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Abstract 

Background  Binary classification models are frequently used to predict clinical deterioration, however they ignore 
information on the timing of events. An alternative is to apply time-to-event models, augmenting clinical workflows 
by ranking patients by predicted risks. This study examines how and why time-to-event modelling of vital signs data 
can help prioritise deterioration assessments using lift curves, and develops a prediction model to stratify acute care 
inpatients by risk of clinical deterioration.

Methods  We developed and validated a Cox regression for time to in-hospital mortality. The model used time-vary-
ing covariates to estimate the risk of clinical deterioration. Adult inpatient medical records from 5 Australian hospitals 
between 1 January 2019 and 31 December 2020 were used for model development and validation. Model discrimina-
tion and calibration were assessed using internal–external cross validation. A discrete-time logistic regression model 
predicting death within 24 h with the same covariates was used as a comparator to the Cox regression model to esti-
mate differences in predictive performance between the binary and time-to-event outcome modelling approaches.

Results  Our data contained 150,342 admissions and 1016 deaths. Model discrimination was higher for Cox regres-
sion than for discrete-time logistic regression, with cross-validated AUCs of 0.96 and 0.93, respectively, for mortality 
predictions within 24 h, declining to 0.93 and 0.88, respectively, for mortality predictions within 1 week. Calibration 
plots showed that calibration varied by hospital, but this can be mitigated by ranking patients by predicted risks.

Conclusion  Time-varying covariate Cox models can be powerful tools for triaging patients, which may lead to more 
efficient and effective care in time-poor environments when the times between observations are highly variable.
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Introduction
Hospitalised patients will have different risks of deterio-
ration or death. To identify patients at high risk of dete-
rioration and direct clinical attention to patients with 
impending critical illness, hospitals often use early warn-
ing scores with escalation pathways based on the level of 
predicted risk [1]. These tools often use vital signs and 
laboratory values in binary regression or machine learn-
ing classification models to predict whether a patient will 
deteriorate [2] However, implementation of these tools 
has often failed to lead to improved patient outcomes 
[3]. A successful example of translating model deploy-
ment into improved patient outcomes, the Advanced 
Alert Monitor, [4] combines predictions with dedicated 
surveillance teams and structured patient follow-up pro-
tocols, suggesting that careful selection of the response 
to model predictions is a crucial component of improv-
ing patient outcomes. Recent research of deterioration 
model implementation has suggested that aligning pre-
diction model development with the proposed imple-
mentation pathway could further improve the impact of 
these models on clinical practice [5].

Clinicians perform both reactive and scheduled care 
in acute settings. Clinical prediction models are often 
designed to improve the efficiency and efficacy of care 
by classifying patients as high or low risk. However, if 
clinical work is driven by prediction models based on 
alert-response protocols, it can become burdensome, [6] 
leading to alert fatigue and prioritisation of responding 
to alerts over providing the care to prevent them. These 
workflows include transforming predicted risk (i.e. a 
probability of deterioration) into a classification (i.e. high 
or low risk group). To do so, a probability threshold or 
“cutpoint” is used, above which to classify the patient 
as high risk. Cutpoints are often selected based on met-
rics including the sensitivity or specificity, but may also 
be selected based on the estimated number of alerts per 
ward per day, attempting to limit the total number of 
alerts to be within an acceptable range based on clinician 
workloads, [4, 7] or based on the cost-effectiveness of the 
model-alert-response workflow [8]. These approaches 
are practical, but require the arbitrary dichotomisation 
of predicted risks. Thresholds are undesirable when two 
patients might be very similar, but fall on either side of a 
risk threshold, potentially leading to different treatments 
[9].

Rather than dichotomising patients into high or low 
risk, it may be more appropriate to rank patients by their 
predicted risks as the basis for deterioration monitoring, 
allowing clinical teams to attend to those currently at 
highest risk accommodating for their current workload. 
Harrell (2015) describes this approach as a lift curve, [10] 
an alternative to threshold-based prediction in which a 

clinician can attend to the patients with the highest risks 
first, and move down the list in order of predicted risk. 
This is similar to the existing model of care in emergency 
departments and intensive care units (ICUs), time-sen-
sitive environments in which clinicians are frequently 
forced to respond to requests for their attention in order 
of the patient’s perceived risk of deterioration [11, 12].

