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Abstract 

Background  Sepsis poses a grave threat, especially among children, but treatments are limited owing to hetero‑
geneity among patients. We sought to test the clinical and biological relevance of pediatric septic shock subclasses 
identified using reproducible approaches.

Methods  We performed latent profile analyses using clinical, laboratory, and biomarker data from a prospective 
multi-center pediatric septic shock observational cohort to derive phenotypes and trained a support vector machine 
model to assign phenotypes in an internal validation set. We established the clinical relevance of phenotypes 
and tested for their interaction with common sepsis treatments on patient outcomes. We conducted transcriptomic 
analyses to delineate phenotype-specific biology and inferred underlying cell subpopulations. Finally, we compared 
whether latent profile phenotypes overlapped with established gene-expression endotypes and compared survival 
among patients based on an integrated subclassification scheme.

Results  Among 1071 pediatric septic shock patients requiring vasoactive support on day 1 included, we identified 
two phenotypes which we designated as Phenotype 1 (19.5%) and Phenotype 2 (80.5%). Membership in Phenotype 
1 was associated with ~ fourfold adjusted odds of complicated course relative to Phenotype 2. Patients belonging 
to Phenotype 1 were characterized by relatively higher Angiopoietin-2/Tie-2 ratio, Angiopoietin-2, soluble thrombo‑
modulin (sTM), interleukin 8 (IL-8), and intercellular adhesion molecule 1 (ICAM-1) and lower Tie-2 and Angiopoietin-1 
concentrations compared to Phenotype 2. We did not identify significant interactions between phenotypes, common 
treatments, and clinical outcomes. Transcriptomic analysis revealed overexpression of genes implicated in the innate 
immune response and driven primarily by developing neutrophils among patients designated as Phenotype 1. There 
was no statistically significant overlap between established gene-expression endotypes, reflective of the host adap‑
tive response, and the newly derived phenotypes, reflective of the host innate response including microvascular 
endothelial dysfunction. However, an integrated subclassification scheme demonstrated varying survival probabilities 
when comparing patient endophenotypes.
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Introduction
Sepsis is defined as life-threatening organ dysfunction 
caused by a dysregulated host response to an infection. 
It represents a major public health problem, especially 
among children, where it affects an estimated 20 mil-
lion each year worldwide [1] and is the leading cause of 
under-5 mortality [2]. Yet, despite numerous trials, sep-
sis care remains limited to early antibiotics and inten-
sive organ support. This lack of therapeutic efficacy has 
been attributed to the heterogeneity among critically ill 
patients [3]. Thus, reproducible strategies that identify 
clinically and biologically relevant subclasses are neces-
sary to facilitate targeted approaches to improve patient 
outcomes [4].

Gene-expression profiling of whole blood has been 
used to identify sepsis subclasses [5–9]. Among chil-
dren, Wong and colleagues used a 100 gene-expression 
panel, to identify pediatric septic shock Endotypes—A 
and B with prognostic value; assignment to Endotype A 
was associated with a nearly threefold increased risk of 
mortality, relative to those with Endotype B [10]. Subse-
quently, these endotypes were shown to demonstrate a 

differential response to corticosteroids in observational 
studies, with patients classified as Endotype A having 
a fourfold increase in mortality with use of adjunctive 
corticosteroid use, relative to patients with Endotype B 
[11]. Similar strategies have been deployed among adults 
yielding analogous results [12].

Concomitantly, a decade ago, Calfee et  al. lever-
aged latent class analyses of clinical, laboratory, and 
biomarker data to identify two phenotypes of acute 
respiratory distress syndrome (ARDS). The hyperin-
flammatory group was characterized by worse out-
comes, relative to those without this phenotype [13]. 
Of note, these phenotypes have demonstrated hetero-
geneity in treatment effect (HTE) in response to several 
interventions in secondary analyses of ARDS trials [13, 
14], and corticosteroids among critically ill COVID-19 
patients [15]. More recently, Dahmer et  al. and oth-
ers have shown reproducibility and prognostic utility 
of this approach among children with ARDS [16, 17]. 
Lastly, using similar approaches, Sinha et  al. recently 
published on molecular phenotypes among adults with 
sepsis [18]. To the best of our knowledge, no study to 

Conclusions  Our research underscores the reproducibility of latent profile analyses to identify pediatric septic shock 
phenotypes with high prognostic relevance. Pending validation, an integrated subclassification scheme, reflective 
of the different facets of the host response, holds promise to inform targeted intervention among those critically ill.
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date has identified latent profile phenotypes, inclusive 
of biomarker data, among critically ill children with 
sepsis.

In the current study, we sought to derive and internally 
validate pediatric septic shock phenotypes using latent 
profile analyses in our multi-center prospective observa-
tional cohort and to establish their prognostic value. We 
sought to test interactions between phenotypes and com-
mon treatments on patient outcomes. To establish their 
biological significance, we conducted transcriptomic 
analyses in a subset of the cohort to identify differentially 
expressed genes and infer cell subpopulations linked to 
phenotypes. Lastly, we compared the overlap between 
previously established gene-expression endotypes of 
pediatric septic shock and newly identified latent pro-
file phenotypes. We tested the hypothesis that integrat-
ing endotype and phenotype assignment could provide a 
refined framework for the subclassification of critically ill 
children.

