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Integrative multi-omics analysis unravels 
the host response landscape and reveals 
a serum protein panel for early prognosis 
prediction for ARDS
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Chen Chen2, Wen Ma5, Xueling Wu6*, Zhenju Song1,2,7* and Weibing Wang1,5* 

Abstract 

Background The multidimensional biological mechanisms underpinning acute respiratory distress syndrome (ARDS) 
continue to be elucidated, and early biomarkers for predicting ARDS prognosis are yet to be identified.

Methods We conducted a multicenter observational study, profiling the 4D-DIA proteomics and global metabo-
lomics of serum samples collected from patients at the initial stage of ARDS, alongside samples from both disease 
control and healthy control groups. We identified 28-day prognosis biomarkers of ARDS in the discovery cohort 
using the LASSO method, fold change analysis, and the Boruta algorithm. The candidate biomarkers were validated 
through parallel reaction monitoring (PRM) targeted mass spectrometry in an external validation cohort. Machine 
learning models were applied to explore the biomarkers of ARDS prognosis.

Results In the discovery cohort, comprising 130 adult ARDS patients (mean age 72.5, 74.6% male), 33 disease 
controls, and 33 healthy controls, distinct proteomic and metabolic signatures were identified to differentiate ARDS 
from both control groups. Pathway analysis highlighted the upregulated sphingolipid signaling pathway as a key 
contributor to the pathological mechanisms underlying ARDS. MAP2K1 emerged as the hub protein, facilitating 
interactions with various biological functions within this pathway. Additionally, the metabolite sphingosine 1-phos-
phate (S1P) was closely associated with ARDS and its prognosis. Our research further highlights essential pathways 
contributing to the deceased ARDS, such as the downregulation of hematopoietic cell lineage and calcium signaling 
pathways, contrasted with the upregulation of the unfolded protein response and glycolysis. In particular, GAPDH 
and ENO1, critical enzymes in glycolysis, showed the highest interaction degree in the protein–protein interaction 
network of ARDS. In the discovery cohort, a panel of 36 proteins was identified as candidate biomarkers, with 8 
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proteins (VCAM1, LDHB, MSN, FLG2, TAGLN2, LMNA, MBL2, and LBP) demonstrating significant consistency in an inde-
pendent validation cohort of 183 patients (mean age 72.6 years, 73.2% male), confirmed by PRM assay. The protein-
based model exhibited superior predictive accuracy compared to the clinical model in both the discovery cohort 
(AUC: 0.893 vs. 0.784; Delong test, P < 0.001) and the validation cohort (AUC: 0.802 vs. 0.738; Delong test, P  = 0.008).

Interpretation Our multi-omics study demonstrated the potential biological mechanism and therapy targets 
in ARDS. This study unveiled several novel predictive biomarkers and established a validated prediction model 
for the poor prognosis of ARDS, offering valuable insights into the prognosis of individuals with ARDS.

Keywords Proteomics, Metabolomics, Multi-omics, ARDS, Machine learning, Prognosis model

Introduction
ARDS represents a prevalent manifestation of critical 
illness, arising from severe infections, major injuries, 
or the inhalation of harmful irritants [1]. Research indi-
cates that ARDS affects approximately 10% of patients in 
intensive care units (ICUs), with mortality reaching up to 
46% and even 70% during the coronavirus disease 2019 
(COVID-19) pandemic [2]. Consequently, there is a need 
to seek effective treatments and precise prognostic meth-
ods to enhance ARDS patient outcomes, a need more 
intensified by the COVID-19 crisis. However, predicting 
ARDS prognosis in the early days after ARDS diagnosis 
is challenging due to the high variability in the underlying 
mechanisms of ARDS. The systemic response alterations 
observed in ARDS can be attributed to various factors, 
including pathogen and injury exposure, genetic suscep-
tibility, and immune responses [3]. These factors may 
influence protein activity and the downstream metabo-
lites that drive disease progression [4–6]. Therefore, it is 
crucial to investigate the potential association between 
host-derived proteins and metabolites circulating in the 
bloodstream with the pathogenesis and advancement of 
ARDS.

The integration of multi-omics approaches, particularly 
the combination of proteomics and metabolomics, eluci-
dates the interactions across different biological system 
layers, as demonstrated in studies on cardiomyopathy 
[7], non-small cell lung cancer [8], hepatitis C infection 
[9], etc. Previous studies have utilized serum proteins or 
metabolites to investigate infectious diseases. For exam-
ple, one study identified proteins capable of accurately 
distinguishing and predicting COVID-19 outcomes 
[5]. Jacob et al. used proteomics and metabolomics to 
identify early predictive and pathogenic signatures of 
Staphylococcus aureus bacteremia [10]. Yi Wang and his 
colleagues investigated new diagnosis biomarkers and 
potential mechanisms in pediatric severe community-
acquired pneumonia using proteomics combined with 
metabolomics [11]. However, the interplay between pro-
teomic and metabolic profiles in the progression of adult 
ARDS and their collective role from a holistic perspec-
tive remains underexplored. Moreover, blood biomarkers 

have gained significant interest in ARDS investigations 
in recent years [12], showing promise in enhancing diag-
nosis, prognostication, and management strategies for 
ARDS, either independently or in conjunction with phys-
iological parameters.

The primary objective of this study is to utilize pro-
teomics and metabolomics to investigate the host 
response in ARDS within a discovery cohort comprising 
ARDS onset, disease, and healthy controls. This approach 
enabled a comprehensive profiling of biological char-
acteristics and potential mechanisms associated with 
ARDS. The second objective is to screen the candidate 
biomarkers of ARDS prognosis based on proteomics and 
machine learning methods. Then, we employed the Par-
allel Reaction Monitoring (PRM) method to validate the 
prognosis biomarkers at ARDS onset in an independent 
cohort. The multi-omic analysis generated in this study 
provided a global overview of the molecular changes, 
which may provide useful insight into the therapy and 
prognosis of ARDS.

Material and methods
Ethical approval
The study involving human participants was reviewed 
and approved by the Ethical Committee of Zhongshan 
Hospital, Fudan University, China (Ethical approval num-
ber: B2023-029R), Renji Hospital, Shanghai Jiaotong Uni-
versity School of Medicine, China (No. LY2023-096-B), 
Minhang Hospital, Fudan University, China (No. 2022-
041-01K), and Pudong Hospital, Fudan University, China 
(No. WZ-22). Written informed consent to participate 
in this study was provided by the participants or their 
relatives.