A limitation of using binary prediction, including logis-
tic regression, to measure clinical deterioration is that 
these models do not consider the timing of the event 
being predicted. Models that predict whether a patient 
will have an adverse event within 24 h [2] would penal-
ise positive predictions when the patient has the adverse 
event at 25 h. This would be a critical failure in clinical 
terms, but a successful prediction in binary modelling 
terms. This can be especially problematic for in-hospital 
mortality, which often occurs after patients are trans-
ferred from the wards to the ICU for extended periods of 
time; a suite of binary models with endpoints stretched 
over multiple time windows would need to be used to 
obtain time-sensitive predictions.

Binary prediction models also require the independ-
ence assumption to be met, by restricting training data 
to a single observation per patient, using a discrete-time 
approach, or adding a hierarchical component. Reduc-
ing the dataset to a single observation per patient or per 
patient unit of time ignores the variation inherent in vital 
signs data when observations are more frequent than the 
time unit, reducing model precision as data must be dis-
carded. Random effects models appear to be rarely used 
for predicting clinical deterioration, [2] but along with 
joint and frailty models may be an interesting alternative 
provided computational demands can be met for large 
datasets [13]. Cox regression incorporates these consid-
erations inherently and without information loss, making 
it suitable for the large number of vital signs observations 
per patient that vary over time [14, 15].

The primary motivation for this study arose in consul-
tation with junior doctors tasked with managing many 
largely unfamiliar patients during hospital night shifts. 
They found it difficult to prioritise which patients to 
attend first, as they were constantly receiving deteriora-
tion alerts and the process of requesting more informa-
tion from nurses and determining how best to allocate 
bedside assessments across the night shift team could be 
time-consuming and logistically problematic. A model 
that could account for the urgency of alerts based on rou-
tine observation data to assist in triage and prioritisation 
was considered useful [16, 17].

Study aim
We developed and validated a Cox regression with time-
varying covariates to predict in-hospital mortality. We 
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propose using a lift curve to rank patients by deteriora-
tion risk to prioritise assessment, avoiding the need for 
threshold selection, and therefore assessed model per-
formance by discrimination and calibration rather than 
classification metrics such as sensitivity or specificity. 
We then compare our approach to a binary classifica-
tion model predicting death within 24 h using the same 
covariates, examining differences in risk predictions. In 
this case, time-dependence refers to covariates that are 
measured repeatedly over time, as opposed to time-vary-
ing coefficients that vary over time (e.g. a waning effect of 
age during a patient’s admission) [18, 19].

Methods
Setting
We obtained routinely collected vital signs and admin-
istrative data from five Australian hospitals from 1 Janu-
ary 2019 to 31 December 2020. Hospital capacity ranged 
from a rural health facility with 28 beds and no intensive 
care unit (Hospital 1) to a 1,038-bed academic medical 
centre (Hospital 3).

We included observations from all inpatients aged 18 
and over on admission up to 30 days from admission. We 
refer to an observation as the entry of a set of vital signs 
at a given time into the electronic medical record. Each 
patient was observed over multiple intervals, leading to 
multiple observations over time for a single patient. We 
excluded patients admitted to obstetrics and gynaecol-
ogy, dental medicine, palliative care, anaesthetics, day 
surgery, or directly to ICU, as these patients typically 
have different measures of deterioration or surveillance 
practices [1]. Our model was designed to triage non-crit-
ical care patients, meaning that observations from time 
spent in ICU were also excluded. Data obtained included 
patient demographics, vital signs, admitting hospital, 
admitting department, and admission type. A data dic-
tionary is included in the supplement.

Missing values and data preparation
Data cleaning removed blank or duplicate observations 
and erroneous vital signs based on domain knowledge 
from clinical advisers (e.g., oxygen saturation (SpO2) 
greater than 100%). Our previous research noted that 
missing vitals were likely associated with in-hospital 
mortality, and that summary statistics of these vital signs 
were useful predictors for both mortality and missing-
ness [14]. We created variables summarising the mean, 
standard deviation, minimum, maximum and slope for 
each observation’s vital signs over the previous 24  h. 
Summary variables, along with the remaining data in the 
data dictionary including in-hospital death, were used as 
the predictors in a random forest imputation algorithm 
to predict missing covariate values using the R package 

‘missRanger’ [20]. We used a single random forest impu-
tation due to its similar performance to multiple impu-
tation in vital signs-based regression models [14]. A 
minimum of three non-missing candidate values for pre-
dictive mean matching was specified to ensure unlikely 
values were not imputed.