Methods
Study design and patient selection
Our ongoing prospective observational cohort study 
of pediatric septic shock has been extensively detailed 
previously [11, 19–21]. All study procedures involving 
human participants were per the ethical standards of 
the institutional review boards of participating institu-
tions and consistent with the 1964 Helsinki Declaration 
and its later amendments or comparable ethical stand-
ards. Briefly, children ≤ 18 years of age were enrolled after 
informed consent was obtained from parents or legal 
guardians. Inclusion criteria for study enrollment were 
all patients meeting consensus criteria for pediatric sep-
tic shock [22] recruited between 2003 and 2023 from 13 
pediatric intensive care units (PICUs) in the U.S. Blood 
was collected from consenting participants within 24  h 
of meeting enrollment criteria (day 1). Patients who did 
not require any vasoactive support were excluded from 
the current analyses. The primary outcome of interest 
was complicated course—a composite endpoint of death 
by or presence of ≥ 2 organ dysfunctions on day 7 after 
study enrollment [20]. Secondary outcomes included 7- 
and 28-day mortality.

Data imputation
We excluded variables with ≥ 40% missingness of data. 
Among those with < 40% missingness, we used python 
package “Datawig” which uses deep learning feature 
extraction with automatic hyperparameter tuning to 
impute missing value [23]. Additional methodological 
details are presented in the Online Supplement.

Derivation set
We randomly split patients in the cohort into deriva-
tion (60%) and hold-out internal validation (40%) sets. 
We used R package “mclust” (v.6.0.0) to perform latent 
profile analyses (LPA)—a Gaussian Finite Mixture Mod-
eling approach– using clinical, laboratory, and biomarker 
variables collected on day 1 of septic shock. Briefly, we 
included deviation of vital signs from the median val-
ues for age and sex during health. Laboratory data were 
obtained at the discretion of treating physicians. The 
most extreme value for the day were included for these 
variables. Biomarker data were previously measured 
using multiplex Luminex assays in serum collected on 
day 1 [20, 24]. Additional methodological details are pre-
sented in the Online Supplement.

Validation set
The phenotype assignments in the derivation set were 
used to train a support vector machine (SVM) classifier, 
which was used to assign phenotypes in the validation set 
using the same set of variables used in the LPA model. 
We compared patient demographics, characteristics, out-
comes in the derivation and validation sets to determine 
clinical relevance of assigned phenotypes. In sensitiv-
ity analyses, we compared biomarkers among identified 
phenotypes in the validation dataset after exclusion of 
imputed data to ensure validity and biological relevance 
of phenotypes.

Transcriptomic analyses
Bulk messenger RNA sequencing data was available from 
a subset of the cohort recruited between 2019 and 2023 
from day 1 biospecimens. We used DESeq2 (v.1.38.3) to 
identify differentially expressed genes (DEGs) between 
the latent profile phenotypes. DEGs were selected based 
on ≥ log2 fold change value cutoff of ± 0.25, and adjusted 
p value of 0.05. We conducted Reactome pathway anal-
yses [25] using “ReactomePA” package with a Benjamin 
Hochberg false discovery rate (FDR) < 0.05 to identify 
enriched biological pathways.

Inference of cell types underlying phenotypes
We sought to gain granular insight at a single-cell level 
into immune cell subpopulations associated with latent 
profile phenotypes. To achieve this, we used  a publicly 
available single-cell RNA sequencing dataset comprised 
of critically ill adults with sepsis published by Kwok et al. 
[26] We calculated a composite gene score as the geomet-
ric mean of overexpressed genes minus the geometric 
mean of under-expressed genes using published methods 
[27], identified through DEG analyses comparing latent 
profile phenotypes and available in the single-cell dataset. 
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We mapped the scaled composite score against the Uni-
form Manifold Approximation and Projection (UMAP) 
of the single-cell dataset to infer cell types driving biolog-
ical differences between phenotypes.

Comparison with established gene‑expression pediatric 
septic shock endotypes
A subset of patients in the cohort had existing assign-
ments as Endotypes A or B based on historical data using 
a 100-gene panel on the Nanostring nCounter plat-
form. Briefly, image analysis of gene-expression mosa-
ics were previously used to assign pediatric septic shock 
endotypes, with Endotype A being characterized by a 
repressed adaptive immune response and glucocorticoid 
signaling, relative to Endotype B [11].

Statistical analyses
Minitab (PA, USA) and R were used for statistical analy-
ses. GraphPad (CA, USA) and R were used to generate 
figures. We assessed differences in demographic and clin-
ical characteristics between groups by non-parametric 
Kruskal–Wallis tests for continuous variables and χ2 tests 
for categorical variables. Multivariable logistic regression 
models were used to assess the association between phe-
notype and outcomes of interest and adjusted for era of 
enrollment (2013–2023 vs. 2003–2012), patient age, pedi-
atric risk of mortality score (PRISM III) [28], presence 
of comorbidity, and immunocompromised status. We 
used inverse probability treatment weighting (IPTW) to 
test the effect of common sepsis treatments on the odds 
of complicated course among latent profile phenotypes 
accounting for the effect of multiple confounding vari-
ables [29]. Treatments tested included use of > 100 ml/kg 
versus < 100 ml/kg fluid resuscitation, ≥ 2 versus < 2 anti-
microbials, ≥ 2 versus < 2 vasoactive medications on day 
1, and corticosteroid use. For IPTW models, we adjusted 
for age, PRISM-III score, day 1 vasoactive inotropic score 
(VIS), presence of comorbidity and immunocompro-
mised status. Interaction p values for overall effect were 
used to test for heterogeneity of treatment effect (HTE) 
across latent profile phenotypes on complicated course. 
The Pearson χ2 test was used to test the overlap between 
established gene-expression endotypes and latent profile 
phenotypes. Kaplan Meier curves were used to estimate 
differences in survival comparing endotypes, pheno-
types, and an integrated subclass assignment scheme 
where we considered outputs of both these approaches. 
Cox proportional hazard ratio of 28-day mortality among 
subclasses was compared in reference to the endophe-
notype with the lowest 28-day mortality. A two-tailed p 
value < 0.05 was used to test statistical significance, unless 
otherwise specified.

