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Abstract 

Background The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, 
is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, 
the primary challenge in advancing our understanding of the disease has been to concurrently address both mul‑
tiparametric and temporal aspects.

Methods We used a clustering method to identify distinct groups of patients, based on various immune marker 
trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally 
clustered common biomarkers (both soluble and cellular parameters), whose variations are well‑established dur‑
ing the immunosuppressive phase of sepsis. We then applied this multi‑trajectory clustering using markers composed 
of whole blood immune‑related mRNA.

Results We found that both sets of markers revealed two immunotypes, one of which was associated with worse 
outcomes, such as increased risk of hospital‑acquired infection and mortality, and prolonged hospital stays. This 
immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time.

Conclusion Our study suggest that the immune system of critically ill patients can be characterized by two distinct 
longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune 
response. This work confirms the relevance of such methodology to stratify patients and pave the way for further 
studies using markers indicative of potential immunomodulatory drug targets.
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Graphical Abstract

Introduction
Sepsis is an important public health concern [1] that can 
result in potentially fatal organ dysfunction due to a dys-
regulated host response to infection [2]. This dysregula-
tion primarily affects the immune system, leading to a 
complex interplay between pro- and anti-inflammatory 
pathways that influence disease progression and clinical 
outcomes such as organ dysfunction, the occurrence of 
hospital-acquired infections, and mortality [3]. However, 
attempts to treat sepsis patients with immune therapies 
have had limited success due to the intricate and hetero-
geneous nature of the immune response in sepsis [4].

Most studies investigating the heterogeneity of the 
immune response in sepsis have utilized a single time-
point, often just after ICU admission, to characterize 
the host response [5–8]. However, given the dynamic 
nature of the immune response in sepsis, longitudinal 
studies are necessary to fully understand its heteroge-
neity [3, 9, 10]. While there have been several studies 
exploring the longitudinal immune response in sepsis, 
they have focused on single-marker approaches, thus 
limiting our understanding of the complex nature of this 
response [11–13]. In parallel, recent research has shown 
that post-immune injury responses are shared across 



Page 3 of 13Bodinier et al. Critical Care          (2024) 28:240  

various critical illness conditions such as severe trauma 
and major surgery [10, 14]. These elements underscore 
the importance of an integrated approach to character-
ize the heterogeneity of immune responses, also known 
as phenotyping [15], which can ultimately inform person-
alized treatment strategies, as proposed in the literature 
through the concept of prognostic enrichment and treat-
able traits [16–18].

The aim of this study was to decipher the dynamic lon-
gitudinal heterogeneity of the immune response during 
the first week following admission of critically ill patients 
by identifying distinct groups of patients via a multi-
marker clustering approach. We used the term "immuno-
type" to describe groups of patients that exhibit similar 
immune responses to the initial injury. To accomplish 
this, we utilized two sets of immune markers: a set of 
immune markers commonly described in literature and a 
set of whole blood immune related mRNA markers. We 
also investigated the association between these immu-
notypes and deleterious outcomes such as nosocomial 
infection, length of stay, and mortality.

Materials and methods
Patient cohort
For immune longitudinal characterization, we ana-
lyzed a total of 353 critically ill patients from the REAL-
ISM cohort [14] which included 107 septic patients, 
137 trauma patients and 109 patients who underwent 
major surgery. This cohort recruited patients admitted 
to Lyon University Hospital in France between Decem-
ber 2015 and June 2018. The REALISM study design 
has been thoroughly discussed in Rol et  al. [19] and in 
Venet et  al. [14]. The study design excluded patients 
under immunosuppressive treatment before admission. 
The REALISM cohort is registered on ClinicalTrials.gov 
(NCT02638779) and was approved by the Institutional 
Study Board (2015-42-2). Additionally, the REALISM 
cohort comprised 175 healthy volunteers, representa-
tive of the age and sex distribution in the French popula-
tion in 2016. These volunteers were aged between 18 and 
82 years, with 81 males and 94 females.

Blood samples were collected from each patient on 
either Day 1 or 2 of admission to the critical care unit. 
Additional blood samples were collected on Days 3 or 4, 
on Days 5, 6, or 7. These specific sampling days were cho-
sen to capture the early and late phases of critical illness 
when immunological changes are expected to occur and 
were used to assess longitudinal immunotypes. When 
available, Day 14 sample was used to assess immune 
recovery of identified first week immunotypes.