For the cross-validation process, we repeated the impu-
tation process using only variables available at the time 
of each prediction, not including death, length of stay, 
or discharge time, to mimic a setting with missing data 
allowed at the time of risk prediction [21]. The equations 
of the models developed using both imputed datasets are 
listed in the supplement.

Each row in the data was an individual observation 
(vital signs measurement) for an individual patient. To 
prepare our data for time-varying covariate Cox regres-
sion, we applied a similar method to that described by 
Therneau et al. (2017), with an outcome equalling 1 if the 
patient died in hospital before their next observation and 
0 otherwise [18]. Inpatient data were used up to 30 days 
post admission; we selected a 30-day maximum time-
frame because it is a frequently used measure of hospi-
tal performance that has good external validity despite 
different discharge practices [22]. and because long-stay 
patients often differ materially from shorter-stay patients 
[23].

Variable selection
Our primary interest was to develop a prediction model 
that was compatible with existing early warning scores 
and used easily obtainable, frequently updated data. We 
therefore only included predictor variables that were 
commonly used in early warning scores: [2] respiratory 
rate, SpO2, systolic and diastolic blood pressure, pulse, 
temperature, use of supplemental oxygen, level of con-
sciousness, and age. We chose not to include laboratory 
values because they were obtained infrequently. Being 
forced to omit observations because their laboratory val-
ues were missing or using older laboratory values and 
carrying them forward for long durations were contrary 
to the research objective of predicting up-to-date risks 
for any group of patients at any given time.

Continuous predictors typically relate to the predicted 
event in a non-linear manner; model performance may 
be reduced if not handled appropriately [24]. We assessed 
non-linearity assumptions using the Wald test, which 
suggested that non-linearity should be assumed for all 
continuous predictors. Restricted cubic splines with 3 to 
5 knots were applied using the `rcs()` function in the R 
package `rms` [25]. The number of knots for each spline 
was tested using the Akaike Information Criterion (AIC). 
To maintain a viable minimum sample size during cross-
validation, our model did not include interaction terms.
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Sample size
Our dataset contained many observations but a low 
prevalence of in-hospital mortality. To address concerns 
of overfitting, we established the minimum sample size 
required for a stable model using the methods devel-
oped by Riley et al. [26, 27]. A conservative C-statistic of 
0.80 from published literature [2] was used to obtain an 
equivalent Cox-Snell R-squared statistic of 0.31 [28]. This 
R-squared value corresponded to a requirement for at 
least 190 events for a model with 35 parameters.

Model validation and illustration of possible 
implementation
Internal–external validation was used to assess how 
model performance might vary across different settings. 
Internal–external validation is a form of cross-validation 
applicable when data from multiple hospitals or centres 
are available [29]. For K hospitals, internal–external vali-
dation uses the data from K–1 hospitals to fit the model, 
with data from the remaining hospital used for model 
validation. This process is repeated until all hospitals 
have been used as a validation sample [30].

Predictive performance was assessed using time-
dependent discrimination and calibration. For discrimi-
nation, we used Uno’s cumulative/dynamic area under 
the receiver operating characteristic curve (AUC) [31]. 
Uno’s AUC was calculated using the `timeROC` pack-
age [32]. We selected four common time points from the 
literature [2] as well as one longer-term period at which 
to evaluate time-dependent AUC: 12 h, 24 h, 48 h, 72 h, 
and 1  week since the patient’s first recorded observa-
tion, which included 87% of all observations. The mean 
and range of AUC values were recorded across hospitals 
for each time point assessed, to represent overall per-
formance and observed between-hospital variation. The 
AUC of each model for each cross-validation fold and 
time is included in the supplement.

