors such as patches or oxygen clamps, a 
color-based determination was applied and only pixels 
that capture the skin were considered. Based on the gen-
erated ROIs, specific features such as the mean value and 
confidence intervals across all pixels were calculated for 
each wavelength, resulting in a corresponding spectrum. 
Additional to the fingertips and palm ROIs, by combining 
the fingertips and the palm, we obtained an ROI with a 
total of 200 wavelengths (shown in Fig. 3).

Statistical methods
Statistical analyses were performed using Python 3.9.16 
and packages SciPy (version 1.10.0) and Scikit-learn [21, 
22]. BioRender.com was used to create schematic fig-
ures. The mean was used to analyze the distribution of 
the spectral data of the ROI. Normal assumption was 
checked using the Shapiro–Wilk test. For data with nor-
mal assumption, the mean and standard deviation were 
reported. Otherwise, the median value with interquar-
tile range (IQR) was used. In addition, to check whether 
the absorption spectra between the patient groups 
differ significantly, the Mann–Whitney-U Test was 
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performed. For a p-value below 0.05, it was assumed that 
the spectra differed significantly at these wavelengths. 
To control for false discovery rate due to multiple com-
parisons, the p-values obtained from the Mann–Whit-
ney-U Test were further adjusted using the Benjamini, 
Krieger, and Yekutieli (BKY) approach, as implemented 
in the statsmodels package [23]. The results are visually 
depicted in bar plots, indicating significant (yes) and non-
significant (no) differences. Difference plots were created 
by calculating the difference in absorption between the 

Fig. 2  A Overview of the methodical procedure. Landmarks are detected on RGB hand images as reference points using the MediaPipe network. 
These reference points are utilized to generate ROI on the hand. The positions of the ROIs are transferred into the HSI cube, and the average 
spectrum of pixels is computed. This spectrum can be analyzed and utilized for machine learning inquiries. B Examples of hands with highlighted 
ROIs for palm and fingertips across different patients

Table 1  The anatomical landmarks for Region of Interest 
generation by Mediapipe for the palm and fingertips

Region of interest Landmarks

Fingertips Fingertips of the pinky, ring, middle, and index 
finger

Palm Wrist, metacarpophalangeal joint (MCP) of the index 
finger and the pinky
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mean spectra of the patient groups for each wavelength. 
These differences were then represented as bar plots.

Machine learning
For the classification of the disease state a Random 
Forest (RF) Classifier was used. The model default 
hyperparameters were used, except for the maximum 
depth of the trees which was set to 30. The model 
training was performed using Leave-One-Out cross-
validation (CV), resulting in a total of 104 classifiers, 
which were then combined into an ensemble model. 
This ensemble model combines the predictions from 
the different CV runs using the mean, to obtain a robust 
estimate of model performance. The metrics used for 
evaluation were area under curve (AUC), F1-score, and 
95%-confidence interval. The F1-score is based on the 
associated precision and sensitivity of the prediction 
model, where the score can range between 0 and 1. It 
is particularly suitable in the case of imbalanced data 
sets [24]. The model performance was visualized by 
a receiver operating characteristic (ROC) curve and 
feature importance was determined by Mean Decrease in 
Impurity (MDI) to identify relevant wavelengths for the 
model decision.

Patient groups
Firstly, we investigated whether the spectral data pattern 
could be used to differentiate between healthy controls 
and septic patients. For this purpose, the data of all septic 
patients (n = 75) were summarized and compared with 
healthy controls (n = 30). To investigate whether the raw 
spectra allow conclusions regarding the disease severity, 
we arbitrarily defined two groups post hoc based on their 
SOFA Score: less severely ill (SOFA ≤ 5) and severely ill 
(SOFA > 5), each compared to the healthy control group 
(see Table 2).

Results
Cohort characteristics
We analyzed the skin HSI images from 75 patients with 
sepsis and from 30 healthy controls. The characteristics 
of the 105 patients (age: 60 ± 17; female: 39%) are 
summarized in Table 2.

Disparities in HSI spectral raw data between healthy 
individuals and patients with sepsis
The spectral pattern of healthy controls differs from that 
of patients with sepsis, as can be seen in the difference 
plot of Fig. 4.

