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Abstract 

Despite significant progress in our understanding of the pathophysiology of sepsis and extensive clinical research, 
there are few proven therapies addressing the underlying immune dysregulation of this life-threatening condition. 
The aim of this scoping review is to describe the literature evaluating immunotherapy in adult patients with sepsis, 
emphasizing on methods providing a “personalized immunotherapy” approach, which was defined as the classifi‑
cation of patients into a distinct subgroup or subphenotype, in which a patient’s immune profile is used to guide 
treatment. Subgroups are subsets of sepsis patients, based on any cut-off in a variable. Subphenotypes are subgroups 
that can be reliably discriminated from other subgroup based on data-driven assessments. Included studies were 
randomized controlled trials and cohort studies investigating immunomodulatory therapies in adults with sepsis. 
Studies were identified by searching PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov, from the first paper 
available until January 29th, 2024. The search resulted in 15,853 studies. Title and abstract screening resulted in 1409 
studies (9%), assessed for eligibility; 771 studies were included, of which 282 (37%) were observational and 489 (63%) 
interventional. Treatment groups included were treatments targeting the innate immune response, the complement 
system, coagulation and endothelial dysfunction, non-pharmalogical treatment, pleiotropic drugs, immunonutrition, 
concomitant treatments, Traditional Chinese Medicine, immunostimulatory cytokines and growth factors, intravenous 
immunoglobulins, mesenchymal stem cells and immune-checkpoint inhibitors. A personalized approach was incor‑
porated in 70 studies (9%). Enrichment was applied using cut-offs in temperature, laboratory, biomarker or genetic 
variables. Trials often showed conflicting results, possibly due to the lack of patient stratification or the potential 
influence of severity and timing on immunomodulatory therapy results. When a personalized approach was applied, 
trends of clinical benefit for several interventions emerged, which hold promise for future clinical trials using personal‑
ized immunotherapy.
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Background
Despite a global decrease in sepsis burden, sepsis still 
causes almost 20% of all deaths worldwide [1]. Over the 
past few decades, significant progress has been made in 
the understanding of the pathophysiology of sepsis [2], 
however, treatment is still limited to tackling the patho-
gens and providing supportive care. To date, limited 
proven therapies address the underlying mechanisms of 
this life-threatening condition.

The host response to infection can be dysregulated in 
multiple ways, resulting in a highly heterogeneous clini-
cal presentation, treatment response, and prognosis [3]. 
The pathophysiology of sepsis involves dysregulation 
of the inflammatory response, but also catabolic, meta-
bolic and immune-suppressive features can be present, 
together resulting in failure to return to homeostasis 
[3–5]. Modulating these various immune responses to 
infection represents a promising treatment option. Rea-
son for the numerous failed clinical trials [4–6] could be 
the use of “one-size-fits-all” approaches, suggesting that 
personalized immunomodulatory treatment tailored to 
an individual patient’s immune profile may be a more 
successful treatment approach. The first step towards 
implementation of such a personalized strategy is provid-
ing a structured and in-depth overview of currently avail-
able evidence on immunotherapy in sepsis. The aim of 
this scoping review is to describe and summarize the lit-
erature evaluating immunotherapy in adult patients with 
sepsis, and to evaluate methods by which a personalized 
immunotherapy approach has been studied so far.

Methods
In line with our previously published protocol [7], studies 
were identified by searching PubMed, Embase, Cochrane 
CENTRAL and ClinicalTrials.gov from the first paper 
available until Janaury 29th, 2024. Inclusion criteria were: 
1) randomized controlled trials (RCTs) or cohort stud-
ies (including case control studies and observational 
cohorts); 2) investigating immunomodulatory therapies; 
in 3) adult (≥ 16  years) patients with sepsis, 4) written 
in English or Dutch. We included studies that addressed 
therapies with a potential or hypothesized immunomod-
ulatory effect (see Supplementary Methods). Exclusion 
criteria were: 1) case reports or systematic reviews; 2) 
animal studies; and 3) studies in healthy volunteers. We 
deviated from the previously publish protocol [7] by 
not including studies investigating coronavirus disease 
2019 (COVID-19), since immunomodulatory treatments 
and patient stratification in COVID-19 is explored in a 
recently published review [8]. The full search strategies, 
screening and data extraction can be found in the Sup-
plementary Methods. The results are organized in two 
steps. First, separating observational from interventional 