Calibration was assessed using the absolute predicted 
risks of death within 24  h on the x-axis against the 
observed mortality rate on the y-axis. A non-parametric 
smoother was applied, as recommended by Austin & 
Steyerberg [33]. We selected a time-dependent calibra-
tion curve using a single randomly selected observa-
tion for each patient to enable comparison with logistic 
regression, as opposed to time-independent calibration 
assessments or calculations of the number of expected 
events [34]. Calibration curves are presented for each 
hospital.

To illustrate how model predictions may be visualised 
using our ranking approach in a clinical setting, we ran-
domly selected 8 patients who survived to discharge and 
2 patients who did not, with a minimum length of stay of 

48 h. We obtained a prediction for each patient using the 
last observation prior to every 8 h window from 8 to 48 h. 
We then demonstrated how the rank of those patients’ 
risk may change over the course of their admission, simu-
lating a small panel of patients.

Comparisons with binary classification approaches
To illustrate how time-varying covariate Cox regression 
differs from binary prediction, we developed a single dis-
crete-time logistic regression using the same covariates 
plus day of admission. To make our comparison consist-
ent with existing practice, we used the first observation 
for each patient each day of the admission to predict 
whether the patient died within the next 24 h [2]. To eval-
uate the model, we repeated the internal–external valida-
tion process, assessing AUC over the same time points 
and calibration of predicted risks for death within 24 h.

Ethics and data sharing
This study received ethics approval from Metro South 
Human Research Ethics Committee (HREC/2020/
QMS/64807). Our code for data processing, model 
development, and model validation is freely available at 
https://​github.​com/​robin​blythe/​triag​emodel. All code 
was written in R [35]. Adherence to the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual prognosis or diagnosis (TRIPOD) statement is 
documented in the supplement (Fig. 1).

Results
Our data contained 4,627,658 observations from 150,342 
admissions, and 1,016 deaths. The average values for 
patients across each participating hospital are in Table 1, 
while the cumulative incidence plots of each admission 
are in Fig.  2, split by whether the interval ended in a 
death or discharged alive. The median length of stay for 
patients alive at discharge was just over 50 h, whereas the 
median length of stay for patients who died in hospital 
was around 90 h, or nearly 4 days. The fitted relationship 
between each predictor and in-hospital death is shown in 
Fig. 3.

Data were frequently missing for the following vital 
sign measurements: temperature (28.3%), pulse (20.3%), 
level of consciousness (15.9%), respiratory rate (11.5%), 
systolic blood pressure (8.9%), SpO2 (8.8%), and diastolic 
blood pressure (8.7%).

Model performance
The time-dependent AUC was 0.97 at 12  h, dropping 
slowly over time to 0.96 at 24  h and 0.93 at the 1-week 
mark (Fig.  4). Model calibration for predicted mortal-
ity within 24 h showed that risks were generally overes-
timated when predictions were represented as absolute 

https://github.com/robinblythe/triagemodel
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probabilities, though the degree of overestimation varied 
by hospital. Over 98% of predicted probabilities in our 
sample were below 0.01.

Comparison to binary prediction
Repeating the model development and internal–exter-
nal validation process showed that discrete-time 
logistic regression also led to high AUC values. The 

Fig. 1  Model development flowchart. SpO2: Oxygen saturation. SBP: Systolic blood pressure. DBP: Diastolic blood pressure

Table 1  Patient characteristics by hospital and in total within 30 days

* Intensive Care Unit. LOS: Length of stay. SD: Standard deviation. IQR: Inter-quartile range

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Total

Beds 28 485 1,038 217 194 1,894

Has ICU* No Yes Yes Yes No –

Patient days 5,523 97,971 296,235 88,110 41,551 529,389

Individual patient episodes 1,986 27,529 80,152 25,785 14,890 150,342

Deaths 22 130 627 92 145 1,016

Mean age (SD) 67 (19.5) 58 (20.5) 61 (18.1) 64 (20.1) 67 (20.1) 61 (19.3)

Median LOS in hours (IQR) 42 (56.6) 57 (72.9) 49 (91.0) 54 (68.9) 47 (58.0) 51 (76.1)

Median time to death in hours (IQR) 66 (88.5) 97 (146.6) 100 (150.7) 94 (163.2) 58 (92.9) 90 (141.8)
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time-dependent AUC at 12 and 24 h was 0.93, falling to 
0.88 after 1 week. Logistic regression model AUC at each 
time point was lower than the Cox regression. As with 
the Cox regression, calibration varied by hospital (Fig. 5).