Collections and preparation of clinical specimen
Discovery cohort
Single-center observational study. ARDS patients were 
recruited from the ICU of Zhongshan Hospital between 
December 2022 and September 2023. The ARDS cohort 
included patients aged over 18 years who were admitted 
to the ICU and clinically diagnosed with ARDS according 
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to the Berlin definition [13]. Serum samples were col-
lected within 48 hours after diagnosis. Patients whose 
diagnosis of ARDS was agreed upon by at least two out 
of three clinical experts were included. A comprehensive 
analysis of clinical data was performed, utilizing patient 
medical records to gather information on routine blood 
tests, liver function tests (including alanine aminotrans-
ferase [ALT] and aspartate aminotransferase [AST]), 
total and conjugated bilirubin (STB and CB), renal func-
tion indicators (blood urea nitrogen [BUN] and creati-
nine [Cr]), albumin [Alb], C-reactive protein [CRP)], 
procalcitonin [PCT], and coagulation profiles (fibrinogen 
[Fg], prothrombin time [PT], activated partial thrombo-
plastin time [APTT], and D-dimer). The Sepsis-related 
Organ Failure Assessment (SOFA) score and  PaO2/FiO2 
ratio (P/F ratio) were evaluated concurrently. Comorbidi-
ties were also collected. For comparative analysis, disease 
controls (DC) and healthy controls (HC) were recruited 
and matched with the ARDS cohort based on age and 
sex. The inclusion criteria for the DC group were as fol-
lows: patients aged > 18 years, patients admitted to the 
ICU and had risk factors (sepsis, pneumonia, etc.) of 
ARDS, serum samples will be collected within the first 
48 hours of ICU admission. We finally chose who did 
not progress to ARDS during the hospital stay. Patients 
who transferred to the other hospital were excluded. The 
HC group was derived from individuals registered at the 
Health Check Center of Zhongshan Hospital. HC con-
trols were selected based on the absence of acute diseases 
such as infection and the lack of significant abnormalities 
on chest radiography. The control groups were matched 
for age and sex with the ARDS patients. The details for 
inclusion and exclusion for ARDS, DC, and HC groups 
are in the Supporting Information (Fig. S1).

Validation cohort
Multi-center validation. Validation samples were from 
the ICUs of the other three hospitals. Serum samples 
from patients diagnosed with ARDS were collected 
within 48 hours after the onset of ARDS. All venous 
blood was collected from participants and processed 
within 8 hours to isolate serum. The serum was separated 
by centrifugation at 300 × g for 10 min and stored at − 
80 °C until testing.

Proteomics sequencing and data preprocessing
Proteins were enriched from serum using magnetic 
nanomaterials [14]. The mass spectrometer was operated 
in data-independent acquisition (DIA) mode. The DIA 
raw data were processed using Spectronaut Pulsar 17.5 
software (Biognosys) against the Uniprot-Homo sapiens-
9606-2023.2.1.fasta database. The details of proteomics 

sequencing and data preprocessing were in Supporting 
Information.

Metabolomics sequencing and data preprocessing
A Dionex Ultimate 3000 RS UHPLC fitted with 
Q-Exactive plus quadrupole-Orbitrap mass spectrom-
eter equipped with heated electrospray ionization (ESI) 
source (Thermo Fisher Scientific, Waltham, MA, USA) 
was used to analyze the metabolic profiling in both ESI 
positive and ESI negative ion modes. The original liq-
uid chromatography coupled with high-resolution mass 
spectrometry (LC-MS) data was processed by software 
Progenesis QI V2.3 (Nonlinear, Dynamics, Newcastle, 
UK) for baseline filtering, peak identification, integral, 
retention time correction, peak alignment, and normal-
ization. The main parameters of 5 ppm precursor tol-
erance, 10 ppm product tolerance, and 5% production 
threshold were applied. Compound identification was 
based on the precise mass-to-charge ratio (M/z), sec-
ondary fragments, and isotopic distribution using The 
Human Metabolome Database (HMDB), Lipidmaps 
(V2.3), Metlin, EMDB, PMDB, and self-built databases 
to do qualitative analysis. The details of data preproc-
essing were in Supporting Information.

Validation of candidate biomarkers using PRM assay
To evaluate the candidate biomarkers of prognosis, 
a unique PRM assay was generated, incorporating as 
many candidate proteins as possible. For the proteome 
profiling samples, the peptide was examined utilizing 
a Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass 
Spectrometer (Thermo Fisher Scientific), integrated 
with a state-of-the-art high-performance liquid chro-
matography system (EASY nLC 1200, Thermo Fisher 
Scientific). The experimental details of the PRM assay 
were in Supporting Information.

Bioinformatic analysis
Data quality control and pre‑processing of proteomics
The proteomics data analysis encompassed the follow-
ing key procedures mentioned in former studies [15, 
16]. Step 1: Screen proteins with unique peptides ≥ 1 
for further analysis. Step 2: Proteins with more than 
50% null values in three groups were excluded. Step 
3: For proteins whose effective value is ≥  50% in one 
group, the empty values were filled with the mean value 
of the group. The remaining missing values were filled 
using half of the sample’s minimum value. Step 4: high-
quality proteins were retained by Log2 transforma-
tion and z-normalization for subsequent data analysis. 
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Specifically, 2669 proteins were collected for down-
stream statistical and bioinformatics analysis.

Screening of differentially abundant proteins (DAP), 
differentially abundant metabolites (DAM), and enrichment 
analysis
Protein abundance changes in different sample groups 
were conducted through principal component analysis 
(PCA). For circulating proteomic data from the discovery 
cohort, the fold change (FC) value was derived from the 
ratio of ARDS to non-ARDS cases. Statistically significant 
differentially abundant proteins (DAPs) and differentially 
abundant metabolites (DAMs) were identified based on 
the criteria of FC ≥ 2 or FC ≤ − 2, and P < 0.05. P-values 
were adjusted for false discovery rate (FDR) using Benja-
mini and Hochberg. We performed Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment  to investi-
gate further potential pathological and biological mecha-
nisms associated with ARDS. The functional enrichment 
analysis of KEGG was performed with the ClusterProfiler 
package in R. KEGG pathway database (https:// www. 
kegg. jp/ kegg/ pathw ay. html) was applied for metabolites 
pathway enrichment analysis.