Results
The overview of the study and analyses is detailed in 
Fig. 1. A total of 1,395 patients met the inclusion criteria 
for the study of whom we excluded 324 patients who did 
not receive any vasoactive support. The median age of 
the patients included in the study (n = 1071) was 5.3 years 
(quartile 1: 1.7; quartile 3: 11.0 years). The derivation set 
was comprised of 646 patients and the hold-out valida-
tion set included 425 patients. Latent profile analyses in 
the derivation set revealed two phenotypes. Differences 
in standardized variables between the two phenotypes 
are shown in Fig.  2. One of the phenotypes (n = 126, 
19.5%) was characterized by a relatively higher lac-
tate, serum creatinine, blood urea nitrogen (BUN), and 
international normalized ratio (INR), and lower platelet 

Fig. 1  Overview of study including inclusion and exclusion 
criteria, number of patients across the derivation and validation set, 
and various analytic approaches used to characterize latent profile 
phenotypes of pediatric septic shock
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counts, which we designated as Phenotype 1. Patients in 
this group had relatively higher Angiopoietin-2/Tie-2 
ratio, Angiopoietin-2, soluble thrombomodulin (sTM), 
interleukin 8 (IL-8), and intercellular adhesion molecule 
1 (ICAM-1) and lower Tie-2 and Angiopoietin-1 con-
centrations. We labeled the remaining patients (n = 520, 
80.5%), characterized by the absence of such features, as 
Phenotype 2.

Table  1 shows the comparisons between phenotypes 
in the derivation and validation sets—the latter based on 
the assignments of our SVM classifier. There were no dif-
ferences in age and sex comparing phenotypes. Although 
patients who were Phenotype 1 were more likely to have 
had a history of oncologic disease or bone marrow trans-
plantation than Phenotype 2 in the derivation set, there 
were no statistically significant differences in the valida-
tion set. Patients with Phenotype 1 had a trend toward 
higher rates of positive blood cultures compared to 
patients with Phenotype 2 in the derivation set (26.2% vs. 
19.2%, p = 0.08); this reached statistical significance in the 
validation set (33.8% vs. 20.6%, p = 0.016). However, there 
were no significant differences in the type of pathogen 
based on culture. Patients with Phenotype 1 had higher 
baseline illness severity and significantly worse clinical 

outcomes in the derivation and validation sets. Finally, 
patients with Phenotype 1 were more likely to have been 
prescribed corticosteroids by treating physicians, relative 
to those in Phenotype 2.

Table  2 shows the results of multi-variable logistic 
regression testing the association between latent profile 
phenotypes and outcomes. Patients belonging to Pheno-
type 1 had a nearly fourfold higher odds of complicated 
course (adj. OR 3.9, 95% CI 2.8–5.5, p < 0.001) relative 
to Phenotype 2. In addition, these patients had an over 
fivefold higher odds of 7-day mortality (adj. OR 5.6, 95% 
CI 3.6–8.6, p < 0.001) and over fourfold higher odds of 
28-day mortality (adj. OR 4.4, 95% CI 3.0–6.4, p < 0.001). 
Table 3 shows the results of unadjusted, IPTW adjusted 
associations, and overall interaction between latent pro-
file phenotypes and common sepsis therapies on odds 
of complicated course. Patients with Phenotype 1 were 
more likely to have received ≥ 100 ml/kg of fluid on day 
1 of PICU admission, ≥ 2 antimicrobials, ≥ 2 vasoactive 
agents, and corticosteroids, with commensurately worse 
outcomes, relative to those belonging to Phenotype 2. We 
did not identify any significant heterogeneity of treat-
ment effect on outcomes with one exception. Patients 
belonging to Phenotype 1 who received ≥ 2 antimicrobial 