studies; and subsequently into treatment groups [3]. 
Ongoing trials are reported separately. The text in the 
main paper focusses on randomized controlled trials 
and studies applying a personalized approach; an over-
view of observational studies and non-randomized inter-
ventional studies not using a personalized approach can 
be found in the supplement. We defined a personalized 
approach as the classification of patients into a distinct 
subgroup or subphenotype. Subgroups are subsets of 
patients with the same disease or syndrome, based on any 
cut-off in temperature, laboratory, biomarker or genetic 
variables. In particular, subgroups based on age, sex or 
use of certain interventions (mechanical ventilation or 
vasopressors) were not considered subgroups for a per-
sonalized approach. Subphenotypes are subgroups that 
can be reliably discriminated from other subgroup based 
on data-driven assessments including machine learning 
techniques [9]. The use of disease severity scores was not 
considered as personalized. Individualized interventions 
were not included, since this review focused on personal-
ized treatments, defined as applying specific treatment at 
subgroup or subphenotype level, and not at an individu-
alized or patient level.

Results
Study characteristics
The search resulted in 15,853 studies, including 43 stud-
ies identified through manual searching for the results of 
protocols, abstracts and registered studies. Our search 
was completed on January 29th, 2024. Title and abstract 
screening resulted in 1409 studies that were assessed for 
eligibility (Fig. 1). In total, 282 observational studies and 
489 interventional studies were included (Figs. 1 and 2), 
of which 70 (9%) applied a personalized approach. Fig-
ure 2 depicts a timeline with an overview of the included 
studies in this review divided by study design, treatment 
group and year of publication. Figure 3 depicts an over-
view of all interventions discussed in this review in order 
to summarize all treatments that have been studied in the 
research field of immunotherapy in sepsis. Treatments 
in bold are discussed in the text and in the supplement, 
treatment not in bold can be found in the supplement.

Strategies modulating excessive inflammation
Innate immune response
Since excessive activation of the innate immune response 
causes host response dysregulation leading to sepsis, 
there is a clear rationale to study blocking innate immune 
activation [3]. Treatments targeting the innate immune 
response were studied in 11 (15%) observational stud-
ies, 5 (7%) non-randomized interventional studies and 
57 (78%) RCTs (Supplementary Table  2). Treatments 
most studied were anti-tumor necrosis factor (TNF)
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α antibodies (Abs) (n = 17, 23%), anti-endotoxin Abs 
(n = 14, 19%) and interleukin (IL)-1 receptor antagonists 
(ra) (n = 10, 14%),

RCTs without  a  personalized approach  Since 1981, 
RCTs studying anti-endotoxin strategies, including anti-
serum raised in volunteers immunized with heat-killed 
mutant E coli J5 (murine E5)) and humanized (HA-1A) 
antibodies directed against the lipid-A part of endotoxin, 
have been published almost without positive results. Two 
studies showed a lower mortality in patients with gram-

negative bacteremia (30% vs. 49%, n = 197, respectively, 
22% vs. 39%, n = 212) [10, 11]. However it has been stated 
that the results should be interpreted cautiously [12], since 
this effect was restricted to gram-negative bacteremia and 
patients most likely to benefit are difficult to identify, and 
none of the other anti-endotoxin trials showed similar 
results (Supplementary Table  2). Since 2007, inhibiting 
Toll-like receptor-4 (TLR4) has been examined using erit-
oran (a synthetic lipid A antagonist blocking lipopolysac-
charide (LPS) from binding at the cell surface MD2-TLR4 
receptor) or TAK-242 (a small molecule-inhibitor specific 

Fig. 1  Flow diagram for study selection. RCT, randomized controlled trial
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for TLR4) [3]. Neither was found to be effective in large 
RCTs in severe sepsis patients [13, 14]. Since 1995, anti-
TNFα Abs were examined in several trials yielding disap-
pointing results [15, 16]. In the 1990s, Anakinra, a recom-
binant human IL-1RA, was studied in 6 RCTs, without 
effect on mortality (Supplementary Table 2).