Utilizing the results from KEGG pathways, we iden-
tified key interactions between enriched proteins and 
metabolites in ARDS. These elements were systemati-
cally linked to their corresponding pathways to elucidate 
the molecular mechanisms potentially influencing ARDS 
development. This linkage is visually represented through 
network diagrams, created by Cytoscape [17].

Protein‑protein interaction network analysis
The protein-protein interactions (PPIs) were obtained 
from the STRING database [18]. Differentially abun-
dant proteins (P-value < 0.05) were mapped to PPIs to 
generate the DAP PPI network in ARDS. The Cytoscape 
software [17] was used to visualize the network. The 
Cytoscape plugin cytoHubba [19] was utilized to calcu-
late the degree in the PPI network.

Gene set enrichment analysis (GSEA) analysis
For the GSEA enrichment analysis, we utilized the 
Molecular Signatures Database (MSigDB), specifically 
focusing on the KEGG gene set. We designated an FDR 
threshold of 0.05 as the boundary for statistical sig-
nificance. The process for computing the Normalized 
Enrichment Score (NES) within the GSEA framework 
entails the prioritization of proteins based on their sta-
tistical relevance, ranging from the most to the least 
significant, succeeded by the examination of the distribu-
tion pattern of the proteins associated with each gene set 

throughout the prioritized list. The integrated abundance 
of proteins was then calculated by utilizing the Cluster-
Profiler package of R [20].

Constructing a prognostic model based on the early serum 
proteome
We constructed three classification models to predict 
adverse outcomes of ARDS: first, screened candidate 
proteins were used to construct a protein-based model. 
Least absolute shrinkage and selection operator (LASSO) 
and Boruta methods were used to screen the candidate 
proteins in the discovery cohort, then combined with 
DAPs, candidate biomarkers with unique peptides ≥  3 
were proposed for further targeted proteomics analysis. 
Second, to compare the protein model with current clini-
cal practice, a clinical risk model was constructed and 
optimized. The clinical parameters were selected by the 
LASSO method among the lab tests, SOFA, P/F ratio, 
and comorbidity. A third combined model was formed 
by stacking the clinical prognostic parameters with the 
protein parameters. Five machine learning methods, 
Naïve Bayes (Bayes), Random forest (RF), Generalized 
Linear Model (Glm), Supporting Vector machine (SVM), 
and Gradient Boosting Machine (GBM) were used in the 
three classification models. Discrimination performance 
was assessed using the receiver operating characteristic 
(ROC) curve with an area under the curve (AUC), sen-
sitivity, and specificity. The DeLong test was strategically 
utilized to statistically compare the AUCs across different 
models, providing a robust assessment of their discrimi-
native capabilities. To prevent overfitting, ‘10-fold cross-
validation’ was employed to assess the performance of 
machine learning methods.

Statistical analysis
Mann–Whitney U tests or Kruskal–Wallis tests were 
used for comparisons of continuous variables, whereas 
Chi-square tests were used for categorical variables. Cor-
relation analysis was assessed by Spearman correlation. A 
P value of < 0.05 (two-tailed) was considered statistically 
significant Benjamini–Hochberg correction for multiple 
testing was applied as appropriate.

Results
Participants characteristics
The characteristics of the validation and discovery 
cohorts are in Table  1. There was no significant dif-
ference in the ARDS etiologies between the discovery 
and validation cohorts. For the discovery cohort, the 
demographic and clinical characteristics of 130 ARDS 
cases, including 54 survived ARDS and 76 deceased 
ARDS are presented in Table 2. At baseline, the mean 

https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
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age of the ARDS group was 72.5 (SD, 11.4) years, and 
74.6% were male. After the diagnosis of ARDS, non-
survivors showed decreased P/F ratio, PLT, and Alb 

levels, alongside increased SOFA scores, BUN, and 
AST, compared to the survivors. Gender distribu-
tion and age were matched in DC and HC with ARDS 

Table 1 Baseline characteristics of the participants in the discovery and validation cohorts

P1: Comparison between ARDS patients in the discovery cohort and validation cohort; P2: Comparison between ARDS patients in the discovery cohort and Disease 
control

*P < 0.05, **P < 0.01, ***P < 0.001

ARDS in the 
discovery cohort 
(N = 130)

ARDS in the 
validation cohort 
(N = 183)

Disease control (N = 33) Healthy 
control 
(N = 33)

P1 P2

Age (mean, SD) 72.5 (11.4) 72.6 (14.3) 72.1 (11.6) 72.0 (8.2) 0.889 0.883

Male (n, %) 97 (74.6) 134 (73.2) 25 (75.8) 25 (75.8) 0.783 0.774

SOFA 6 [4–9] 4 [3–7] 3 [2, 3] – 0.001**  < 0.001***

P/F ratio 109 [81–151] 150.0 [90.0–239.0] 265 [203–354] – 0.001**  < 0.001***

RBC (*1012/L) 3.66 [2.90–4.11] 3.91 [3.28–4.28] 4.10 [3.77–4.50] – 0.099 0.367

Hb (g/L) 111.0 [90.0–128.0] 115.0 [96.0–131.0] 127.5 [113.3–137.3] – 0.167 0.657

WBC (*109/L) 10.35 [7.65–14.30] 10.51 [7.36–14.50] 7.2 [5.4–11.2] – 0.761 0.676

NEU (*109/L) 9.30 [6.60–12.45] 9.0 [6.2–13.0] 5.3 [3.7–9.7] – 0.968 0.352

LYM (*109/L) 0.4 [0.2–0.6] 0.6 [0.4–1.0] 0.8 [0.5–1.1] – 0.001** 0.234

PLT (*109/L) 153.5 [82.5–229.3] 155.0 [110.0–222.0] 191.0 [151.5–254.0] – 0.545 0.005**

ALT (U/L) 27.0 [18.0–45.3] 30.0 [18.0–53.0] 30.0 [22.0–41.0] – 0.282 0.561

AST (U/L) 29.0 [20.0–47.0] 34.0 [21.0–53.0] 28.0 [21.0–50.8] – 0.158 0.041*

STB (µmol/L) 11.4 [7.6–19.2] 11.10 [8.60–20.60] 9.9 [6.7–11.7] – 0.218 0.931

CB (µmol/L) 4.9 [3.1–8.4] 4.10 [3.00–6.70] 3.9 [3.0–5.2] – 0.479 0.938

BUN (mmol/L) 12.15 [9.18–20.98] 9.30 [6.10–15.00] 6.9 [5.5–9.0] – 0.001** 0.049*

Cr (µmol/L) 90.0 [64.8–128.8] 79.0 [63.0–113.0] 77.5 [62.5–97.8] – 0.131 0.097

Alb (g/L) 31.0 [28.0–34.0] 32.0 [29.0–35.0] 34.0 [32.0–37.0] – 0.058 0.006**

CRP (mg/L) 60.3 [19.6–90.0] 64.0 [23.4–145.1] 23.9 [4.4–62.4] – 0.020* 0.109

PCT (ng/mL) 0.29 [0.11–0.61] 0.26 [0.11–1.22] 0.07 [0.03–0.19] – 0.177 0.568

Fg (mg/dL) 419.5 [278.3–540.3] 448.0 [212.0–526.0] 469.0 [269.0–537.0] – 0.655 0.921