Immune markers measurement
In the REALISM cohort study, two sets of markers 
were analyzed (see study protocol [19]): the Reference 
marker set (REF set) and the mRNA marker set (mRNA 
set). Markers were controlled for colinearity below 0.8 
(see Supplementary Figs.  S1 and S2) to ensure unique, 
independent information from each marker. The REF 
set consisted of known biomarkers of sepsis immuno-
suppression [20]: percentage of immature neutrophils, 
monocytic HLA-DR expression, T cell counts, and the 
interleukin (IL) 6 and IL-10 plasma concentrations. The 
mRNA set consisted of 5 markers selected based on 
their involvement in selected immune function: CD74 
(involved in antigen presentation), CX3CR1 (chemokine 
receptor involved in immune cell recruitment and acti-
vation), IL7R (important for T cell development and 
survival), IFNg (pro-inflammatory cytokine) and IL1R2 
(decoy receptor for the pro-inflammatory cytokine inter-
leukin-1). They were analyzed through a multiplexed 
RT-qPCR platform: the FilmArray Torch Instrument 
(BioFire) with the IPP prototype as previously described 
in [21].

To assess immune recovery, Immune functional assays 
were measured following protocole previously described 
in [22, 23].

Outcomes
The primary clinical outcome of our study was the com-
posite outcome “Complicated Hospital Course” (CHC), 
which is defined as the occurrence of either healthcare-
associated infections—HAI or death within 30 days or an 
ICU stay longer than 7 days. HAI monitoring began 72 h 
after the initial injury, with all HAI episodes reviewed 
and validated by a blinded adjudication committee con-
sisting of three physicians.

Secondary clinical outcomes included the occurrence 
of HAI within 30 days, all-cause 30-day and 90-day mor-
tality, and the ICU-free days at day 30, hospital-free days 
at day 30, and mechanical ventilation-free days at Day 
30. These outcomes were monitored and documented 
throughout the study.

Statistical analysis
An overview of the study workflow is represented in Sup-
plementary Fig. S3.

Defining immunotypes through unsupervised clustering
In this study, we employed an unsupervised clustering 
method to classify patients into distinct groups, termed 
as “immunotypes”, based on the similarities observed in 
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their immune response trajectories. These immunotypes 
essentially represent a cohort of patients whose immune 
responses demonstrated analogous patterns over a 
period of time. We utilized a flexible, non-parametric 
method known as KmL-3D for the purpose of clustering 
these trajectories, taking into account their co-evolution 
[24]. The selection of this method was primarily due to its 
capability to handle missing data and accommodate mul-
tiple trajectories. The final count of immunotypes was 
empirically determined, relying on the stability of patient 
grouping within a consensus clustering framework. This 
method essentially mitigates the risk of overfitting by 
summarizing the stability of clustering (PAC—Propor-
tion of ambiguous clusters metric) based on the applica-
tion of KmL3D on 100 bootstrap iterations of the initial 

dataset [25]. Patient membership was derived by per-
forming hierarchical clustering on the most stable con-
sensus clustering matrix. Lastly, we employed a method 
known as LOESS to smooth marker measurements 
within each immunotype, thereby enabling us to define 
the mean evolution of each immunotype.

Further details pertaining to the methodology are pro-
vided in the Supplementary Methods, and a summary 
of the method pipeline can be found in Supplementary 
Fig. S4.

Clinical characterization
To describe the different patient groups in our study, we 
assessed several clinical variables including demograph-
ics, admission characteristics and outcomes. Continuous 

Table 1 REF set immunotypes clinical characterization

SAPS II: Simplified Acute Physiological Score II. SOFA: Sequential Organ Failure Assessment score. D: Day. MV: mechanical ventilation. ICU: Intensive Care Unit. HAI: 
Healthcare Associated Infection. REF set: plasmatic IL6, plasmatic IL10, monocytic HLA-DR antibody / cell, T cells blood concentration, and percentage of immature 
neutrophils. Data are presented as numbers and percentages (qualitative variables) and medians and 25th/75th percentiles (quantitative variables). Cohorts were 
compared either with analysis of variance (ANOVA) test in case of normally distributed data or with Kruskal Wallis test by ranks for continuous data, and Chi-squared 
test or Fisher’s exact test, where required, for categorical data. p. Values less than or equal to 0.05 were considered statistically significant and are highlighted in bold