Studies with  a  personalized approach   In a retrospec-
tive RCT subgroup analysis, showing no survival benefit 
of anti-TNFα Ab CB0006 in 80 unselected severe sepsis 
patients, the patients with increased entry TNF-levels 
appeared to benefit from the high dose anti-TNF Ab (sur-
vival rate 86%, n = 7) [17]. When the anti-TNF Ab afeli-

Fig. 3  Overview of all immunomodulatory treatments studies in adult patients with sepsis. Immunomodulatory treatments investigated in sepsis 
patients either modulate excessive inflammation (top op panel, in red) or aim at immune stimulation (bottom of panel, blue), furthermore there are 
combinations of these treatment strategies (bottom of panel, in grey) or treatments not fitting into these categories (bottom of panel, in green). All 
treatments displayed in this figure are included in this review; the treatments in bold are discussed in the text and in the supplement, treatment 
not in bold can be found in the supplement. Abbreviations: Ab, antibody; ACE, angiotensin-converting-enzyme; anti-PD-1, anti-programmed cell 
death protein 1; G(M)-CSF, granulocyte(-macrophage) colony-stimulating factor; Ig, immunoglobulin; IL, interleukin; L-NAME, L-NG-Nitro arginine 
methyl ester; NSAID, non-steroidal anti-inflammatory drugs; (r)a, (receptor) antagonist; TLR, toll-like receptor; TNF(r), tumor necrosis factor (receptor)
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momab was studied in a phase-III trial including sepsis 
patients using stratification, only patients with IL-6 lev-
els > 1000 pg/mL had a reduced 28-day mortality (44% vs. 
48%, n = 998) [18]. In a similar trial [19], sepsis patients 
with IL-6 levels > 1000 pg/mL were randomized to receive 
either afelimomab or placebo, without mortality effect 
(54% vs. 58%, n = 446). One of the RCTs [20] studying 
anakinra in 696 sepsis patients, failed to demonstrate a 
mortality reduction, however in a post-hoc analysis [21] 
treatment with anakinra provided a 30% decrease of 
28-day mortality in patients who, at the start of treatment, 
had both liver dysfunction and disseminated intravascular 
coagulation which were interpreted by the authors as traits 
of macrophage activation. Another post-hoc analysis of 
this RCT showed that patients with higher baseline IL-1 
levels showed mortality reduction compared to patients 
with lower IL-1 [22]. In an RCT examining IL-11 ther-
apy in patients with thrombocytopenia, a less extensive 
inflammatory response and lower mortality was observed 
(31% vs. 14%, n = 105) [23]. In an RCT with patients 
treated with nangibotide, a triggering receptor expressed 
on myeloid cells-1 (TREM-1) inhibitor, grouped accord-
ing to sTREM-1 concentrations at baseline, no improve-
ment in sequential organ failure assessment (SOFA) score 
was seen [24].

Non‑pharmacological treatments
The primary non-pharmacological immunotherapy 
treatment studied in sepsis is blood purification, which 
may be beneficial through removal of endotoxin, alter-
ing cytokine levels, mobilization of cytokines from 
local tissues, or through more complex processes of 
immune modulation [25]. Non-pharmacological treat-
ments were studied in 63 (36%) observational studies, 
51 (29%) non-randomized interventional studies and 59 
(34%) RCTs (Supplementary Table 3). Treatments most 
studies were blood purification (n = 111, 64%), blood 
filtration (n = 47, 27%) and plasma treatments (e.g. 
plasma filtration or exchange, n = 12, 7%).

RCTs without  a  personalized approach   The clinical 
effects of these studies are mixed. For instance, while in 
the EUPHAS trial Polymyxin B hemoperfusion reduced 
28-day mortality in 64 patients with severe abdominal 
sepsis (32% vs. 53%, aHR 0.36; 95% CI 0.16, 0.80) [26], the 
ABDOMIX trial in peritonitis-induced septic shock did 
not show a reduction in 28-day mortality (28% vs. 20%, 
n = 243) [27].