Fig. 2  Standardized mean (z-scores) for continuous class predicting variables in the derivation set by latent profile is shown on the y-axis. The 
predictor variables are sorted on the x-axis from left to right in descending order of difference between the Phenotype 1 (shown in orange) 
and Phenotype 2 (shown in brown) phenotypes. Angpt2/Tie-2: Angiopoietin-2/Tie-2 ratio; Cr: Creatinine; BUN: blood urea nitrogen; Angpt-2: 
Angiopoietin-2; Lactate: Serum lactate; SGPT: serum glutamic pyruvic transaminase; sTM: soluble Thrombomodulin; IL-8: Interleukin-8; SGOT: serum 
glutamic-oxaloacetic transaminase; VIS: Max vasoactive inotropic score on day 1; Angpt-2/Angpt-1: Angiopoietin-2/Angiopoietin-1 ratio; pH; 
ICAM-1: Intercellular adhesion molecule 1; INR: international normalized ratio; PCO2: partial pressure of carbon dioxide; K: potassium; HR: deviation 
from age and sex normalized heart rate; Na: Sodium; Gluc: Glucose; RR: respiratory rate; WBC: white blood cell count; HCt: hematocrit; Age: age 
in years; HCO3: serum bicarbonate; DBP: diastolic blood pressure; MAP: mean arterial pressure; Cl: serum chloride; Temp: Temperature; BE: base 
excess; SBP: systolic blood pressure; Tie-2: tyrosine kinase with immunoglobulin-like loops and epidermal growth factor homology domains-2; 
Platelet: platelet count; Angpt-1: Angiopoietin-1
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Table 1  Demographics, patient characteristics, and clinical outcomes among pediatric septic shock latent profile phenotypes in the 
derivation and validation sets

Derivation set (n = 646) p value Validation set (n = 425) p value

Phenotype 1 (n = 126) Phenotype 2 (n = 520) Phenotype 1 (n = 71) Phenotype 2 (n = 354)

Age (years) 4.7 (1.3, 13.7) 5.4 (1.8, 10.8) 0.698 6.2 (1.8, 14.0) 5.5 (1.8, 10.4) 0.480

Sex (female) 57 (45.2%) 246 (47.3%) 0.676 39 (54.9%) 174 (49.2%) 0.374

Race 0.924 0.439

 White or Caucasian 89 (70.7%) 376 (72.3%) 55 (77.4%) 263 (74.3%)

 Black or African American 16 (12.7%) 64 (12.3%) 6 (8.4%) 49 (13.8%)

 Other 21 (16.7%) 80 (15.4%) 10 (14.1%) 42 (11.9%)

Ethnicity 0.214 0.063

 Hispanic or Latino 12 (9.5%) 71 (13.6%) 3 (4.2%) 41 (11.6%)

 Non-Hispanic 114 (90.5%) 449 (86.4%) 68 (95.7%) 313 (88.4%)

Culture

 Any positive culture 71 (56.4%) 309 (59.4%) 0.529 44 (61.9%) 198 (55.9%) 0.348

 Pulmonary 23 (18.2%) 133 (25.6%) 13 (18.3%) 68 (19.2%)

 Extra-pulmonary 48 (38.1%) 175 (33.6%) 31 (43.7%) 130 36.7%)

 Positive blood culture 33 (26.2%) 100 (19.2%) 0.083 24 (33.8%) 73 (20.6%) 0.016

Pathogen type 0.577 0.467

 Gram positive 26 (36.6%) 121 (39.2%) 18 (40.9%) 78 (39.4%)

 Gram negative 28 (39.4%) 122 (39.4%) 17 (38.6%) 88 (44.4%)

 Viral 7 (9.8%) 38 (12.3%) 3 (6.8%) 16 (8.1%)

 Fungal 7 (9.8%) 15 (4.8%) 4 (9.0%) 6 (13.6%)

 Mixed 3 (4.2%) 13 (4.2%) 2 (4.5%) 8 (4.1%)

 Comorbidity

 Heart disease 9 (7.1%) 35 (6.7%) 0.869 4 (5.6%) 24 (6.8%) 0.722

 Lung disease 12 (9.5%) 50 (9.6%) 0.975 7 (9.8%) 22 (6.2%) 0.281

 Neurologic disease 10 (7.9%) 107 (20.6%) 0.001 9 (12.7%) 67 (18.9%) 0.194

 Kidney disease 19 (15.1%) 13 (2.5%) 0.001 5 (7.0%) 10 (2.8%) 0.079

 Liver disease 10 (7.9%) 25 (4.8%) 0.164 12 (16.9%) 28 (7.9%) 0.018

 Solid organ transplant 5 (4.0%) 13 (2.5%) 0.369 4 (5.6%) 16 (4.5%) 0.686

 Oncologic disease 26 (20.6%) 56 (10.8%) 0.003 11 (15.5%) 42 (11.9%) 0.398

 Bone marrow transplant 17 (13.5%) 22 (4.3%) < 0.001 9 (12.8%) 29 (8.2%) 0.227

PRISM III 16 (9, 24) 11 (6, 16) < 0.001 16 (11, 23) 10 (6, 15) < 0.001

Day 1 VIS 30 (10, 100) 15 (7, 40) < 0.001 40 (13, 150) 16 (8, 31) < 0.001

Day 1 P/F < 250 31 (24.6%) 118 (22.7%) 0.648 23 (32.4%) 69 (19.5%) < 0.016

PICU LOS 7 (2, 15) 6 (2, 12) 0.673 7 (2, 14) 5 (2, 11) 0.815

PICU Free days 22 (12, 26) 22 (16, 26) 0.668 21 (14, 26) 23 (17, 26) 0.804

Hospital LOS 14 (5, 28) 13 (7, 27) 0.955 15 (3, 28) 14 (7, 26) 0.441

7-day mortality 31 (24.6%) 27 (5.2%) < 0.001 20 (28.2%) 19 (5.4%) < 0.001

28-day mortality 41 (32.5%) 46 (8.9%) < 0.001 25 (35.2%) 30 (8.5%) < 0.001

Complicated course 75 (59.5%) 138 (26.5%) < 0.001 48 (67.6%) 96 (27.1%) < 0.001

Cardiac arrest 67 (53.2%) 76 (14.6%) < 0.001 38 (53.5%) 55 (15.5%) < 0.001

Day 7 Cardiovascular dysfunc‑
tion

54 (42.8%) 85 (16.4%) < 0.001 36 (50.7%) 71 (20.1%) < 0.001

Day 7 Respiratory Dysfunction 72 (57.2%) 170 (32.7%) < 0.001 46 (64.8%) 120 (33.9%) < 0.001