PT (second) 13.3 [12.5–14.7] 13.5 [12.6–15.1] 12.6 [12.0–13.3] – 0.456 0.079

APTT (second) 29.3 [26.4–34.3] 29.2 [26.8–35.5] 27.6 [25.9–30.9] – 0.108 0.944

D-dimer (mg/L) 4.22 [1.75–10.7] 2.86 [1.28–8.06] 1.13 [0.57–3.31] – 0.079 0.158

Hypertension (n, %) 87 (66.9) 90 (49.2) 23 (69.7) – 0.002** 0.607

Coronary heart disease (n, %) 30 (23.1) 36 (19.7) 7 (21.2) – 0.468 1.000

Diabetes (n, %) 50 (38.5) 57 (31.1) 14 (42.4) – 0.180 0.054

Cerebrovascular disease (n, %) 23 (17.7) 30 (16.4) 2 (6.1) – 0.763 0.659

Immunosuppression (n, %) 13 (10.0) 20 (10.9) 1 (3.0) – 0.792 0.953

Vasopressor use at enrolment (n, %) 24 (18.5) 34 (18.6) 3 (9.1) – 1.000 0.303

Neuromuscular blockade use at enrol-
ment (n, %)

39 (30.0) 50 (27.3) 0 (0) – 0.696  < 0.001***

Mechanical ventilation (n, %) 118 (90.8) 165 (90.2) 0 (0) – 1.000  < 0.001***

Prone positioning at enrolment (n, %) 70 (53.8) 96 (52.5) 0 (0) – 0.899  < 0.001***

Risk factors (n, %) 0.962 0.882

Pneumonia 96 (73.8) 137 (74.9) 26 (75.8) –

Sepsis 26 (20.0) 36 (19.7) 6 (18.2) –

Other 8 (6.2) 10 (5.5) 1 (3.0) –

Source of infection (n, %) 0.928 0.786

Thorax 96 (73.8) 137 (74.9) 26 (75.8) –

Abdomen 24 (18.5) 34 (18.6) 6 (18.2) –

Other 10 (7.7) 12 (6.5) 1 (3.0) –
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(Table 1). We acquired serum proteome profiles of all 
participants (n = 196) using a DIA strategy and global 
metabolome by the LC-MS method. An overview of 
proteomics and metabolomics workflow is showed 
in Fig.  1A. The independent prospective validation 
cohort incorporating 183 early ARDS patients with 85 

deceased and 98 survived (Fig. 1A and Table S1). The 
characteristics of the validation and discovery cohorts 
were nearly consistent, except for Alb and Cr (Table 2 
and Table S1).

Table 2 Baseline characteristics of the discovery cohort

*P < 0.05, **P < 0.01, ***P < 0.001

Survived ARDS (n = 54) Deceased ARDS (n = 76) P

Age (mean, SD) 72.2 (11.8) 73.7 (11.2) 0.883

Male (n, %) 41 (75.9) 56 (73.7) 0.774

SOFA 5 [4–7] 6 [5–9]  < 0.001***

P/F ratio 122 [95–200] 98 [73–138]  < 0.001***

RBC (*1012/L) 3.55 [2.88–4.00] 3.71 [2.95–4.16] 0.367

Hb (g/L) 108.5 [85.8–128.0] 111.5 [91.3–127.8] 0.657

WBC (*109/L) 9.83 [7.56–12.32] 10.41 [7.66–15.04] 0.676

NEU (*109/L) 8.80 [6.38–10.65] 9.55 [6.70–13.28] 0.352

LYM (*109/L) 0.4 [0.3–0.8] 0.4 [0.2–0.6] 0.234

PLT (*109/L) 189.5 [126.8–249.5] 129.0 [68.0–205.0] 0.005**

ALT (U/L) 29.5 [19.8–54.8] 25.5 [17.0–44.0] 0.561

AST (U/L) 27.0 [20.0–34.0] 34.0 [21.0–54.0] 0.041*

STB (µmol/L) 10.8 [7.7–17.6] 12.3 [7.4–20.1] 0.931

CB (µmol/L) 4.5 [3.2–6.5] 5.5 [3.1–8.6] 0.938

BUN (mmol/L) 11.55 [9.45–15.85] 12.8 [8.6–24.38] 0.049*

Cr (µmol/L) 81.0 [63.5–111.8] 96.0 [67.5–169.8] 0.097

Alb (g/L) 32.0 [29.0–35.3] 30.0 [28.0–32.0] 0.006**

CRP (mg/L) 55.1 [8.6–68.3] 68.9 [26.3–98.3] 0.109

PCT (ng/mL) 0.23 [0.08–0.76] 0.30 [0.11–0.56] 0.568

Fg (mg/dL) 410.5 [249.8–560.3] 427.0 [301.0–538.0] 0.921

PT (second) 13.1 [12.2–14.0] 13.5 [12.7–15.1] 0.079

APTT (second) 29.4 [25.6–34.2] 29.3 [27.0–34.3] 0.944

D-dimer (mg/L) 3.27 [1.42–7.13] 4.41 [2.02–11.50] 0.158

Hypertension (n, %) 38 (70.4) 49 (64.5) 0.607

Coronary heart disease (n, %) 12 (22.2) 18 (23.7) 1.000

Diabetes (n, %) 15 (27.8) 35 (46.1) 0.054

Cerebrovascular disease (n, %) 11 (20.4) 12 (15.8) 0.659

Immunosuppression (n, %) 6 (11.1) 7 (9.2) 0.953

Vasopressor use at enrolment (n, %) 8 (14.8) 16 (21.1) 0.500

Neuromuscular blockade use at enrolment (n, %) 14 (25.9) 25 (32.9) 0.509

Mechanical ventilation (n, %) 48 (88.9) 70 (92.1) 0.553

Prone positioning at enrolment (n, %) 30 (55.6) 40 (52.6) 0.880

ARDS risk factors (n, %) 0.397

Pneumonia 42 (77.8) 54 (71.0)