REF set 
Immunotype #1
(n = 151)

REF set 
Immunotype #2
(n = 184)

p. Value

Baseline characteristics

 Category at admission

  Sepsis/Septic shock 74 (49%) 25 (14%)  < 0.001
  Trauma 46 (30%) 90 (49%)

  Surgery 31 (20%) 69 (38%)

 Female gender 45 (30%) 70 (38%) 0.143

 Age, years 62 [49–72] 56 [44–70] 0.013
 Body mass index, kg/m2 24 [22–27] 26 [22–30] 0.017
 Charlson score 1 [0–3] 1 [0–2] 0.067

Parameters at admission

 SAPS II score 37 [26–49] 23 [16–33]  < 0.001
 SOFA score 8 [4–10] 2 [1–5]  < 0.001
 Mechanical ventilation 102 (68%) 53 (29%)  < 0.001
 Vasopressor use 112 (74%) 57 (31%)  < 0.001
 D1 Lymphocyte 1.03 [0.63–1.67] 1.25 [0.90–1.81] 0.005
 D1 NLR 13.33 [8.42–21.04] 7.90 [5.31–11.57]  < 0.001

Treatments during first week

 Hydrocortisone Hemisuccinate 21 (13.9%) 4 (2.2%)  < 0.001
Outcomes

 CHC (Complicated Hosp. Course) 100 (66%) 48 (26%)  < 0.001
  D30 HAI 49 (32%) 21 (11%)  < 0.001
  D30 Death 13 (9%) 1 (0%)  < 0.001
  ICU LOS > 7D 65 (46%) 23 (16%)  < 0.001

 D90 Death 20 (13%) 6 (3%) 0.002
 D30 ICU free days 21 [12–24] 26 [23–27]  < 0.001
 D30 Hosp. free days 4 [0–15] 18 [12–22]  < 0.001
 D30 Mech. Vent. free days 27 [21–29] 29 [27–29]  < 0.001
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Fig. 1 REF set and mRNA set immunotypes HAI incidence, with death and hospital discharge as competing risks. A For each of the two REF set 
trajectory immunotypes: cumulative incidence of HAI with death and hospital discharge as competing risks, Immunotype #1 (left) and Immunotype 
#2 (right) up to D30 follow‑up. B Forest plot of Fine‑Gray regression subdistribution Hazard Ratios (sHR) of outcomes, comparing REF set 
Immunotype #1 with Immunotype #2. sHR values are depicted graphically (black points) and numerically, along with 95% Confidence Intervals 
(CI, horizontal bars). sHR values significantly different from 1 are displayed in bold, and the corresponding p values (p.) are reported numerically. 
C For each of the two mRNA set trajectory immunotypes: cumulative incidence of HAI with death and Hospital discharge as competing risks 
in validation cohort predicted Immunotype #1 (left) and Immunotype #2 (right) up to D28 follow‑up. D Forest plot of Fine‑Gray regression 
subdistribution Hazard Ratios (sHR) of outcomes, comparing mRNA set Immunotype #1 with Immunotype #2. sHR values are depicted graphically 
(black points) and numerically, along with 95% Confidence Intervals (CI, horizontal bars). sHR values significantly different from 1 are displayed 
in bold, and the corresponding p values (p.) are reported numerically. HAI: Healthcare Associated Infection. REF set: plasmatic IL6, plasmatic IL10, 
HLA‑DR antibody/monocyte, T cells blood concentration, and percentage of immature neutrophils. mRNA set: normalized mRNA Cp in whole 
blood, IFNG, CD74, CX3CR1, IL7R, and IL1R2