Day 7 Kidney Dysfunction 64 (50.8%) 104 (20.0%) < 0.001 42 (59.2%) 68 (19.2%) < 0.001

Day 7 Neuro Dysfunction 27 (21.4%) 24 (4.6%) < 0.001 19 (26.8%) 19 (5.4%) < 0.001

Day 7 Hematologic Dysfunction 59 (46.8%) 79 (15.2%) < 0.001 36 (50.7%) 48 (13.6% 0 < 0.001

Day 7 Hepatic Dysfunction 50 (39.7%) 57 (11.0%) < 0.001 34 (47.9%) 31 (8.8%) < 0.001

Day 7 Vasoactive support† 28/70 (40.0%) 55/278 (19.7%) < 0.001 15/39 (38.4%) 40/173 (23.1%) < 0.001
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therapies had a higher odds of complicated course in 
comparison with Phenotype 2 who had a lower odds of 
the outcome (interaction p value 0.016).

Transcriptomic data was available in 145 patients. We 
identified 91 differentially expressed genes (DEGs) when 
comparing patients with Phenotype 1 (n = 18) versus Phe-
notype 2 (n = 127), of which 62 genes were overexpressed 

and 29 were underexpressed. The top ten overexpressed 
genes with an FDR adjusted p value < 0.05 were PRTN3, 
ELANE, CTSG, DEFA3, DEFA4, CCL4, HBB, G0S2, 
NEIL3, and CEP55. The top ten under-expressed genes 
were SCRT2, PRLR, ADGRE3, FSTL4, LGALSL, HCAR2, 
RAMP3, OLIG2, SHE, and CMTM2. Biological path-
ways enriched among patients with Phenotype 1 relative 

Table 1  (continued)

Derivation set (n = 646) p value Validation set (n = 425) p value

Phenotype 1 (n = 126) Phenotype 2 (n = 520) Phenotype 1 (n = 71) Phenotype 2 (n = 354)

Day 7 Mechanical ventilation† 51/70 (72.8%) 164/278 (58.9%) 0.033 30/39 (76.9%) 101/173 (58.3%) 0.031

Day 7 CRRT​† 27/70 (38.6%) 22/278 (7.9%) < 0.001 10/39 (25.6%) 12/173 (6.9%) < 0.001

Day 1–7% positive fluid balance 6.6 (1.9, 16.6%) 4.9 (0.0, 11.7) 0.016 8.3 (1.7, 17.8) 4.9 (0.7, 11.6) 0.008

Any ECMO 2 (1.6%) 1 (0.2%) 0.039 1 (1.4%) 1 (0.3%) 0.345

Corticosteroids 82 (65.1%) 279 (53.7%) 0.020 53 (74.7%) 187 (52.8%) < 0.001

PRISM III, Pediatric risk of mortality score-III; VIS, vasoactive inotropic score; P/F, PaO2/FiO2 ratio; LOS, length of stay; CRRT, Continuous renal replacement therapy; 
ECMO: Extracorporeal membrane oxygenation. ✝Indicates data only among patients alive and remaining in the PICU on Day 7 after enrollment

Table 2  Logistic regression analyses to test association between latent profile phenotypes across derivation and validation sets and 
pediatric septic shock outcomes

*All models adjusted for era of enrollment (2013–2023 vs. 2003–2013), age, PRISM III illness severity score, co-morbidity, and immunocompromised status

Variable Unadjusted OR Adjusted OR* p value

Complicated Course

Phenotype 1 (relative to Phenotype 2) 4.8 (3.5, 6.6) 3.9 (2.8, 5.5) < 0.001

7-day mortality

Phenotype 1 (relative to Phenotype 2) 6.7 (4.4, 10.2) 5.6 (3.6, 8.6) < 0.001

28-day mortality

Phenotype 1 (relative to Phenotype 2) 5.6 (3.9, 8.1) 4.4 (3.0, 6.5) < 0.001

Table 3  Unadjusted, inverse probability treatment weighting (IPTW) adjusted association, and overall interaction between latent 
profile phenotypes and common sepsis treatments on odds of complicated course in the cohort

*Inverse probability treatment weighting (IPTW) models adjusted for age, PRISM-III score, vasoactive inotropic score (VIS), co-morbidity, and immunocompromised 
status