Sepsis 8 (14.8) 18 (23.7)

Other 4 (7.4) 4 (5.3)

Source of infection (n, %) 0.369

Thorax 42 (77.8) 54 (71.0)

Abdomen 7 (13.0) 17 (22.4)

Other 5 (9.2) 5 (6.6)
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Altered serum proteomic profiling in the ARDS group 
and the biological pathways
After filtering the low abundant proteins, 2669 high-
quality proteins were collected for the data analysis 
(Additional file  1). The median protein number for 196 
samples was 2471 (Fig.  1B–C). The clustering tree indi-
cated the appropriate pre-processing method in this 
study (Fig. 1D). Our preliminary analysis employed PCA 
method to explore the clustering patterns among the 
groups (Fig.  2A and Figs.  S2A–C), which demonstrated 

a distinct separation between ARDS samples and non-
ARDS control groups. A comprehensive differential 
expression analysis revealed that 1069, 319, and 511 pro-
teins were uniquely altered in ARDS vs. HC, ARDS vs. 
DC, and DC vs. HC groups, respectively (Fig. 2B–C and 
Fig. S2D, as detailed in Additional file 2). These findings 
demonstrated the progressive features of serum protein 
alterations correlating with the severity of the disease. 
A critical subset of 214 differentially abundant proteins 
emerged as consistently regulated across ARDS, with 

Fig. 1 Study design overview and summary of the serum proteomic analysis of ARDS, disease control, and health control. A Overview 
of the serum proteomic and metabolic workflow, including cohort construction (survived ARDS: N = 54, deceased ARDS: N = 76, disease control: 
N = 33, and healthy control: N = 33), serum validation cohort (survived ARDS: N = 98 and deceased ARDS: N = 85) and data analysis (proteomic 
and metabolic data). B A number of proteins were identified and quantified in three groups. C The top five most abundant proteins are labeled. D 
The clustering tree of each sample
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16 proteins showing persistent downregulation and 198 
showing upregulation in comparisons of both ARDS vs. 
DC and ARDS vs. HC (Fig. 2F, Additional file 3). Among 
the downregulated proteins, Fetuin B (FETUB) can be 
considered a reliable biomarker for predicting mortal-
ity in Staphylococcus aureus bacteremia (SaB) patients 
because deceased FETUB levels correlate strongly with 
poor clinical outcomes in patients with SaB [10]. Par-
aoxonase 1 (PON1), negatively associated with higher 
mortality of sepsis [21], underlines significance in ARDS 
pathology compared to DC and HC groups (Fig.  2G). 
Conversely, certain proteins, including Surfactant Pro-
tein D (SFTPD) and Signal Transducers and Activators of 
Transcription 3 (STAT3) et al., were elevated (Additional 
file 3). Moreover, SFTPD, a circulating epithelial marker 

[22], and STAT3, an activator of macrophages and neu-
trophils [23], were implicated as potential key contribu-
tors to the pathogenesis of ARDS.

Pathway analysis identified nine distinct pathways 
that were specifically modulated in ARDS (Fig.  2D–E 
and Fig.  S3). Notably, the oxidative phosphorylation 
pathway emerged as significantly upregulated in com-
parisons of ARDS with both DC (NES = 1.615, P = 
0.001) and HC (NES = 1.582, P < 0.001), revealing its 
pivotal role in the energetic metabolism associated with 
ARDS (comprehensive pathway listings are available in 
Additional file  4 and Supporting Information). Fig.  2H 
illustrated the enriched proteins within these nine over-
lapping pathways, all exhibiting increased serum levels in 
ARDS cases. Among the highlighted proteins, Succinate 

Fig. 2 Differentially abundant proteins and functional alterations in ARDS. A PCA discriminates ARDS patients from non-ARDS subjects. The % 
value indicates the explained variance. Volcano plot displaying differentially abundant proteins between ARDS vs. HC B and ARDS vs. DC C. Each dot 
represents a protein, with red dots for proteins significantly upregulated in ARDS and blue dots for proteins significantly downregulated in ARDS. P 
values were calculated using the R package ‘limma’ and adjusted using the Benjamini–Hochberg method. Two-sided P values were calculated. Fold 
change ≥ 2.0 and FDR-adjusted P < 0.05 is considered statistically significant. D–E KEGG pathway enrichments of ARDS compared with HC and DC 
groups, respectively. F A Venn diagram elucidates the distribution of DAP across the ARDS, DC, and HC groups. G The heatmap showed the 16 
overlapped down-regulated proteins in ARDS. H A chordal graph maps the interaction between 9 common pathways and their associated proteins
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Dehydrogenase Complex Iron-Sulfur Subunit B (SDHB), 
involved in mitochondrial function, and various com-
ponents of the vacuolar ATPase family (ATP6V1D, 
ATP5MG, ATP6V1H) were implicated in oxidative 
phosphorylation. Moreover, proteins such as Mitogen-
Activated Protein Kinase Kinase 1 (MAP2K1), Phosph-
oinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), and 
Non-Receptor Tyrosine Kinase (SRC), associated with 
the VEGF signaling pathway, were significantly upregu-
lated in ARDS, illustrating a comprehensive network of 
molecular interactions contributing to the pathogenesis 
and progression of ARDS.