Ranking approach
In our random sample of 10 patients, we show how dete-
rioration models can be used to rank patients by pre-
dicted risk (Fig. 6). In this example, patient 1, who died in 
hospital, received the highest rank consistently through-
out their admission, followed by patient 2 who was dis-
charged alive. The rank order of the remaining patients 
changed somewhat frequently, with patient 10 rising 
from rank 10 to 7 at the end of the 48 h window.

Discussion
We demonstrated that time-to-event Cox regression 
can provide a potentially useful alternative to binary 
classification for prioritising deterioration risk in adult 
inpatients based on commonly collected hospital data. 
By ranking patients by predicted risk and avoiding the 
use of classification thresholds, deteriorating patients 
can potentially be identified in a manner that does not 
interfere with routine clinical workflows by mandating 

repetitive alert responses or capping the number of 
alerts based on what clinicians will tolerate. As AUC is 
effectively a metric for how well a model ranks pairs of 
patients by risk, [10] the high cross-validated AUC of the 
Cox model demonstrates that the model is effective at 
prioritising patients.

Comparison between binary and time‑to‑event modelling 
for deterioration
Logistic regression requires discarding information dur-
ing the model training and testing process, including 
the timing of the event of interest and the wide variety 
of vital signs observations made for each patient. Though 
discrete-time logistic models can be equivalent to Cox 
regression when the distance between observations is the 
same, [36] the time between vital sign measurements is 
rarely uniform. Indeed, a fundamental consideration of 
deterioration monitoring is that as the patient begins to 
deteriorate, vital signs measurement frequency increases. 
[37] Logistic regression models, including discrete-time 
models, would need to select a single observation in each 
window, discarding the remaining observations dur-
ing that window to avoid introducing bias, yet the time 
between observations can vary from minutes to hours. 
The primary advantage of a Cox regression in this case 

Fig. 2  Cumulative incidence of death and discharge for hospitals 1 through 5 over the course of each admission, with 890 patients censored 
at 30 days
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is that it is capable of handling time intervals which may 
change frequently between individuals, which can be 
especially important when measurement frequency is 
associated with the predicted outcome.

An additional advantage of Cox regression is that a 
single prediction model could be used for prediction 

over a variety of time intervals. While the discrete-
time model is more time-sensitive than a standard 
logistic regression, it is still attempting to make predic-
tions over a single standardised time interval. A suite 
of discrete-time models predicting death over vari-
ous timeframes of interest might be more statistically 

Fig. 3  Coefficient plot of predictor variables against the log relative hazard of in-hospital mortality. Predictors should not be interpreted causally; 
for example, the model does not suggest that a systolic blood pressure of 200 and over is protective
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appropriate but would be cumbersome in a clinical 
environment, [38] especially if model predictions were 
not aligned.

Calibration of both the discrete-time and Cox regres-
sion models varied widely by hospital, potentially lead-
ing to problems with false positives or false negatives 
if thresholds are applied. The smaller the dataset, the 
greater the consequences for calibration of discarding 
data, as the training data would capture less of the inher-
ent variability of inpatient vital signs. The relative rarity 
of predicted probabilities above 0.01 likely explains the 
poor calibration of both models.

In-hospital mortality among acute non-palliative 
patients can be rare, occurring in around 0.4% of our 
dataset. The sample size of the data used to generate 
the model is inversely proportional to the uncertainty 
in cross-validated AUC calculations for the final model, 
with smaller samples and fewer events generally lead-
ing to less certainty in model evaluation and potentially 
less generalisable predictions [27]. This issue is exacer-
bated when predicting deterioration in smaller samples, 
because the information about the timing of the event 
is unused even though patients may have died a short 
time after the prediction horizon. This also reduces the 
number of positive cases within 24 h, especially as many 
patients may spend days in ICU prior to death. As time-
to-event models do not require discarding information, 
this guarantees that all possible uncensored outcomes are 
included in the dataset.