Treatment effect Phenotype 1 Phenotype 2 P interaction

OR (95% CI) p value OR (95% CI) p value

> 100 ml/kg fluid

 Unadjusted 2.67 (1.47–4.86) 0.0013 1.91 (1.39–2.63) < 0.0001

 IPTW Adjusted 2.93 (1.95–4.38) < 0.0001 1.75 (1.40–2.17) < 0.0001 0.184

≥ 2 Antimicrobials

 Unadjusted 3.53 (1.34–9.31) 0.0108 0.91 (0.55–1.52) 0.7294

 IPTW Adjusted 3.02 (2.00–4.56) < 0.0001 0.82 (0.66–1.01) 0.0577 0.016

≥ 2 Vasoactives

 Unadjusted 2.44 (1.35–4.41) 0.0031 1.91 (1.41–2.59) < 0.0001

 IPTW Adjusted 1.63 (1.07–2.48) 0.0218 1.66 (1.34–2.05) < 0.0001 0.624

Corticosteroids use

 Unadjusted 2.88 (1.55–5.37) 0.0008 1.7 (1.25–2.31) 0.0007

 IPTW Adjusted 2.55 (1.70–3.85) < 0.0001 1.49 (1.20–1.85) 0.0003 0.102
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to those Phenotype 2 corresponded to activation of the 
immune system, cytokine signaling, neutrophil degranu-
lation, and antimicrobial peptides. CIBERSORT analyses 
identified that only the proportion of neutrophils was 
lower among patients with Phenotype 1 relative to Pheno-
type 2. The volcano plot and results of biological pathway 
analyses are shown in Fig. 3.

As shown in Fig.  4, the Kwok et  al. [26] single-cell 
RNAseq dataset had 10 cell types from critically ill adult 
patients with sepsis. Expression data of 58 over-expressed 
and 19 under-expressed genes identified through DEG 
analyses distinguishing latent profile phenotypes were 
available in the single-cell dataset and detailed in the 
Online Supplement. Genes upregulated among patients 
with Phenotype 1 were expressed primarily by a small 
population of developing neutrophils, and to a lesser 
extent by CD14 and CD16 positive monocytes, CD4 and 
CD8 T-cells, natural killer (NK cells), and plasmablasts. 
Downregulated genes among patients with Phenotype 1 
were expressed primarily by mature neutrophils. 

A total of 233 patients in the study had data on estab-
lished gene-expression endotypes and newly derived 
latent profile phenotype assignments. There was no sta-
tistically significant association between endotypes and 
phenotypes in the cohort (Pearson χ2 test, p value of 
0.08). Figure  5 shows the Kaplan Meier survival curves 
based on gene-expression endotype (Endotype  A vs. B), 

latent profile phenotype (Phenotype 1 vs. Phenotype 
2), and an integrated scheme where we considered all 
four possible combinations of endotype and phenotype 
assignment. Patients classified as Endotype B & Phe-
notype 2 had the lowest mortality risk. Relative to this 
group, those classified as Endotype A & Phenotype 1 had 
an over 12-fold (HR 12.5, 95% CI 3.8, 41.2, p < 0.001) 
higher hazard of mortality; those with Endotype B & Phe-
notype 1 had a nearly fivefold higher hazard of mortality 
(HR; 4.8, 95% CI 1.1, 20.1, p = 0.032); those with Endotype 
A & Phenotype 2 had an over threefold higher hazard 
of mortality (HR 3.6, 95% CI 1.2, 11.1, p = 0.024). There 
were no statistically significant differences in mortality 
between the latter two subclasses.

Discussion
In this study, we derived and internally validated two 
pediatric septic shock phenotypes, identified through 
latent profile analyses, of high prognostic relevance. 
With one exception, there was no evidence for hetero-
geneous responses to common sepsis treatments on 
clinical outcomes between phenotypes. Transcriptomic 
analyses revealed overexpression of genes implicated 
in innate immune response among those belonging 
to Phenotype 1. Our data suggest a predominance of 
developing neutrophils among this high-risk subset of 
patients. We did not identify a statistically significant 

Fig. 3  Transcriptomic assessment of latent profile phenotypes of pediatric septic shock. a Volcano plot showing differentially expressed 
genes among patients belonging to Phenotype 1 relative to those Phenotype 2 using a log2(fold change) threshold of ± 0.25. Overexpressed 
genes are shown in red. Underexpressed genes are shown in blue. The top 10 most differentially expressed genes are labeled including matrix 
metallopeptidase-15 (MMP15), chemokine ligand 20 (CCL20), proteinase 3 (PRTN3), neutrophil expressed elastase (ELANE), cathepsin G 
(CTSG), defensin 3 (DEFA3), defensin 4 (DEFA4), chemokine ligand 4 (CCL4), scratch family transcriptional repressor 2 (SCRT2), and adhesion G 
protein-coupled receptor E3 (ADGRE3). b Biologically enriched pathways among patients with Phenotype 1 relative to those in Phenotype 2. The 
y-axis represents the REACTOME pathways enriched for the significantly overexpressed genes. The x-axis represents the gene-ratio (%). The size 
of the circle indicates gene counts. The darker hue of color indicates a lower adj. p value
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overlap between established gene-expression endotypes 
and the newly derived latent profile phenotypes. Finally, 
we demonstrated the prognostic relevance of patient 
endophenotypes based on an integrated subclassifica-
tion scheme that considered both gene-expression-
based endotypes and clinico-biomarker  latent profile 
phenotypes.

The phenotypes identified in our study share similari-
ties with the hyper- and hypo-inflammatory phenotypes 
originally described by Calfee and colleagues among 
adults with ARDS [13, 14], and subsequently repro-
duced among other adult [30] and pediatric patients [16]; 
molecular phenotypes of acute kidney injury detailed 
by Bhatraju et  al. among adults [31]; and most recently 
those identified by Sinha et al. among septic adults [18]. 
Our data provide further support of the reproducibility 
of latent profile analyses as a methodologic approach to 
identify phenotypes, irrespective of assigned syndromic 

diagnoses, across the spectrum of the host developmen-
tal age.