For Fingertip ROI, it was shown that in the range of 
575–695 nm, a significantly lower absorption was found 

Fig. 3  Each ROI covers wavelengths from 500 to 1000 nm with a spectral resolution of 5 nm, resulting in 100 measured wavelengths. The 
combination of the two ROIs results in a spectrum of 200 wavelengths
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in patients with sepsis compared to the healthy con-
trol. For the palm, there are no significant differences 
between these spectra in this wavelength range. In con-
trast, the spectra of wavelengths from 925 to 1000 nm 
for the Palm ROI and from 840 to 1000  nm for the 
Fingertip ROI differ significantly. Comparing the two 
ROIs, the spectra of the healthy controls and patients 

with sepsis differ at the fingertips for more wavelengths 
overall. In addition, the spectrum of the healthy con-
trols shows significantly lower absorptions at wave-
lengths between 900 and 1000 nm for the fingertips as 
ROI compared to the palm. The spectral characteristics 
of the healthy controls and the patients with sepsis are 
shown in Fig. 4.

Table 2  Patient characteristics

Sex, age, SOFA score and ECMO status of all included patients (n = 105). Values are expressed as * mean (± standard deviation)

Patients with sepsis Healthy controls

All SOFA ≤ 5 SOFA > 5

Number of patients n = 75 n = 13 n = 62 n = 30

Sex [female] 25/75 (33%) 9/13 (69%) 16/62 (26%) 16/30 (53%)

Age, years 59.4 (± 13.1)* 60.5 (± 12.2)* 58.2 (± 13.2)* 48.6 (± 11.8)*

SOFA-Score 11.0 (± 4.5)* 3.3 (± 1.1)* 12.6 (± 3.0)* –

ECMO [yes] 45/75 (60%) 1/13 (8%) 44/62 (71%) –

Fig. 4  Mean Spectra with 95% Confidence intervals for control and for septic patients. Comparison of the spectra from healthy control (dark 
blue) and patients with sepsis (pink) for two distinct ROI: palm (left) and fingertips (right). In the middle, the difference between sepsis and control 
for each wavelength is shown. The colors in the difference plots are chosen such that the color indicates which spectrum (with the same 
color) exhibits higher absorption. Bar plots positioned below highlight significant differences between the spectral distributions of the groups, 
showcasing the discriminative spectral bands. Differences were determined to be statistically significant using the Mann–Whitney-U Test, 
with a p-value below 0.05. Test correction was performed using the BKY approach
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Severely ill sepsis patients show greater HSI spectral 
differences compared to healthy individuals 
than less severely ill patients
The spectra of the HSI captured from the palm and 
the fingertips from both healthy control subjects and 
patients diagnosed with sepsis, categorized by disease 
severity is presented in Fig. 5.

The confidence intervals of the spectra of patients 
with less severe organ dysfunction differed from those 
of healthy controls in the palm area at 590–685 nm and 
for the fingertips at 845–1000 nm. In contrast, the con-
fidence intervals for the sepsis patients with more severe 
organ dysfunction differed from the healthy controls 
in the palm of the hand at 925–1000 nm and at the fin-
gertips of 580–700 nm, and of 845–1000 nm. There are 

Fig. 5  Mean Spectra Comparison with 95% Confidence Intervals. Comparison of the spectra for the palm and fingertips across three distinct 
patient groups: SOFA-score: healthy control (black), less severe organ dysfunction = SOFA ≤ 5 (dark blue) and severe organ dysfunction = SOFA > 5 
(red). Below the spectra, difference plots between the patients with sepsis and the healthy controls are shown as bar plots, as well as bar plots 
highlight significant differences between the spectral distributions of the groups, showcasing the discriminative spectral bands. Differences 
were determined to be statistically significant using the Mann–Whitney-U Test, with a p-value below 0.05. Test correction was performed using 
the BKY approach. The colors in the difference plots are chosen such that the color indicates which spectrum (with the same color) exhibits higher 
absorption
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no significant differences between the spectra of less 
severely organ dysfunction and severely organ dysfunc-
tion patients.

HSI enables reliable differentiation between critically ill 
patients with sepsis and healthy individuals
Assessing the model’s capability to discriminate between 
the healthy control and septic patients, ROC curves were 
generated for all three ROIs (Fig. 6).