(See figure on next page.)
Fig. 2 Longitudinal Immunotype characterization of critically ill patients using REF set and mRNA set markers. Critically ill patients (sepsis, severe 
trauma, and major surgery) were consecutively measured at D1‑2, D3‑4, and D5‑7 after injury for 5 reference markers (REF set, A) and 5 mRNA 
markers (mRNA set, B). Trajectory clustering was performed for each set, with all 5 markers’ temporal evolution considered together, exploring 
from 2 to 6 clusters. The resulting clusters are referred to as immunotypes and are represented as boxes on the top of the figure, with the first row 
indicating the immunotype label, the second row showing the number of patients (“nPatients”), and the third row displaying the enrichment 
in complicated hospital course (“CHC”), defined as the presence of one or more complications such as D30 Healthcare Associated Infection, more 
than 7 days in ICU, or D30 death. Temporal evolution of each of the 5 markers used for immunotypes construction were drawn below, with time 
in days after injury represented on x‑axis, and marker level on y‑axis. Immunotype #1 is represented in red, and Immunotype #2 in green. The 
evolution of markers is depicted through loess regression within each identified Immunotype, with standard error around mean curves. On 
the right side of each plot, the reference distribution of healthy volunteers (HV) is shown as violin plots for comparison. REF set: plasmatic IL6, 
plasmatic IL10, HLA‑DR antibody per monocyte (mHLA‑DR), T cells blood concentration per microliter, and percentage of immature neutrophils 
in blood. mRNA set: normalized mRNA Cp in whole blood, IFNg, CD74, CX3CR1, IL7R, and IL1R2
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Fig. 2 (See legend on previous page.)
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data were summarized by median, interquartile range. 
Categorical data were summarized by sample sizes and 
percentages. Clinical characteristics of immunotypes 
were compared either with the analysis of variance 
(ANOVA) test in case of normally distributed data or 
with the Kruskal Wallis test by ranks for continuous data. 
Chi-squared tests or Fisher’s exact tests were used for 
categorical data.

Normality of data distribution was assessed using Sha-
piro–Wilk tests. The null hypothesis was rejected for a 
p value less than 0.05. All statistical analysis and visuali-
zations were done using R 4.1.3 [26]. All graphics were 
done using ggplot v3.3.2 [27].

Competing risk analysis
To analyze the incidence of HAI outcome occurrence 
in the REALISM cohort, we employed a competing risk 
framework, considering hospital discharge and death as 
competing events (all censored at day 30). We used the 
survival 3.5-5 and survminer 0.4.9 R packages for this 
analysis, computing cumulative incidence functions 
(CIFs) to estimate the incidence of HAI while taking into 
account competing events. For evaluating the impact of 
different immunotypes on these outcomes, we applied 
the Fine and Gray model (in the R package cmprsk 2.2-
11), which extends the traditional Cox proportional 
hazards model to accommodate competing risks. We 
computed sub-distribution hazard ratios (sHR) and their 
95% confidence intervals (CI) to assess the association 
between immunotypes and HAI, death, and hospital 
discharge.

Results
REALISM cohort characteristics
From the 353 patients initially included in the REAL-
ISM cohort, we excluded a total of 18 time points that 
occurred after HAI events, since an infection can modu-
late immune marker levels (Supplementary Fig. S5). We 
removed 14 patients with only one time point from the 
dataset, as we could not study biomarker trajectories for 

them. The final subcohort analyzed was composed of a 
total of 339 patients. For most cases (n = 241), we meas-
ured biomarker levels thrice a week, and the time points 
for the trajectories were evenly distributed over the first 
week, in three periods: D1 to D2, D3 to D4, and D5 to 
D7. Patient’s baseline characteristics and outcomes are 
presented in Supplementary Table  S1 and have been 
described in more details in reference [16]. There were 
151 patients (44%) who experienced the composite out-
come CHC (Supplementary Table S2).

Immunotypes definition
REF set biomarkers immunotypes
In the analysis of the five reference biomarkers (REF 
set), we included 335 patients out of the 339 who had 
trajectory data with at least two measurements over the 
first week for the five REF set markers (Supplementary 
Fig.  S5). The PAC metric indicated that two immuno-
types provided the most stable clustering of the trajecto-
ries (Supplementary Fig. S6A). The clinical characteristics 
(Table  1, Fig.  1A, B) of the resulting 2 immunotypes 
showed that Immunotype #1 (n = 151) was associated 
with poorer outcomes in comparison to Immunotype 
#2 (n = 184), with a higher proportion of patients expe-
riencing a complicated hospital course (66% vs. 26%). All 
secondary endpoints also showed a significantly higher 
incidence in Immunotype #1 than in Immunotype #2, 
including higher incidence of 30-day HAI (32% vs. 11%, 
sHR [CI] 3.39 [1.96; 5.87]), 30-day mortality (9% vs. 0%, 
sHR [CI] 5.1e6 [2.7e6; 9.7e6]), ICU stays > 7  days (46% 
vs. 16%), and 90-day mortality (13% vs. 3%). These find-
ings underscore the association between Immunotype 
#1 and adverse clinical outcomes. Moreover, these asso-
ciations remained significant even after adjusting for 
clinical characteristics at admission, such as age, SOFA 
score, Charlson comorbidity index score, and initial 
injury, further emphasizing the interest of such cluster-
ing (Supplementary Table  S3). We additionally checked 
if the observed immunotypes could be solely explained 
by initial characteristics, and found that the capacity of 