We provide evidence for the prognostic utility of latent 
profile phenotypes with Phenotype 1 being independently 
associated with significant risk of poor clinical outcomes 
upon adjusting for multiple potential confounders. Unlike 
previous studies, beyond the robust prognostic implica-
tions, we did not find evidence of HTE of common sepsis 
therapies on clinical outcomes among phenotypes. The 
exception to this was that those patients with classified 
as Phenotype 1 who received ≥ 2 antimicrobial therapies 
had a significantly higher rate of complicated course than 
those belonging to Phenotype 2 who received ≥ 2 anti-
microbial therapies. While this observation may merely 
reflect the fact that Phenotype 1 represented the sick-
est subset of patients, a few additional considerations 
are warranted. Phenotype 1 may represent patients with 
an inadequate source control of infection, those with 

Fig. 4  Inference of cell subsets underlying latent profile phenotypes identified in the study. The figure shows the Uniform Manifold Approximation 
and Projection (UMAP) of the publicly available single-cell transcriptomic dataset from critically ill adults with sepsis published by Kwok et al. 
a Ten cell subsets were identified in the single-cell dataset. (1) Developing neutrophils (pink), (2) Mature neutrophils (red), (3) Cluster differentiation 
(CD) 14 positive monocytes (light gray), (4) CD16 positive monocytes (black), (5) B lymphocytes (deep purple), (6) PB: Plasmablasts (purple), (7) CD4 
positive T lymphocytes (moss green), (8) CD8 positive T lymphocytes (yellow), (9) NK: Natural killer cells (blue), and (10) Platelets (brown).  
b Upregulated genes among patients with Phenotype 1 shown in red, c downregulated genes among patients with Phenotype 1 shown in red, 
and d composite gene score representing geometric mean of upregulated minus downregulated genes among patients belonging to Phenotype 1. 
The gene score was scaled as shown in the legend. Cells in red represent those with a high composite gene score indicating that they contributed 
predominantly to over-expressed genes among patients with Phenotype 1. In contrast, cells in blue represent those with a low composite gene 
score indicating that they contributed predominantly to genes underexpressed among patients with Phenotype 2 
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insufficient therapeutic drug levels of antimicrobials, 
and patients with an exaggerated host innate immune 
response, despite appropriate antimicrobial coverage. Of 
note, our findings mirror those of Sinha et al. where the 
authors identified that septic adults with a hyperinflam-
matory phenotype had higher rates of bacteremia than 
those without [18]. Pending validation, future studies are 
needed to determine whether precision antibiotic dosing, 
targeted use of extra-corporeal blood purification strate-
gies, and or modulation of the innate immune response 
can be used to  improve outcomes among patients with 
Phenotype 1.

We did not identify a differential response to corticos-
teroids among phenotypes unlike that observed among 
adults with COVID-19 [15]. The explanations for this 
difference are likely multifactorial including the relative 
homogeneity among patients with COVID-19 compared 
to the cohort studied, differences in pathogen type -viral 
versus bacterial induced host response, and compart-
mentalized effects of corticosteroids based on primary 
cells affected—lung versus peripheral blood. In addition, 
Sinha and colleagues demonstrate differential responses 
to recombinant activated protein C (rAPC) versus pla-
cebo among phenotypes when re-examining results of 
the PROWESS-SHOCK trial data [18]. While we demon-
strate evidence of coagulopathy among those with Phe-
notype 1, we cannot comment on whether latent profile 
phenotypes among children would be expected to have 
a similar biological response as with adults, given the 
developmental differences in host response [32].

Transcriptomic analyses revealed activation of neutro-
phil pathways consistent with gene-expression studies 
comparing phenotypes of adult ARDS and sepsis [33–
35]. Taken together CIBERSORT analyses and the single-
cell composite gene-score data suggest a higher turnover 
of neutrophils among those with Phenotype 1 compared 
to those Phenotype 2. These data are intuitive to the clini-
cian and congruent with findings from single-cell multi-
omics studies among septic adults, wherein patients with 
the worst clinical outcomes were characterized by emer-
gency granulopoiesis and the presence of developing 
neutrophils [26]. Finally, our data suggest a preponder-
ance of additional cell subsets including CD14 and CD16 
monocytes, T- and NK-cells, and plasmablasts among 
Phenotype 1 patients. While we cannot confidently speak 
to whether the phenotypes identified represent ‘treat-
able traits’ [36], our data indicate that the groups identi-
fied are biologically distinct. Future studies are necessary 
to determine the mechanistic link between cell subtypes 
and phenotypes, and whether targeted modulation of 
cell subsets can be used as a novel therapeutic approach 
against sepsis.