Ranking patients by predicted risk
A strength of threshold-based alert protocols, including 
track-and-trigger systems, is that they can notify clini-
cians when patients are deteriorating [39]. If clinicians 
are not at the patient’s bedside when their vital signs 
become increasingly deranged, alerts are able to secure 
the clinician’s attention or in some cases immediately 
notify a rapid response team. The approach described in 
this paper is not designed to replace these systems, as a 
ranking system would be inappropriate for managing sit-
uations like rapid oxygen desaturation [40].

As clinical deterioration models have become more 
sophisticated, however, they have increasingly sought to 
predict deterioration as early as possible [41] This intro-
duces uncertainty and leads to the possibility of false 
positives, which are a major contributor to alert fatigue 
and can lead to warnings being ignored [6]. Clinicians 
may become conditioned to respond to positive alerts 
and, in situations where busy workloads may reduce the 
capacity for critical thinking, potentially also conditioned 
to downplay the risk of patients who are classified as neg-
ative for future deterioration [16].

There are three main advantages to ranking in this 
scenario. First, the burden of responding to false posi-
tives is entirely removed, because patients are not clas-
sified based on risk thresholds. There is therefore no 
need to limit the number of alerts or find ways to reduce 
the burden of alerts [7]. Second, there is no uncertainty 
over whether a patient is high or low risk based on vital 
signs that fall just short of a classification threshold. This 
reduces potential conflict between clinician and model 
in which clinicians may feel uncertain about the con-
sequences of disagreeing with a complex and opaque 
algorithm for such an important decision [42]. Finally, 
ranking by predicted risk makes models less susceptible 

Fig. 4  Cross-validated area under the receiver operating 
characteristic curve (AUC), panel A, and smoothed calibration curves 
for predicted mortality within 24 h, panel B, for the Cox regression 
model. The x-axis in panel A refers to Uno’s cumulative/dynamic 
AUC calculated at each time point of 12, 24, 48, 72, and 168 h 
(1 week) for each held-out hospital and the mean value for overall 
cross-validated performance. AUC was calculated at specific 
timepoints; values between these timepoints should not be 
interpolated. The solid black diagonal line in panel B refers to perfect 
calibration
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to the effects of miscalibration and focuses instead on 
discrimination [43]. Calibration is important; risk over-
estimation may lead to the provision of unnecessary 

care, while risk underestimation may lead to withhold-
ing it [44, 45]. The main harms of miscalibration become 

Fig. 5  Cross-validated area under the receiver operating characteristic curve (AUC), panel A, and smoothed calibration plots, panel B, 
for the discrete-time logistic regression model. The x-axis in panel A refers to the AUC calculated at each time point of 12, 24, 48, 72, and 168 h 
(1 week) for each held-out hospital and the mean value for overall cross-validated performance. AUC was calculated at specific timepoints; values 
between these timepoints should not be interpolated. The solid black diagonal line in panel B refers to perfect calibration
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apparent only if clinicians seek to understand how much 
greater the risk is for one patient over another.

Model performance in practice
The model’s internally-externally cross-validated AUC 
of 0.97 within 12  h and 0.96 within 24  h showed good 
discrimination compared to other published models [2, 
46]. However, this does not guarantee the model’s useful-
ness in clinical practice. Vincent et al. note that the pri-
mary goal of deterioration models is typically to facilitate 
rapid and appropriate escalation of the patient’s care [40]. 
This must be balanced against the capacity of clinicians 
to respond. A ranking approach can help prioritise risk 
assessments based on perceived urgency when multi-
ple patients have been flagged, as well as by identifying 
patients at risk who are below a designated threshold. 
This can be especially useful for identifying potentially 
deteriorating patients before their deterioration man-
dates a rapid response, [9] especially when nurses may 
feel pressure not to escalate if alert thresholds have not 
been reached.

To determine whether a clinical prediction model is 
useful, it should ultimately be assessed in terms of its 
impact on patient outcomes. The gold standard is a ran-
domised controlled trial, which can be both expensive 
and difficult to organise. To assess a model’s perceived 
utility, an intermediary step may be to conduct a model 
impact study to identify potential benefits and barri-
ers prior to implementation to determine whether a 

randomised trial is appropriate [47]. We highlight three 
of these barriers below.