Comparable AUC values were found for the palm 
(AUC = 0.86, CI = 0.82;0.93) and fingertips ROIs 
(AUC = 0.86, CI = 0.82;0.94). The palm demonstrated a 
better F1 score than the fingertips (F1 = 0.94 vs.0.92). 
The combination of palm and finger showed the most 
promising results (AUC = 0.92, CI = 0.87;0.97, F1 = 0.92). 
Regarding the feature importance plots, in the case of the 
combined ROI, the mean of the relevancies for the palm 
wavelengths and fingertips wavelengths was calculated. 
The analysis of the feature importance diagrams shows 
that the most important wavelengths to distinguish 
between septic patients and healthy controls compared 
to all wavelengths are the same for all ROIs, covering 
the wavelengths from 960 to 1000  nm. In addition, the 
wavelengths from 560 to 590  nm were also important 
for the prediction for both the palm and the fingertips. 
This is consistent with the significant differences in the 
spectral properties shown in Fig. 4.

The classification of disease severity showed the 
highest performance in the combined ROI, particularly 
for control vs. severe organ dysfunction (AUC = 0.92, 
CI = 0.87;0.94, F1 = 0.91). The palm region also performed 
well for this classification (AUC = 0.90, CI = 0.87;0.95, 
F1 = 0.88). Fingertips had moderate performance for 

control vs. less severe (AUC = 0.72, CI = 0.47;0.83, 
F1 = 0.60) and severe organ dysfunction (AUC = 0.80, 
CI = 0.76;0.91, F1 = 0.71). For all models the performance 
improved if both ROI were combined. However, 
distinguishing less severe vs. severe organ dysfunction 
was challenging across all regions, with lower scores, 
particularly for the palm (AUC = 0.45; CI = 0.40;0.63, 
F1 = 0.80) and fingertips (AUC = 0.45, CI = 0.35;0.58, 
F1 = 0.74).

Discussion
To the best of our knowledge, we present here the 
first results of an automated extraction of skin HSI 
raw data from critically ill patients with sepsis. The 
machine learning-based analysis of these data allowed 
a clear distinction between patients suffering from 
sepsis and a healthy control group. The analysis of the 
feature importance diagrams shows that in all ROIs the 
differences in the wavelengths from 550 to 600  nm and 
from 960 nm most reliably discriminate between patients 
with sepsis and healthy controls.

Despite extensive research on monitoring technologies, 
bedside microcirculatory monitoring has yet to be 
routinely integrated into clinical practice in critical 
care medicine. Our findings for automated skin HSI 
analysis may be part of the solution for the development 
of comprehensive, automated, operator-independent, 
and objectively assessable bedside microcirculatory 
monitoring as advocated by Duranteau et al. [3].

Skin mottling and capillary refill time are widely 
recognized clinical indicators of shock, highlighting 
the skin’s relevance as an important organ for research 
in microcirculatory monitoring [5, 25–28]. Skin HSI 

Fig. 6  Classification results of healthy control and septic patients for palm (dark blue), fingertips (grey) and combination of both (pink) ROI. The 
ROC curves of the three ROIs are shown on the left, and on the right are the feature importance plots showing which wavelengths were relevant 
for the classification. For the combined ROI, the mean feature importance of palm wavelengths and fingertips wavelengths was calculated
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is a novel non-invasive optical imaging technology 
for microcirculatory monitoring in critical care. HSI 
generates characteristic optical tissue patterns, known 
as spectral signatures or fingerprints, that allow 
qualitative and quantitative differentiation between 
tissue types and changes in tissue composition, including 
pathological changes [8, 13–15]. HSI shares some 
technological capabilities and limitations of near infrared 
spectroscopy (NIRS), which has been extensively studied 
as a microcirculatory monitoring tool. Besides the use 
of different spectral ranges between NIRS and HSI, a 
major difference is that NIRS is continuous whereas 
HSI represents an intermittent optical monitoring 
method [29, 30]. The use of ML to analyze HSI data is 
growing, improving diagnostic accuracy and disease 
classification in a variety of medical fields, including 
gastric, brain, and skin cancer detection, as well as eye 
disease or image-guided surgery [7, 31–33]. In contrast 
to other microcirculatory monitoring methods such 
as sublingual video microscopy (SVM) [3], HSI does 
not allow visualization and direct flow measurement 
in the microcirculation. HSI, on the other hand, 
provides detailed spatial information about the oxygen 
supply and tissue perfusion as well as the tissue water 
content in the targeted area [8, 13–15]. In addition, 
an HSI measurement can be carried out quickly and 
provides a reliable and objective assessment of the 
microcirculation within a few seconds, particularly when 
caring for critically ill patients in intensive care units and 
emergency departments. Previous studies by Dietrich 
et al., Kazune et al. and Kuhlmann et al. demonstrate that 
HSI can differentiate between healthy controls and septic 
patients, revealing a characteristic heterogeneous skin 
oxygenation pattern in septic patients. Additionally, HSI 
has been proposed to provide microcirculatory feedback 
to access macrocirculatory measures and detect adverse 
side effects of vasopressor and fluid therapy [9, 11, 12, 16, 
17].