Fig. 3 D14 immune system differences per REF set Immunotypes or mRNA set Immunotypes. Each graphic represents one of the reference 
markers (A) or Immune Functional Assay (B) measured at D14. The first graphic column corresponds to REF set trajectory immunotypes, the second 
to mRNA set immunotypes, and the third to healthy volunteers. Immunotype’s D14 immune marker level is represented with violin plot, 
with the number of available samples at D14 indicated below each plot. To illustrate the differences in marker distribution between immunotypes 
of each set, we performed Wilcoxon tests and displayed horizontal bars between the concerned groups above the violins, with the p‑value 
indicated above the bar. The tails of the violin plots were truncated to enhance the readability of the graphics. REF set: plasmatic IL6, plasmatic 
IL10, HLA‑DR antibody/monocyte, T cells blood concentration, and percentage of immature neutrophils. mRNA set: normalized mRNA Cp in whole 
blood, IFNG, CD74, CX3CR1, IL7R, and IL1R2. HV: Healthy Volunteers. SEB: Staphylococcal Enterotoxin B. LPS: Lipopolysaccharide. D: Day. Immune 
Functional Assay: “IL2 SEB pg/mL”: release of IL2 measured after stimulation with SEB. “IFNg SEB pg/mL”: release of interferon gamma measured 
after stimulation with SEB. “TNFa LPS/NULL”: release of Tumor Necrosis Factor alpha after stimulation with LPS divided by the basal release of TNFα 
without stimulation (NULL)

(See figure on next page.)
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classification into immunotypes by those characteristics 
was moderate, with an AUROC of 0.78 [0.74–0.82] (Sup-
plementary Fig. S7A).

Examining the mean trajectories of the REF set bio-
markers within each of the two identified immunotypes 
(Fig.  2), we found a notable divergence from healthy 

Fig. 3 (See legend on previous page.)
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volunteers’ levels at the inclusion, converging towards 
these levels by the end of the first week. In comparison 
to Immunotype #2, Immunotype #1 exhibited a distinct 
immune profile characterized by elevated levels of IL6 
and IL10, a substantial increase in immature neutro-
phils (peaking at 80% within the first week post-injury 
and declining to about 20% by the end of this period), 
and consistently low mHLA-DR levels (remaining 
below 8–10,000 AB/C throughout the week). These pat-
terns suggest a more pronounced dysregulation of the 
immune system in Immunotype #1 during the imme-
diate post-injury phase. Interestingly, T cell counts 
were comparable between the two immunotypes 
and appeared within the range observed in healthy 
volunteers.

When examining immune parameters at day 14, we 
observed a sustained immune dysregulation in Immuno-
type #1. This was characterized by diminished mHLA-DR 
levels, elevated percentage of immature neutrophils and 
elevated IL10 and IL6 levels, in contrast to both Immuno-
type #2 and to the range observed in healthy volunteers 
(Fig. 3A). Concurrently, we observed (Fig. 3B) a reduced 
immune function in Immunotype #1 relative to Immu-
notype #2 and the range observed in healthy volunteers. 
This was evidenced by an attenuated release of TNFα fol-
lowing stimulation with lipopolysaccharide (LPS), and a 
diminished release of IFNγ and IL2 after stimulation with 
Staphylococcal Enterotoxin B (SEB). These observations, 
in conjunction with the occurrence of HAI, suggest a 
degree of immunosuppression in Immunotype #1.