First is whether the model is compatible with, rather 
than interrupts, clinical workflows. Clinicians’ percep-
tions about the perceived utility of the model [16] and 
whether time savings from reduced alert disruptions 
[48] can be spent on early identification of patients at 
risk could be assessed with a pilot implementation study. 
Second is how to address operational concerns, including 
the number of patients to include in each ranked set and 
whether highly ranked patients would be assessed earlier 
than under a threshold-based system. Third is whether 
the presence of missing data can and should be imputed 
in real time. Imputing missing data using the outcome 
variable is recommended to minimise bias, [49] but is 
impossible by definition in most prediction tasks as the 
outcome is not yet known [21]. We provide the model 
equation for both settings in which missing data are and 
are not allowed by the model to provide a starting point 
for external validation studies.

Limitations
As the AUC is typically calculated by comparing the pre-
dicted risks of positive and negative cases, a small num-
ber of patients who experience the event may all be easily 
identifiable by a model. This may indicate potentially lim-
ited model utility, as these individuals may also be eas-
ily identifiable by skilled clinicians. It is worth noting that 
AUC, while useful, may be more appropriate as a first 
pass of predictive performance rather than a sufficient 
measure of model quality. A more appropriate measure 
of model quality could instead be obtained by measuring 
whether it adds useful information to the clinical deci-
sion making process, [50] leading to improved patient 
outcomes. Given that the model described here does 
not rely on classification, or probability, metrics like net 
benefit [51] or prospective simulations of model perfor-
mance are less applicable [52].

Simply identifying patients who will go on to die in 
hospital may not lead to changes in the provision of 
care if that is an expected trajectory for those patients. 
Similarly, mortality prediction models may simply detect 
patients who do not respond to treatment. Identify-
ing these patients may not be useful for averting clinical 
deterioration, but may usefully flag which patients need 
discussions about end-of-life care. Patients who may 
deteriorate are typically treated, and this treatment is 
likely to confound the prediction of their outcomes [53].

Our choice of mortality as the outcome variable was 
primarily driven by the uncertainty in modelling other 
deterioration-related outcome variables; [1] data entry 
practices for cardiopulmonary arrest might vary consid-
erably across hospitals even within the same region, and 

Fig. 6  Ranking of 10 randomly sampled patients who died 
(dashed line) or were discharged alive (solid line). Each patient’s last 
observation at every 8 h evaluation period was selected
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not all facilities in our dataset had an ICU. Death repre-
sents not only an unambiguous outcome with relatively 
low measurement error but also a logical endpoint in 
clinical deterioration. The primary limitation of using 
mortality as the outcome is that it is often complicated 
by end-of-life or palliative care planning, [54] identify-
ing patients who did not benefit from treatment and died 
rather than patients who did benefit and survived. It is 
therefore important to note that implementation of the 
model at least partly assumes that these patients appear 
similar based on their vital signs alone.

The low prevalence of in-hospital mortality in our data 
may invite criticisms of “class imbalance.” We have taken 
several steps to mitigate this risk. We calculated the req-
uisite minimum sample size for our model, as described 
in the methods, and comfortably exceeded it [27]. 
Despite the imbalance between cases and controls, our 
dataset still contained 1,016 cases.

A limitation of time-varying covariate Cox models, 
and most survival models generally, is that they are not 
capable of taking longer-term individual patient trends 
into account without lagged covariates, a joint modelling 
structure, or summary measures [13]. This capability is a 
feature of some models which handle a vector of observa-
tions as a datapoint [55] or process data sequentially, [56] 
though this may compromise model transparency [42].

A significant amount of vital signs data were missing, 
with 29% of temperature readings unavailable. We have 
previously found that missing vital signs data are associ-
ated with clinical outcomes; while multiple imputation 
is the preferred method of handling missing data, we 
obtained similar performance with single random forest 
imputation [14]. Regardless, the lack of complete data 
and potential bias due to missingness remain a limita-
tion of our model. Additionally, while our model was not 
disease-specific, it overlapped with periods of high infec-
tion from severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), potentially affecting generalisability.

Conclusion
We demonstrate that the time-dependent Cox regres-
sion may be a useful tool for inpatient triage when 
implemented in a rank-order by predicted risk. Our 
model demonstrated good discrimination, some risk 
overestimation depending on the cross-validation fold, 
and potentially useful levels of interpretability and 
explainability.
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