Studies with  a  personalized approach   The EUPHRA-
TES trial, a multicenter RCT including 450 patients 
using enrichment by including patients with endotoxin 
activity assay (EAA) levels ≥ 0.6, did not find improve-

ment in 28-day survival when applying Polymyxin B 
hemoperfusion [28]. The trial showed that in some sep-
tic shock patients the burden of endotoxin activity was 
extreme (EAA ≥ 0.9). Therefore, a post-hoc analysis of 
the EUPHRATES trial was conducted in only patients 
with EAA of 0.6–0.89, not leading to better survival rates 
[29]. In a retrospective study using the EUPHRATES 
trial Polymyxin B hemoadsorption was associated with 
higher 28-day survival in patients with PT-INR > 1.4 or 
lactate > 3 mmol/L (68% vs. 52%, p = 0.02) [30]. Cytokine 
adsorption and endotoxin hemoabsorption were studied 
in two observational studies including patients with septic 
shock and IL-6 ≥ 1000 ng/l, one study found an increased 
hazard of death of 1.82 (95% CI, 1.03–3.2) compared to 
a matched control group [31]; the other compared survi-
vors and non-survivors and concluded that this treatment 
could be beneficial when applied early after onset of shock 
[32].

Complement system
The rationale for studying complement inhibitors is that 
excessive complement system activation contributes to 
sepsis-induced organ failure and death [33], which has 
been studied in 4 RCTs (Supplementary Table 4).

RCTs without a personalized approach  Treatment with 
complement (C)1-inhibitors infusion was studied in 
three RCTs and associated with reduced all-cause mor-
tality (12% vs. 45% in control, n = 61) [34]. Furthermore, 
a phase-IIa trial on a monoclonal Anti-C5a antibody in 
72 severe sepsis and septic shock patients demonstrated 
a dose-dependent neutralization of C5a. Complement 
inhibition was not studied in trials using a personalized 
approach.

Coagulation and endothelial dysfunction
The rationale for studies aiming at coagulation pathways 
and endothelial dysfunction in sepsis patients is that 
disseminated intravascular coagulation (DIC) and loss 
of endothelial barrier integrity are both key phenom-
ena in the pathogenesis of sepsis [2]. Studies aiming at 
coagulation pathways and endothelial dysfunction were 
studied in 103 (62%) observational studies, 9 (5%) non-
randomized interventional studies and 55 (33%) RCTs 
(Supplementary Table  5). The most studied treatment 
interventions were activated protein C (APC; n = 77, 
46%), antithrombin (n = 25, 15%) and soluble thrombo-
modulin (n = 19, 11%).

RCT without  a  personalized approach  In PROWESS, 
a large phase-III trial in severe sepsis patients, a benefi-
cial effect on 28-day mortality of APC was observed (25% 
vs. 31%, n = 1690) along with an increased risk of bleed-
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ing (3.5% versus 2.0%) [35]. In patients with septic shock, 
however, the phase-III PROWES-SHOCK trial did not 
show mortality reduction from treatment with APC (26% 
vs. 24%, n = 1697) [36]. Even though antithrombin therapy 
resulted in improvement of DIC [37, 38], it did not result 
in a decreased mortality in patients with severe sepsis or 
septic shock (39% vs. 39%, n = 2314) [39]. In the SCAR-
LET trial soluble thrombomodulin did not reduce mortal-
ity in unselected sepsis patient (27% vs. 29%, n = 800) [40].