Table 2 mRNA set immunotypes clinical characterization

SAPS II: Simplified Acute Physiological Score II. SOFA: Sequential Organ Failure Assessment score. D: Day. MV: mechanical ventilation. ICU: Intensive Care Unit. 
HAI: Healthcare Associated Infection. mRNA set: normalized mRNA Cp in whole blood, IFNg, CD74, CX3CR1, IL7R, and IL1R2. Data are presented as numbers and 
percentages (qualitative variables) and medians and 25th/75th percentiles (quantitative variables). Cohorts were compared either with analysis of variance (ANOVA) 
test in case of normally distributed data or with Kruskal Wallis test by ranks for continuous data, and Chi-squared test or Fisher’s exact test, where required, for 
categorical data. p. Values less than or equal to 0.05 were considered statistically significant and are highlighted in bold

mRNA set 
Immunotype #1
(n = 103)

mRNA set 
Immunotype #2
(n = 223)

p. Value

Baseline characteristics

 Category at admission

  Sepsis/Septic shock 59 (57%) 39 (18%)  < 0.001
  Trauma 24 (23%) 107 (48%)

  Surgery 20 (19%) 77 (34%)

 Female gender 37 (36%) 77 (34%) 0.904

 Age, years 65 [56–76] 56 [45–70]  < 0.001
 Body mass index, kg/m2 25 [22–28] 25 [23–28] 0.939

 Charlson score 2 [0–3] 1 [0–2] 0.034
Parameters at admission

 SAPS II score 44 [29–54] 24 [18–34]  < 0.001
 SOFA score 8 [5–11] 3 [1–6]  < 0.001
 Mechanical ventilation 74 (72%) 77 (34%)  < 0.001
 Vasopressor use 81 (79%) 84 (38%)  < 0.001
 D1 Lymphocyte 1.12 [0.76–1.68] 1.25 [0.87–1.85] 0.128

 D1 NLR 10.53 [6.42–18.39] 8.21 [5.33–12.58] 0.003
Treatments during first week

 Hydrocortisone Hemisuccinate 22 (21.4%) 5 (2.2%)  < 0.001
Outcomes

 CHC (Complicated Hosp. Course) 79 (77%) 66 (30%)  < 0.001
  D30 HAI 34 (33%) 33 (15%)  < 0.001
  D30 Death 14 (14%) 1 (0%)  < 0.001
  ICU LOS > 7D 50 (52%) 38 (21%)  < 0.001

 D90 Death 18 (18%) 10 (5%)  < 0.001
 D30 ICU free days 18 [8–23] 25 [22–27]  < 0.001
 D30 Hosp. free days 2 [0–12] 17 [10–22]  < 0.001
 D30 Mech. Vent. free days 26 [13–28] 29 [27–29]  < 0.001
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mRNA set biomarkers immunotypes
We examine the ability of mRNA set biomarkers to iden-
tify patients with altered immune system.

Here, the specific missing time points of the mRNA set 
biomarkers resulted in 326 patients’ trajectories with at 
least 2 time points out of 339 (Supplementary Fig.  S5). 
This analysis conducted to the identification of two dis-
tinct immunotypes, according to PAC metric (see Sup-
plementary Fig. S6B) using the same clustering algorithm 
as the one applied to the reference set markers. Immuno-
type #1 (n = 103), compared to Immunotype #2 (n = 223), 
had a significantly higher proportion of patients with 
complicated hospital courses (77% vs. 30%, Table 2). As 
for the immunotypes of the REF set, all secondary end-
points showed a significantly higher incidence in Immu-
notype #1 than in Immunotype #2. This included 30-day 
HAI (33% vs. 15%, sHR [CI] 2.56 [1.56; 4.21]), 30-day 
mortality (14% vs. 0%, sHR [CI] 22.68 [2.94; 175.02]), ICU 
stays > 7 days (52% vs. 21%), and 90-day mortality (18% vs. 
5%), further emphasizing the association between Immu-
notype #1 and poorer clinical outcomes (see Fig. 1C, D). 
These results confirm the link between Immunotype #1 
and worse clinical outcomes. Furthermore, these associa-
tions persisted even after controlling for clinical charac-
teristics at admission, such as age, SOFA score, Charlson 
comorbidity index score, and initial injury, highlight-
ing the relevance of such clustering (Supplementary 
Table S4). We also verified if the observed immunotypes 
could be fully explained by initial characteristics and 
found that the ability of classification into immunotypes 
by those characteristics was moderate, with an AUROC 
of 0.79 [0.73–0.83] (Supplementary Fig. S7B).