Cross‑talk between proteomics and metabolomics 
implicates the sphingolipid signaling pathway 
as a mediator in ARDS
In our metabolic investigation, we cataloged a compre-
hensive array of 3331 metabolites, encompassing amino 
acids, lipids, and other critical serum metabolites, as 
detailed in Additional file  5. The PCA plots revealed a 
pronounced metabolic differentiation of the ARDS in 
comparison to both DC and HC groups (Fig.  3A–C). 
We identified 214, 113, and 206 differentially abundant 
metabolites (DAMs) in the ARDS vs. HC, ARDS vs. DC, 
and DC vs. HC, respectively (Additional file  6). Among 
these, lysophosphatidylcholine (LysoPC) emerged as the 
most markedly altered metabolites in ARDS, exemplified 

Fig. 3 The metabolic analysis and its interaction with proteomics in ARDS in the discovery cohort. A–C Partial least squares discriminant analysis 
(PLS-DA) showed the separation of ARDS patients from HC and DC groups. D Dot plot of enriched KEGG pathways identified by differentially 
abundant metabolites. Dot size indicates the number of enriched proteins, colors represent the significance of enrichment (P-value). E Cross-talk 
network of the significantly enriched pathway by integrating both proteomics and metabolomics. Blue dots represent proteins, green dots are 
metabolites, and orange dots are enriched pathways. Sphingolipid signaling pathway was highlighted in red. F The relative abundance of proteins 
and metabolites in sphingolipid signaling pathway across ARDS, HC, and DC groups
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by a significant decrease in LysoPC (0:0/18:2(9Z, 12Z)) 
and LysoPC (0:0/18:0). Further exploration through the 
KEGG pathway notably highlighted the modulation of 
the sphingolipid signaling pathway and sphingolipid 
metabolism, which were distinctive in ARDS as com-
pared to the non-ARDS groups (Fig.  3D). Importantly, 
Fig.  3E revealed that metabolite S1P linked the sphin-
golipid signaling pathway with several other signaling 
pathways, including the Apelin, calcium, and phospholi-
pase D signaling pathways. Additionally, S1P levels were 
reduced, whereas sphingosine exhibited elevated levels in 
ARDS compared to both DC and HC groups (Fig. 3F).

We further conducted an integrated analysis of prot-
eomics and metabolomics to elucidate the pathogenetic 
mechanisms underlying ARDS. A significant finding 
from our study was the identification of the sphingolipid 
signaling pathway as a key regulatory axis, influenced 
at both the protein and metabolite levels, pinpointing 
it as a hub pathway in ARDS pathogenesis (Fig. 3D and 
Table  S2). Further network analysis demonstrated the 
critical role of the sphingolipid signaling pathway, posi-
tioning it centrally within the ARDS-specific regulatory 
network (Fig.  3E and Figs.  S4–S5). Specifically, critical 
regulatory proteins such as BCL2 Associated X (BAX), 
BH3 Interacting Domain Death Agonist (BID), PIK3R1, 
MAP2K1, and NF-κB Subunit (RELA) were upregulated 
in ARDS (Fig. 3F). Furthermore, MAP2K1, the hub pro-
tein in the network, linked the sphingolipid signaling 
pathway with several important pathways, including par-
athyroid hormone synthesis secretion and action, Apelin 
signaling pathway, choline metabolism, phospholipase D 
signaling pathway, Fc gamma R-mediated phagocytosis, 
and apoptosis. BAX and BID mediate interactions link-
ing the sphingolipid signaling pathway with necroptosis 
and apoptosis, while RELA associates with the pathway 
in apoptosis. PIK3R1 connects the sphingolipid signaling 
pathway to Fc gamma R-mediated phagocytosis, apop-
tosis, phospholipase D signaling pathway, and choline 
metabolism (Fig. 3E).

Dysregulation of biological functions and alterations 
in metabolites LysoPCs and S1P in deceased patients 
at ARDS onset
To further investigate the proteomic alterations associ-
ated with prognosis in ARDS, we conducted a compara-
tive analysis between ARDS survivors and non-survivors 
(Fig.  4A). Differential expression analysis identified 40 
proteins with significant variations (│fold change│≥ 1.5 
and FDR < 0.05) (Table S3). The most significantly altered 
proteins between deceased and survived ARDS were 
Radixin (RDX) and Moesin (MSN), which play crucial 
roles in linking actin to the plasma membrane (Fig. 4B). 
Subsequent GSEA revealed several highly ranked 

molecular pathways markedly enriched across various 
biological functions such as energy metabolism, immune 
response, proteasome function, gap junction communi-
cation, calcium signaling, and hematopoietic cell lineage 
differentiation (Fig. 4C and Supporting Information). To 
refine our selection of key protein candidates, we spot-
lighted the top 25 proteins exhibiting the highest connec-
tivity degrees in PPI network (Additional file 7). Among 
these, Glyceraldehyde-3-Phosphate Dehydrogenase 
(GAPDH), Heat Shock Protein 90 Alpha Family Class A 
Member 1 (HSP90AA1), and Enolase 1 (ENO1) emerged 
as central hub proteins within the network (Fig.  4D–E). 
This finding aligned with the GSEA results, as GAPDH 
and ENO1 were critical enzymes in glycolysis; moreover, 
HSP90AA1 was the housekeeping protein that aids pro-
tein folding and has intrinsic ATPase activity.

At the global metabolic level, the PCA plot demon-
strated a slight separation between the ARDS-deceased 
and survived groups (Fig. 4F). The 45 DAMs were most 
enriched in signaling pathways, such as the sphingolipid 
signaling pathway, phospholipase D signaling pathway, 
calcium signaling pathway, and Apelin signaling path-
way (Fig. 4G and Additional file 8). LysoPC (O-18:0/0:0), 
LysoPC (15:0/0:0), and S1P were prominently enriched in 
these pathways. Furthermore, the levels of LysoPC and 
S1P were significantly reduced in the ARDS-deceased 
group (Fig.  4H). More importantly, correlation analy-
sis between these three metabolites and the severity of 
ARDS, as quantified by the SOFA score, revealed nega-
tive correlations (R = − 0.47 for LysoPC (O-18:0/0:0); 
R = − 0.50 for LysoPC (15:0/0:0); R = − 0.36 for S1P) 
(Fig. 4I), suggesting the potential metabolome mecha-
nism underlying the heightened mortality risk in ARDS 
non-survivors.

Biomarker panel for early prediction of ARDS prognosis
Further, a prognosis model was constructed to predict the 
outcome of ARDS early. We obtained 36 candidate bio-
markers using LASSO (Fig. S6A–B), Boruta, and DAPs. 
Finally, 31 proteins with 174 peptides were targeted by 
PRM assay in the external validation cohort (Additional 
file  9), and a total of 22 candidate proteins with pep-
tides ≥ 2 were retained, in which 8 proteins maintained 
consistent significance in both discovery and validation 
cohorts (Fig. 5A–B). Among the eight proteins, six pro-
teins were significantly upregulated in deceased patients 
in both discovery and validation cohorts, including Vas-
cular Cell Adhesion Molecule 1 (VCAM1), Lactate Dehy-
drogenase B (LDHB), MSN, Filaggrin 2 (FLG2), Lamin 
A/C (LMNA), and Lipopolysaccharide Binding Protein 
(LBP), while two proteins, Transgelin 2 (TAGLN2) and 
Mannose Binding Lectin 2 (MBL2) were consistently 
downregulated in the deceased ARDS group (Fig.  5B). 
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These markers were selected as an eight-protein panel for 
early identification of deceased patients of ARDS.