Studies with  a  personalized approach  In a predefined 
subgroup analyzing patients with severe protein C defi-
ciency from the PROWESS-SHOCK, APC treatment did 
not result in differences in 28-day mortality (28.7% vs 
30.8%, n = 673) [36]. However, in a retrospective cohort 
study in 48 patients with severe sepsis and elevated tro-
ponin, treatment with APC did improve intensive care 
unit (ICU)-mortality (30% vs. 72%, n = 48) [41]. A post 
hoc analysis of the SCARLET trial showed that patients 
with higher baseline thrombin generation biomarker lev-
els showed reduced mortality when treated with recom-
binant human soluble thrombomodulin [42]. A study 
using coagulation phenotypes as a secondary analysis of 
multicenter registries on sepsis patients admitted to the 
ICU, demonstrated that in one in four phenotypes, the 
one with high fibrinogen/fibrin-degradation-products 
and D-Dimer, treatment with thrombomodulin was asso-
ciated with lower mortality (adjusted risk difference -18%, 
95% CI -29%,-7%, n = 323) [43]. Antithrombin supple-
mentation therapy only reduced in-hospital mortality in 
sepsis patients with very low anthithrombin activity (HR 
0.603, 95% CI 0.368, 0.988) [44]. When applying molecu-
lar phenotypes previously identified in acute respiratory 
distress syndrome (ARDS) different treatment response 
to activated protein C were found, with survival benefit in 
the hyperinflammatory and harm in the hypoinflamma-
tory phenotype [45].

Pleiotropic drugs
Pleiotropic drugs refer to substances exerting effects 
other than for which it was initially developed. Corticos-
teroids (n = 89, 57%) and antibiotics (n = 18, 12%, mainly 
macrolides are known for their immunomodulatory 
effect [46, 47]) are the primary pleotropic drugs used in 
sepsis (Supplementary Table  6). Pleiotropic drugs were 
studied in 64 (41%) observational studies, 6 (4%) non-
randomized interventional studies and 85 (55%) RCTs.

RCTs without a personalized approach  Corticosteroids 
have been studied in sepsis patients in over 30 RCTs with 
contradicting results. In septic shock patients receiving 
hydrocortisone plus fludrocortisone compared to pla-

cebo, mortality was lower (43% vs. 49%, n = 1241) [48], 
however hydrocortisone alone in septic shock patients 
undergoing mechanical ventilation did not result in the 
same effect (28% vs. 29%, n = 3658) [49]. A recently pub-
lished RCT showed a lower 28-day mortality among ~ 800 
patients with severe community-acquired pneumonia 
treated in the ICU with hydrocortisone (12% vs. 6%) 
[50]. In an RCT in sepsis patients receiving vasopressors 
those who received intravenous vitamin C had a higher 
risk of death or persistent organ dysfunction (44.5% vs 
38.5%, n = 872) [51]. Trials investigating the combination 
of vitamin C, thiamine, and hydrocortisone did not find 
positive results on ventilator-free-days [52] or mortality 
SPS:refid::bib53|bib54(53, 54). Treatment with clarithro-
mycin, next to standard-of-care antimicrobial treatment, 
resulted in contradicting findings, the latest large trial did, 
however, found an association with a decreased 90-day 
mortality compared to placebo (43% vs. 60%, n = 200) [55].

Studies with a personalized approach  In an RCT includ-
ing patients with severe community-acquired pneumonia 
and C-reactive protein (CRP) > 150  mg/L methylpredni-
solone led to reduced treatment failure (development of 
shock, need for mechanical ventilation or death) com-
pared to placebo (31% vs. 13%, n = 60) [56]. Increased 
mortality was observed in patients with sepsis response 
signature-(SRS)2 endotype compared to SRS1 in patients 
treated with hydrocortisone (n = 176, OR 7.9, 95% CI 1.6, 
39.9) [57]. When assigning patients to two previously 
identified gene expression-based endotypes, corticoster-
oid exposure may be associated with increased mortality 
among septic shock endotype A patients (OR 3.1, 95% CI, 
1.0 – 9.6, n = 97) [58]. When gene expression scores used 
to identify the immune state of shock patients; patients 
with the prevalent immune-adaptive state may be harmed 
by hydrocortisone [59]. Expression of GLCCI1 was asso-
ciated with decreased time to shock reversal, and the 
expression of BHSD1 was associated with increased time 
to shock reversal (n = 494, HR 3.81 vs. 0.64 and HR 0.55 
vs. 1.32, respectively) [60]. In two cohorts with > 1200 
and > 2500 patients, studying the use of machine learn-
ing for corticosteroid treatment decision showed positive 
results [61, 62]. Another cohort study employing machine 
learning identified interferon (IFN)γ/IL10 as a theranostic 
marker; a low serum IFNγ/IL10 ratio predicted increased 
survival in the hydrocortisone group whereas a high ratio 
predicted better survival in the placebo group [63]. One 
post-hoc analysis of an RCT examined the effect of sim-
vastatin in sepsis-induced ARDS in patients with high 
baseline IL-18, which was associated with a higher sur-
vival probability (39% vs. 24%, n = 511) [64].
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Immunonutrition, concomitant treatments and traditional 
chinese medicine
See the Supplementary Results for the studies regarding 
immunonutrition (Supplementary Table 7), concomitant 
treatments (Supplementary Table 8) and Traditional Chi-
nese Medicine (Supplementary Table 9).