We did not identify a statistically significant overlap 
between established gene-expression-based endotypes 
and latent profile phenotypes. As such our data suggest 
that, fundamentally, these two approaches are sampling 
different, albeit vitally important, biological facets of the 
host response in critical illness. While the former broadly 
reflects the adaptive arm of the host immune response, 
the latter informs the innate arm of the host response, 

Fig. 5  From left to right, Kaplan Meier survival curves based on a established gene-expression endotype (A in red vs. B in blue); Patients 
with Endotype A had a higher hazard of 28-day mortality compared to Endotype B (HR 3.7 (95% CI 1.5, 8.7), p = 0.003), b latent profile phenotype 
(Phenotype 1 in orange and Phenotype 2 in brown); Patients with Phenotype 1 had a higher hazard of 28-day mortality compared to those belonging 
to Phenotype 2 (HR 4.5 (95% CI 1.9, 10.6), p < 0.001). c Integrated subclass assignment scheme that considered both the endotype and phenotype 
assignment among patients including all four possible combinations: (i) Endotype A/Phenotype 1 (deep purple), (ii) Endotype B/Phenotype 1 (deep 
plum), (iii) Endotype A/Phenotype 2 (light magenta), (iv) Endotype B/Phenotype 2 (orange). Patients assigned as both Endotype B and Phenotype 2 had 
the lowest mortality risk. Compared to this group, patients classified as Endotype A & Phenotype 1 had a higher hazard of mortality (HR 12.5 (95% 
CI 3.8, 41.2), p < 0.001). Patients classified as Endotype B & Phenotype 1 had a hazard ratio of mortality of 4.8 (95% CI 1.1, 20.1, p = 0.032). Patients 
classified as Endotype A & Phenotype 2 had a hazard ratio of mortality of 3.6 (95% CI 1.2, 11.1), p = 0.024. There were no statistically significant 
differences between the latter two groups
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including microvascular endothelial function. Therefore, 
we believe that the integrated classification scheme of 
endophenotypes detailed in our study is of clinical and 
potential therapeutic relevance. For instance, patients 
classified as Endotype A & Phenotype 1 may represent an 
extreme endophenotype with a significantly increased 
risk of mortality. This is consistent with the observation 
that critically ill patients with repressed adaptive- and 
overactive innate- immune responses have been consist-
ently associated with the worst clinical outcomes [37]. As 
such these patients would be expected to be poor candi-
dates to receive corticosteroids based on their endotype. 
However, they may potentially benefit from targeted 
interventions or immunomodulation to quell the innate 
immune response based on their phenotypic assignment. 
Furthermore, although patients with Endotype B & Phe-
notype 1 and Endotype A & Phenotype 2 endophenotypes 
had comparably elevated risk of mortality, the therapeu-
tic implication of such subclass assignment is expected 
to be diametrically opposite between groups. Although 
speculative, pending validation in cohort studies and 
clinical trials, such an integrated subclassification scheme 
holds the potential to inform better alignment of inter-
ventions among those critically ill by providing a compre-
hensive understanding of patient-level pathobiology [38].

Our study has several limitations: (1) the observational 
nature of the study limits precludes inference of causal-
ity; (2) despite accounting for era of patient enrollment in 
our multivariate models, the long study period is a limi-
tation; (3) data missingness especially for biomarker data 
is a limitation. However, this was mitigated by the use of 
robust imputation approaches and sensitivity analyses, 
the latter demonstrating unchanged associations with 
exclusion of imputed variables in the validation dataset. 
(4) latent profile phenotypes were based on day 1 data. 
However, given the temporal and dynamic nature of the 
host response, it is conceivable that these class assign-
ments may be subject to change over time; (5) external 
validation dataset to demonstrate the reproducibility of 
our SVM model was lacking. Moreover, we did not seek 
to develop a classifier that used a parsimonious set of 
predictor variables as this is better achieved in external 
validation sets; (6) given the observational nature of the 
underlying cohort, interaction effect based upon receipt 
of ≥ 2 antimicrobials among phenotypes on odds of com-
plicated course is speculative. Although we attempted to 
address confounding by indication by using IPTW analy-
ses, these data should be interpreted with caution. (7) 
the number of patients with Phenotype 1 among whom 
transcriptomic data was available was limited, which 
may have contributed to fewer DEGs being identified; 
(8) the integrated single-cell data used as reference was 
largely comprised of samples obtained from adults with 

sepsis rather than pediatric patients. Further, prospec-
tive studies that simultaneously capture phenotypic and 
single-cell transcriptomic data are necessary to directly 
identify cell subsets underlying pediatric critical illness 
subclasses; (9) the number of patients in whom both 
established gene-expression endotype and latent profile 
phenotype class assignments were available was limited; 
(10) both endotype and phenotype assignments were 
based on data generated within 24  h of meeting septic 
shock criteria and were assumed to reflect baseline dif-
ferences in host response. However, a significant propor-
tion of patients in the cohort received corticosteroids. It 
remains plausible that the biological differences in host 
response among subclasses may reflect those in response 
to corticosteroids, rather than baseline differences.

Conclusions
In this study, we demonstrate the existence of two phe-
notypes among children with septic shock identified 
through latent profile analyses with high prognostic 
value. We provide evidence of upregulated host innate 
responses including microvascular endothelial dysfunc-
tion among those with Phenotype 1 with transcriptomic 
evidence of high turnover of neutrophils. The phenotypes 
did not show overlap with established gene-expression-
based endotypes in pediatric septic shock nor dem-
onstrate a differential response to corticosteroids. We 
integrated these two promising classification schemes to 
delineate novel sepsis ‘endophenotypes’. Pending valida-
tion, such an approach may allow for therapeutic drug 
selection informed by a comprehensive understanding of 
patient-level pathobiology.
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