In the discovery cohort, we first compared five state-
of-the-art machine learning classifiers using the protein 
model. The Glm model was the final classifier due to its 
overall superior performance, evidenced by a 10-fold 
cross-validated ROC–AUC of 0.893 (95% CI 0.837–
0.949) and a sensitivity of 0.920 (Fig.  5C). In com-
parison, the clinical risk model, comprising the SOFA 
score, P/F ratio, and PLT from LASSO feature selec-
tion (Fig. S6C–D), yielded in a ROC-AUC of 0.784 (95% 
CI 0.703–0.866) and a sensitivity of 0.885 (Fig.  5D). 

Combination of parameters in both models resulted in 
a ROC-AUC of 0.890 (95% CI 0.834–0.946) and a sen-
sitivity of 0.931 (Fig. 5E). The protein model performed 
significantly better than the clinical risk model (Delong 
test, P < 0.001), whereas the combination of both mod-
els did not exhibit statistical superiority over the pro-
tein model alone (Delong test, P = 0.970). Subsequent 
validation of the Glm classifier using the protein model 
resulted in a ROC-AUC of 0.802 (95% CI 0.739–0.865) 
and a sensitivity of 0.835 (Fig. 5F) in the external cohort, 
whereas the clinical risk model resulted in a ROC-AUC 
of 0.738 (95% CI 0.655–0.811) and a sensitivity of 0.788 

Fig. 4 The multi-omics analysis compared deceased ARDS with survived ARDS. A PCA plot displays the proteome separation in deceased 
and survived ARDS. Each dot represents a sample, with red dots for deceased ARDS samples and green dots for survived ARDS samples. B Volcano 
plot displaying differentially abundant proteins between deceased and survived ARDS. P values were adjusted using the Benjamini–Hochberg 
method. C GSEA analysis showed up- and down-regulated pathways in deceased ARDS compared with survived ARDS. D A heatmap showed 
representative proteins linked to the pathways highlighted in C. The mean difference (deceased ARDS–survived ARDS) of proteins in pathways 
larger than 0.1 were kept. E Left: PPI network analysis of DAPs between deceased ARDS and survived ARDS. The significance threshold was defined 
as P < 0.05. The sliding ball chart on the right shows the network degree and log2FC of the corresponding proteins in the PPI network. (F) PLS-DA 
score plots between deceased and survived ARDS for metabolomics. G The Sankey diagram showed the enriched pathways and their associated 
DAMs. H The abundance of LysoPC (O-18:0/0:0), LysoPC (15:0/0:0), and S1P between deceased and survived ARDS groups. Statistical significance 
was determined using the FDR-adjusted P-value. P values were calculated by Wilcoxon’s rank sum test. I Correlations between metabolites 
mentioned in H and the SOFA scores. The correlation coefficients (simplified as R) and rho values of correlations are indicated
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(Fig.  5G). The combination of both models led to a 
ROC-AUC of 0.844 (95% CI 0.786–0.902) (Fig. 5H). In 
the validation cohort, the protein model also outper-
formed the clinical risk model (Delong test, P = 0.008), 
and a combination of both models was superior to the 
protein model alone (Delong test, P = 0.006).

Discussion
This was the first study to integrate proteomics and 
metabolomics to investigate differences in the proteome, 
metabolome, and related biological pathways in adult 

ARDS patients. Our findings identified eight proteins as 
early candidates for distinguishing deceased ARDS cases 
from survivors. These candidate proteins, along with the 
constructed prognostic model, were validated in an inde-
pendent external cohort, revealing their potential utility 
in clinical prognosis.

This integrative analysis offers a global perspective 
on the proteomic and metabolic landscapes of ARDS, 
highlighting the potential involvement of the sphin-
golipid signaling pathway, specifically the role of S1P, a 
molecule synthesized through the phosphorylation of 

Fig. 5 Prognostic model development and validation for ARDS. A The flowchart details the methodology for screening candidate biomarkers. B 
The expression levels of eight proteins between the deceased and survived ARDS in both discovery (the upper panel) and validation cohorts (the 
lower panel). Receiver operating characteristic curve of protein C, clinical D, and combined model E in the discovery cohort and the validation 
cohort F–H. The 95% confidence interval is shown between brackets. The sensitivity and specificity of the Glm model were also provided. AUC, area 
under the curve
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sphingosine. Indeed, S1P was a sphingolipid that helped 
improve glycocalyx integrity by inhibiting syndecan-1 
shedding [24]. S1P activated the S1P1 receptor, which 
attenuated the activity of metalloproteinases causing 
syndecan-1 ectodomain shedding [24, 25]. In addi-
tion, previous studies have suggested that S1P played 
a significant role in regulating vascular permeability, 
barrier integrity, and inflammation in ARDS [26–32]. 
S1P was protective against acute lung injury by regu-
lating endothelial cell barrier integrity through bind-
ing to S1P receptors [30, 31, 33]. Murine and canine 
models revealed that S1P exerted potent beneficial 
systemic effects, significantly reducing vascular leak, 
LPS-induced lung edema formation, and inflamma-
tory lung injury [28, 29]. Therefore, targeting the S1P or 
S1P1 receptor activation may be a potential therapeutic 
option for inhibiting glycocalyx degradation in ARDS. 
Similarly, decreased serum S1P levels have been asso-
ciated with septic shock severity [34] and a significant 
association was identified between sphingolipid metab-
olism and outcomes in trauma patients [35]. These 
findings indicated that lower S1P levels correlated with 
increased disease severity in ARDS, although our study 
has not established mechanistic data.