One hypothesis for this proof of concept study was that 
by developing an automated image analysis pipeline with 
ML analysis using raw spectral data from the TIVITA 
camera system, more detailed information about relevant 
spectral wavelengths ranges could be obtained that would 
allow us to more specifically describe a "septic" spectral 
signature of skin HSI at the palm or/and fingertips.

There is currently no consensus on the appropriate 
anatomical site for skin HSI studies to assess 
microcirculatory function. The palm as well as the 
fingertips have been previously proposed by Dietrich 
et  al. and Kuhlmann et  al. to possess primarily clinical 
advantages as evaluation sites in critical ill patients [9, 
12]. Contrary, Kazune et al. performed HSI examinations 
above the kneecap to determine correlations of HSI with 

mottling score [11, 16]. The observed differences in the 
spectral profiles between the palm and the fingertips 
in our study indicate that each measuring site has 
specific characteristics that must be considered for data 
interpretation. A key finding of our machine learning 
analysis is that the combined evaluation of the palm 
and fingertips is the most meaningful in terms of the 
appropriate measurement location. This also supports 
the relevance of an automated image analysis that 
allows standardized and combined data analysis of two 
measurement sites.

We observed an overlap of spectral profiles between 
septic patients and healthy controls for both measuring 
sites. Similar overlaps between pathological values and 
healthy control values are reported for NIRS parameters 
in sepsis too [5, 34]. This indicates that the normal 
value ranges for skin HSI need to be further specified in 
follow-up studies. In addition to the evaluation of "static" 
parameters, this will include the dynamic assessment 
of changes in the spectral profile during microvascular 
provocation tests, such as vascular occlusion tests, or 
during hemodynamic treatment of critically ill patients 
using bedside skin HSI.

Interestingly our analysis demonstrated the spectral 
profiles and relevant wavelength ranges changed 
with increasing disease severity and depending on 
the measurement site. Patients with sepsis displayed 
a spectral profile that is indicative of impaired tissue 
oxygenation combined with an increase in tissue water 
content. Specifically, we found the highest number of 
significantly different wavelengths (580–700  nm and 
845–1000  nm) in more severely ill patients (SOFA 
score > 5) when measured at the fingertips. In the future, 
a fully automated skin HSI analysis could serve as a 
bedside tool in fluid therapy management by integrating 
the quantification of changes in tissue water content 
tissue edema combined with perfusion/oxygenation 
variables, thus preventing detrimental effects of fluid 
therapy.

It should be noted that the results shown in this study 
are just the beginning of research into machine learning-
based HSI analysis at the point of care using the raw 
spectrum. We hypothesize that with a significant increase 
in the number of cases and a simultaneous increase in the 
number of diseases, further effects between wavelengths 
may occur, which could not yet be investigated in the 
context of this study. This can be seen in the approach 
through the feature importance of the machine learning 
models. Even if not all wavelengths were significantly 
different in the statistical analysis, these non-significant 
wavelengths still have an albeit smaller significance for 
the decision of the model. This potentially provides 
greater scope for differentiating between disease groups 
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when focusing on using the full HSI spectrum [35]. 
Another future methodological opportunity lies in the 
use of deep learning techniques. In our study applying ML 
to HSI data from septic and healthy controls, we found 
that traditional models such as Random Forest are just 
the beginning. While those models have shown promise 
in dealing with the complexity of HSI data through a 
preceding feature extraction, the high dimensionality 
inherent in HSI images presents an opportunity for 
more advanced techniques. Deep learning methods, 
particularly convolutional neural networks (CNNs), 
could significantly improve classification tasks due 
to their ability to automatically extract and learn 
complex features from high-dimensional data [7]. These 
techniques have already been used in combination with 
HSI data for other medical research questions, such as 
Seidlitz et al. [35] and Maktabi et al. [36], demonstrating 
their potential in various applications [7]. However, it is 
important to note that deep learning approaches require 
larger sample sizes to achieve optimal performance 
and generalisability. Therefore, the exploration of deep 
learning approaches is crucial to advance the analysis and 
interpretation of HSI data in clinical applications.