Regarding biomarkers’ mean trajectory shape per 
immunotypes, Immunotype #1 exhibited a more altered 
immune response than Immunotype #2 during the first 
week after injury, as shown by the distance with the 
healthy volunteer distribution (Fig. 2). Specifically, IFNg, 
CD74, CX3CR1, and IL7R were less expressed than in 
healthy volunteers, while IL1R2 was more expressed. 
While Immunotype #2 mean marker trajectories con-
verged towards the healthy volunteer Q1-Q3 range by the 
end of the first week, none of the Immunotype #1 mean 
marker trajectories reached it during the same period. 
While examining the reference markers measured at 
D14, patients in Immunotype #1 demonstrated signifi-
cant differences in marker levels, further corroborating 
a delayed return to immune homeostasis compared to 
patients in Immunotype #2 (Fig.  3A). We also observed 
an altered immune function in the first Immunotype, as 
evidenced by TNFα release following stimulation with 
LPS, and IFNγ and IL2 release after stimulation with 
SEB (Fig. 3B). These observations suggest that patients in 

Immunotype #1 are more immunosuppressed than those 
in Immunotype #2.

Overall, these results suggest that the clustering based 
on mRNA set markers can also differentiate between dis-
tinct immunotypes, one highlighting more altered immu-
nological characteristics and associated with poorer 
clinical outcomes.

Comparison of immunotypes obtained with reference set 
markers and mRNA set markers
The comparison of immunotypes derived from the REF 
set markers and the mRNA set markers (Supplementary 
Fig.  S8) showed a concordance of approximately 78%. 
A subset of 58 patients exhibited discordant immuno-
type classification, falling into mRNA immunotype #2 
and REF set immunotype #1. These patients had better 
clinical outcomes and less persistent immune alterations 
at D14, in comparison to those concordantly classified 
in both REF set immunotype #1 and mRNA set immu-
notype #1 (Supplementary Table S5). On the contrary, a 
smaller subset of 12 patients, discordantly classified as 
mRNA set immunotype #1 and REF set immunotype #2, 
presented adverse clinical outcomes and more persis-
tent immune alterations compared to those concordantly 
classified in both sets as immunotype #2 (Supplementary 
Table S6).

These findings indicate that despite utilizing different 
sets of markers, the two clustering methods are largely 
in agreement, thereby demonstrating a robust patient 
classification.

Discussion
In this study, we characterized the immune response 
of critically ill patients using an unsupervised cluster-
ing method, KmL-3D, which allowed us to identify two 
distinct immunotypes based on the temporal evolution 
of multiple immune markers measured in whole blood 
samples. We found that one immunotype was associated 
with worse outcomes, such as increased risk of hospital-
acquired infection and mortality, and prolonged hospital 
stay, while the other immunotype showed a faster and 
more favorable recovery. Our study provides a compre-
hensive understanding of the multiple facets and tem-
poral evolution of the immune system of critically ill 
patients. Moreover, our study demonstrates the feasibility 
and interest of using a whole blood mRNA set, which can 
be easily measured using a single automated multiplexed 
PCR platform, to classify patients into immunotypes and 
potentially guide personalized therapies. Our results rep-
resent an important step toward precision medicine, a 
major aspect in the management of sepsis as reported in 
references [18, 28].
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Our study is the first to use an unsupervised clustering 
method to identify immunotypes based on the tempo-
ral evolution of multiple immune markers in critically ill 
patients. It was applied in a consensus clustering frame-
work, which allowed to limit bias in the number of groups 
identification and patient partitioning [6, 29, 30]. This 
method has several advantages over previous approaches 
that relied on a single immune biomarker-based cluster-
ing [6, 8, 31–34]. First, it allows to capture the complex-
ity and heterogeneity of the immune response in critical 
illness, which is influenced by multiple factors, such as 
the nature and severity of the insult, the host character-
istics (e.g. comorbidities, age …), and the timing of the 
measurement. Second, it enables us to identify immuno-
types that are not only defined by the absolute levels of 
immune markers, but also by their dynamic changes over 
time, which may reflect different immune pathways and 
mechanisms. Third, it provides a data-driven and unbi-
ased way to classify patients into immunotypes, without 
imposing assumptions or criteria that may not reflect the 
true nature of the immune response.