Strategies aiming at immune stimulation
Immunostimulatory cytokines and growth factors
Immunostimulatory cytokines and growth factors have 
been studied in 2 (8%) observational studies, 7 (28%) 
interventional non-RCTs and 16 (64%) RCTs (Supple-
mentary Table  10). Treatments most studies were gran-
ulocyte-colony stimulating factor (G-CSF) (n = 11, 44%) 
and granulocyte–macrophage colony-stimulating factor 
(GM-CSF) (n = 7, 28%).

RCTs without a personalized approach   Six RCTs inves-
tigating G-CSF did not show an effect on mortality (Sup-
plementary Table  10). Even though likewise no survival 
benefit was found for GM-CSF, one RCT did demonstrate 
improved respiratory function (n = 18) [65].

Studies with  a  personalized approach   Three RCTs 
studied biomarker-guided (human leukocyte antigen DR 
(HLA-DR) < 8000) GM-CSF treatment; one trial resulted 
in a shorter time of mechanical ventilation (148 ± 103 h vs. 
207 ± 58  h, n = 38) [66]; another in decreased indoleam-
ine 2,3-dioxygenase levels, possibly due to an improved 
antibacterial defense (35.4 ± 21.0 vs 21.6 ± 9.9 (baseline vs 
day 9), n = 36) [67]; another had no effect on the preven-
tion on ICU-acquired infections (11% vs 11%, n = 98) [68]. 
In an RCT studying intramuscular recombinant human 
IL-7 (CYT107) in 27 patients with severe lymphopenia, 
CYT107 reversed the loss of CD4+ and CD8+ cells [69].

Intravenous immunoglobulins
Immunoglobulins can opsonize and neutralize pathogens 
and toxins resulting in immunostimulation and reduced 
inflammation. Immunoglobulins have been studied in 17 
(41%) observational studies, 4 (10%) interventional non-
RCTs and 20 (49%) RCTs (Supplementary Table 11).

RCTs without a personalized approach RCTs on immu-
noglobulins demonstrate contradicting results concern-
ing improving patient outcome and decreasing mortality 
(Supplementary Table  11). For example, two RCTs on 
immunoglobulin (Ig)G demonstrated a lower mortality 
from septic shock in one trial (38% vs. 67%, n = 62) [70]; 
while no mortality reduction was seen in another trial 
(37% vs. 39%, n = 653) [71].

Studies with a personalized approach In an observation 
study intravenous immunoglobulins (IVIG) administra-
tion in patients with sepsis and low serum IgG levels was 
associated with improved prognosis (OR 0.15; 95%CI, 
0.04–0.54; n = 87) [72]. In sepsis patients with neutro-
penia, polyclonal immunoglobulin M-enriched immu-
noglobulins led to a decrease in endotoxin levels in 
survivors, in non-survivors this was not seen [73]. In a 
post-hoc RCT analysis, a reduction of all-cause mortal-
ity was observed in pneumosepsis patients with high 
CRP and low IgM levels when administered trimodulin 
(polyclonal antibody) (reduction of 25%, n = 92) [74]. In 
an RCT studying the use of IVIG, IGMA had no effect 
on 28-day mortality in neutropenic patients (26% vs. 28%, 
n = 211) [75].

Mesenchymal stem cells
Mesenchymal stem cells enhance bacterial clearance and 
modulate the immune response. Mesenchymal stem cells 
have been studied in 1 (17%) observational study, 4 (67%) 
non-randomized interventional studies and 1 (17%) RCT 
(Supplementary Table 12).