In addition, in our study, ARDS patients exhib-
ited higher levels of MAP2K1 (i.e., MEK1). MAP2K1, 
involved in the sphingolipid signaling pathway, was iden-
tified as the hub protein in the proteome-metabolome 
cross-talk network. Furthermore, Jonathan et  al. found 
S1P signals regulated lymphatic endothelial cells perme-
ability and junction molecule expression through MAPKs 
[36]. Meanwhile, MEK1 has been implicated in vari-
ous signaling networks that affect tumor necrosis factor 
(TNF) mediated antiapoptotic signaling [37] and inflam-
matory  profile [38]. Therefore, MEK inhibition has 
important therapeutic implications for ARDS by poten-
tially disrupting the sphingolipid signaling pathway and 
its associated biological processes.

Notably, the concentrations of LysoPC species such 
as LysoPC (O-18:0/0:0) and LysoPC (15:0/0:0) in the 
deceased ARDS groups were decreased compared with 
the survived group. LysoPC is a lipid mediator derived 
from membrane phosphatidylcholine, and it is known to 
contribute to inflammation by increasing chemokine pro-
duction and activating endothelium, neutrophils, mono-
cytes, macrophages, and lymphocytes [39]. However, the 
role of LysoPCs in ARDS has not yet been clearly eluci-
dated. In sepsis patients, serum LysoPC levels were lower 
than those in controls, and among them, LysoPC (16:0) 
and LysoPC (18:0) were decreased [40]. Lower concen-
trations of serum or plasma LysoPC predicted worse 
outcomes [41]. Our findings align with these observa-
tions, revealing a comparable reduction in serum LysoPC 

levels in ARDS, akin to that observed in sepsis. Therefore, 
LysoPCs could be important metabolite markers for dif-
ferentiating the diagnosis and prognosis of ARDS, which 
needs further validation and mechanism exploration.

Moreover, our analysis presented a comprehensive 
view of proteomic alterations distinguishing deceased 
ARDS from survived ARDS, the elucidation of the func-
tional roles and molecular mechanisms of these proteins 
in ARDS lays the groundwork for potential therapeutic 
innovations targeting energy metabolism, such as glycol-
ysis. One previous study showed that the increase of pro-
inflammatory cytokines including pro-IL-1β and TNF-α 
preceded the activation of glycolysis in macrophages 
during LPS-induced ALI, suggesting that inflammation 
may induce glycolysis [42]. In COVID-19 ARDS, T cells 
are exhausted and skewed towards glycolysis, with a con-
comitant reduction in mitochondrial dependence, prob-
ably as a result of reduced oxygenation of the pulmonary 
tissue [43, 44]. Consistently, we identified upregulated 
glycolysis, interferon-α response, and activated  CD4+ T 
cells in ARDS, indicating that glycolysis is coordinated 
with inflammation, beyond just generating energy and 
producing building blocks for cellular survival and signal 
transduction [45].

In this study, our serum biomarkers and prognosis 
model could indeed be a promising prognosis predictor 
of ARDS patients compared to traditional clinical mod-
els. Therefore, we proposed that the protein model based 
on serum proteomics has shown promise in identify-
ing high-risk populations for deceased ARDS. Interest-
ingly, a previous study revealed VCAM1 overexpressed 
on endothelial cell-derived extracellular vesicles during 
sepsis, facilitating the activation of the NF-κB pathway 
by interacting with integrin subunit alpha 4 (ITGA4) on 
the monocyte surface thereby regulating monocyte dif-
ferentiation [46]. Furthermore, the biomarker MBL2 
has been identified as a critical determinant of mortal-
ity risk among patients with severe pneumococcal infec-
tions who exhibit MBL deficiency [47]. ‘MBL deficiency’ 
appears to play a role in increasing the susceptibility to 
severe infections in patients receiving stem cell trans-
plantation [48, 49], highlighting the pathogenic sig-
nificance of this innate immune defense protein. Other 
candidate biomarkers, for example, LDHB was engaged 
in glycolysis [50], MSN was expressed in the endothe-
lial cell and was important for cell-cell recognition and 
signaling and for cell movement [51]. LBP is the LPS 
binding protein, the LBP-LPS  complex initiates a signal 
cascade that triggers the secretion of pro-inflammatory 
cytokines [52]. Abnormal LMNA results in nuclear struc-
tural abnormalities and mesenchymal tissue damage [53], 
which are critical in ARDS pathogenesis due to their 
roles in cellular integrity and repair mechanisms. FLG2 is 
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involved in epidermal maturation [54], a process that may 
impact the barrier function of the alveolar epithelium in 
ARDS. TAGLN2 facilitating the formation of intracellu-
lar cytoskeleton structures [55], which are essential for 
maintaining cell shape and motility, and crucial in the 
inflammatory response seen in ARDS. These biomarkers 
can be categorized into several groups: epithelial injury, 
endothelial damage, imbalanced immune system, mito-
chondrial dysfunction, and disrupted cytoskeleton, which 
engaged in the overall ARDS progress. However, the 
specificity of these eight proteins for predicting ARDS 
prognosis should be confirmed through either singular or 
multiple assessments, including enzyme-linked immuno-
sorbent assay (ELISA), proximity extension assay (PEA), 
or bead-based immunoassays, which would benefit its 
application in future clinical practice.

We acknowledge several limitations of the present 
study. First, while we identified eight proteins associ-
ated with adverse prognosis in ARDS, further stud-
ies are required to explore the underlying mechanisms 
by which these proteins influence disease outcomes, 
particularly focusing on their specific roles within the 
immune and pathology systems. Second, longitudinal 
multi-omics studies are needed to explore the dynamic 
features of ARDS and the temporal changes in prognos-
tic biomarkers. Such studies will provide a more com-
prehensive understanding of the disease progression 
and the potential for early intervention. Third, integrat-
ing metabolomics and proteomics presents significant 
methodological challenges, such as data harmonization 
and handling missing values, which may introduce biases 
and affect the robustness of our findings. Lastly, the iden-
tification of intracellular metabolites or proteins in the 
circulation does not necessarily indicate changes in cel-
lular or tissue processes. These findings may also reflect 
cell death and the release of intracellular contents, which 
should be taken into account when interpreting the 
results.

In conclusion, this comprehensive study highlights 
the importance of the sphingolipid signaling pathway in 
unraveling pathogenesis of ARDS. Protein MAP2K1 and 
metabolite S1P play critical roles in this pathway. We 
show that a panel of eight proteins is superior to a clinical 
prognostic model in predicting ARDS-deceased events. 
These findings have significant implications for risk 
assessment and potential guidance of therapeutic strate-
gies in the management of ARDS.
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