In addition, HSI data can be seamlessly accessed and 
exchanged using the raw data format or data standards 
like DICOM. This facilitates direct transfer and enables 
immediate access for data analysis through ML pipelines 
like the presented proof of concept. This potentially 
would make HSI analysis results available to clinicians 
immediately after creation and in near real-time. Also, 
recent developments of more leight-weighted and smaller 
HSI devices [37, 38], further drive wider applicability 
and clinical application. At the same time, the setup 
described with the potential technical enhancements also 
would enable a more efficient and routine friendly HSI 
monitoring of patients.

A comprehensive evaluation of microcirculatory 
alterations in critically ill should conceptually include 
the evaluation of microcirculatory flow and functional 
capillary density together with tissue oxygenation 
monitoring. Hilty et  al. used a machine learning-
based analysis of the microcirculation of the tongue 
to distinguish between severely ill COVID-19 patients 
and healthy volunteers in a study with 157 patients 
[6]. ML analysis of SVM image data enabled reliable 
differentiation between healthy controls and COVID-
19 patients (AUC 0.75) [6]. By combining data from the 
palm and fingertip, we achieved reliable differentiation 
between sepsis patients and healthy controls, with 
an AUC of 0.92. The wavelengths 970–1000  nm 
(palm) and 960–1000  nm (fingertip) were essential 
for feature importance and machine learning-based 
discrimination. An important next step would therefore 

be a combined ML-based investigation of flow-based 
microcirculation monitoring such as SVM together 
with optical monitoring with skin HSI and assessment 
of tissue oxygenation quality and changes in tissue 
water content.

The values of different devices for HSI have not yet 
been compared and standardized spectral ranges as 
well as uniform image acquisition technologies and 
analysis software algorithms are lacking. In particular, 
the robustness and generalisability of HSI data is still 
an unresolved problem [8, 9, 12, 18]. This complicates 
comparability and leads to inconsistent results in 
different HSI studies [8, 9, 16–18]. The automatic 
generation of ROI and HSI analysis presented here 
enhances the consistency and technical reliability of the 
overall assessment process. Automated image analysis 
and artificial intelligence could reduce observer bias 
and help guide microcirculation-targeted diagnostic 
and therapeutic decisions. This is further supported by 
the proposed pipeline, which enhances robustness by 
excluding potential sources of noise, such as adhesive 
bandages or oxygen patches within the ROI. This method 
could facilitate the comparison of HSI data between 
different disease entities and patient cohorts.

Several limitations should be noted when interpreting 
our results. Although no patients with dark skin 
color participated in our study, it is important to 
acknowledge the possible influence of this factor on HSI 
measurements as a limitation. In addition, it should be 
noted that individual skin conditions, such as differences 
in epidermal thickness, can influence the results obtained 
by skin HSI analysis. For this proof of concept approach, 
we did not analyze in depth other factors influencing 
microcirculation such as ECMO, catecholamines or fluid 
therapy, nor did we analyze which SOFA subcategory 
has the strongest influence on skin HSI measurements. 
Additionally, patient-specific factors like age, gender 
and preexisting health conditions which could affect 
microcirculation, were also not investigated. All patients 
included in this study were suffering from sepsis. For 
this proof of concept approach, we did not investigate 
whether there were differences in the skin HSI profile 
between patients with and without Covid-19-associated 
sepsis. Another limitation of the study is that the HSI 
dataset used in this study is comparably small. To 
integrate the presented proof of concept methods into 
clinical applications, larger and more diverse datasets 
are needed to place the results in a broader context. This 
is also applicable for the disease severity groups in the 
current dataset which should be investigated in future 
studies with more balanced and larger datasets. As 
more data becomes available, the potential for ML and 
deep learning techniques will improve, allowing a more 



Page 12 of 13Kohnke et al. Critical Care          (2024) 28:230 

thorough analysis of spectral information in terms of 
disease and disease severity.

Conclusion
A key future challenge in the care of critically ill patients 
is to develop a non-invasive, simple and accurate method 
for assessing microcirculation. This proof of concept 
study demonstrates for the first time that integrating 
automated and standardized ROIs with automated skin 
HSI enables effective discrimination between healthy 
individuals and patients with sepsis. The combination 
of automated ROIs and advanced machine learning 
algorithms applied to raw HSI raw data might offer 
an efficient initial assessment of microcirculation, 
facilitating the rapid identification of critically ill 
patients for timely intervention and improved clinical 
management.
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