Building on this innovative method, our study fur-
ther characterized the identified immunotypes, reveal-
ing distinct clinical outcomes and immune responses. 
Immunotype #1, characterized by a strong dysregula-
tion of immune markers, including IL-6, IL-10, mHLA-
DR, and immature neutrophils, indicated a state of 
concurrent inflammation and immunosuppression. 
Conversely, Immunotype #2 exhibited less dysregula-
tion, suggesting a more balanced immune response. 
Immunotype #1 showed a persistence of its immuno-
logical dysregulation at day 14, while Immunotype #2 
signs of immune recovery. The clinical implications 
of these immunotypes are significant. They are asso-
ciated with different outcomes, such as the risk of 

hospital-acquired infection, mortality, and the duration 
of mechanical ventilation and hospital stay. This sug-
gests that these immunotypes could serve as a valuable 
tool for stratifying patients according to their risk of 
adverse outcomes. The robustness of our findings was 
further corroborated by the clustering obtained with 
the mRNA set of biomarkers, which included genes 
related to innate and adaptive immunity, inflamma-
tion, and immunosuppression. This consistency across 
different sets of markers underscores the reliability of 
our immunotyping method. In addition, it’s worth not-
ing that the mRNA set markers offer a practical advan-
tage in a clinical setting. They can be quantified more 
easily at the bedside compared to traditional biomark-
ers, thanks to the use of a single automated multi-
plexed PCR platform. This ease of measurement could 
facilitate the clinical implementation of immunotype 
classification.

Our observations align with the theory presented in 
references [3, 10, 35, 36], suggesting that two distinct 
responses may be observed in critically ill patients: one 
characterized by a delayed recovery, linked to adverse 
outcomes, and another marked by a rapid immune sys-
tem recovery leading to the patient’s prompt discharge. 
As such, the features of Immunotype #1 seem similar to 
the delayed immune recovery trajectory and the Immu-
notype #2 to the rapid recovery trajectory, further con-
firming this theory (Fig. 4).

Despite the promising results of our proof-of-con-
cept study, there are several limitations that should 
be acknowledged and addressed in future research. 
Firstly, our clustering strategy was limited to the first 
week to minimize bias from missing data at later time 
points, which could occur if patients left the hospital or 
passed away. Possessing more comprehensive data at 

Fig. 4 Empirical evidence supporting the theory of concurrent hyper‑inflammation and immunosuppression. The theory of concurrent 
hyper‑inflammation and immunosuppression has been discussed by numerous authors in literature related to critical injury [3, 10, 35–39].
This theory proposes two distinct immune trajectories: one characterized by rapid immune recovery and another by delayed recovery, which 
is associated with an increased incidence of adverse outcomes. In this figure, we associate our empirical Immunotype #2 with the trajectory of rapid 
recovery (in green) and Immunotype #1 with the trajectory of delayed recovery (in red), thereby reinforcing the current theory
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later time points could have allowed us to better define 
those immunotypes. Secondly, the immune markers 
were selected a priori, which may not fully capture the 
extent of immune dysregulation in critically ill patients. 
By choosing specific markers, we may have overlooked 
other relevant immune markers or pathways that could 
better characterize the immune system and offer poten-
tial drug targets and personalized immunomodulation. 
Future studies could explore the use of a more compre-
hensive panel of markers, such as cytokines, chemokines, 
cell subsets, mRNA, that could provide both insight on 
pathophysiology and potential drug targets. Thirdly, the 
mRNA markers have the advantage of being measur-
able in 1 h, which is beneficial for clinical settings. How-
ever, a limitation of our study is that we did not evaluate 
whether the mRNA set immunotypes could be discerned 
at a single time point, which might have more clini-
cal utility than tracking the entire trajectory of patients. 
Future research should optimize the markers and investi-
gate how they can inform treatment decisions.

Conclusion
We applied an unsupervised clustering method to a panel 
of biomarkers to longitudinally profile the immune sys-
tem of critically ill patients. This novel approach was the 
first to construct immunotypes based on the temporal 
dynamics of multiple immune biomarkers. We found 
two immunotypes that had distinct temporal patterns. 
One immunotype had persistent pro- and anti-inflam-
matory signals and worse outcomes, such as longer stays, 
higher mortality, and more infections and a persistent 
reduced response to ex vivo stimulation. Our study sug-
gests that immunotyping based on temporal dynamics 
of immune markers could facilitate patient stratification. 
Further studies are needed to improve our immunotyp-
ing markers to better identify patient that could benefit of 
immunotherapy.
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