RCTs with  a  personalized approach  One RCT showed 
that mesenchymal stem cells are safe and attributed to the 
faster hemodynamic stabilization in 30 patients with neu-
tropenia [76].

Immune‑checkpoint inhibitors
Immune-checkpoint inhibitors have been studied in 1 
(33%) non-randomized interventional study and 2 (67%) 
RCTs (Supplementary Table 13).

Studies with a personalized approach Immune-check-
point inhibitors, like anti-programmed death (PD)-1 
antibodies, while not yet proven to enhance survival, also 
appear safe and could improve immune recovery in one 
non-randomized interventional study and two RCTs with 
patients with absolute lymphocyte count ≤ 1.1 × 103 cells/
μL [77–79].

Combination of therapies and other therapies
See the Supplementary Results for studies investigating 
combination of therapies (Supplementary Table 14) and 
treatments that could not be classified into the previously 
mentioned treatment groups (Supplementary Table 15).

Ongoing trials
A search on ClinicalTrials.gov yielded 78 sepsis stud-
ies, reflecting ongoing research across the entire 
immunotherapy spectrum (Supplementary Table  16). 
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Notably, sixteen studies (21%) implement a personalized 
approach. For the RCTs (n = 14) applying a personalized 
approach see Table  1. One of these trials, employing a 
double-dummy design, is studying the impact of preci-
sion immunotherapy on sepsis phenotypes like hyperin-
flammation (using very high ferritin levels as a marker 
for macrophage activation-like syndrome (MALS)) and 
immunoparalysis (using low expression of HLA-DR on 
monocytes as marker of immunoparalysis) [80]. Patients, 
stratified by biomarkers are assigned to receive either pla-
cebo or active immunotherapy as an adjunct to standard 
care. The active treatments include anakinra for MALS 
and interferon-gamma for immunoparalysis.

Discussion
This scoping review provides a comprehensive overview 
of immunomodulatory treatments investigated in adult 
patients with sepsis, highlighting studies with a person-
alized treatment approach. Our results show that tri-
als often showed conflicting results. Possibly due to the 
lack of patient stratification, requiring the need to con-
firm positive findings in large multicenter populations or 
the potential influence of severity and timing on immu-
nomodulatory therapy results. Several immunomodula-
tory treatments described in this review suggest possible 
efficacy, laying the groundwork for future trials to dem-
onstrate their effectiveness. If a personalized approach is 
applied, clinical benefits of treatment appear to emerge 
in several studies. This emphasizes the need to decipher 
different host response endo-/phenotypes for the inter-
vention to modulate.

Over 700 studies investigating immunotherapy in 
patients with sepsis have been performed and despite 
this body of evidence, the 2021 surviving sepsis cam-
paign guidelines only include intravenous hydrocorti-
sone as an immunomodulatory treatment for patients 
with vasopressor refractory septic shock [81]. Perhaps 
patient stratification might be the way forward, in which 
we have witnessed notable advancements in recent 
years, including therapies targeted by biomarker meas-
urements. For instance, the ratio of IFN-γ to IL-10 has 
been used to guide corticosteroid therapy decisions [63], 
while HLA-DR levels on monocytes and plasma IL-10 
concentrations have been used for stratification of treat-
ment with either GM-CSF or IFN-γ [82]. In ongoing 
and upcoming sepsis trials, an increase in patient strati-
fication has been observed. The personalized approach 
most applied is a cut-off value for inflammatory mark-
ers such as IL-6 or procalcitonin. Two studies use more 
complex stratification methods. One is the ImmunoSep 
trial (NCT04990232) which uses biomarker stratifica-
tion to identify patients with either hyperinflamma-
tion or immunoparalysis [80]. Another example is the 

RECORDS trial, which aims at defining endotypes in 
sepsis adults associated with responsiveness to corti-
costeroids [83]. This multicenter, placebo-controlled, 
biomarker-guided, adaptive Bayesian design basket trial 
will randomly assign 1800 adults to a biomarker stratum 
to identify resistant or sensitive sepsis to corticosteroid 
treatment. In our opinion, using biomarker-based proto-
cols for patient stratification will be the way forward in 
sepsis research.

The strengths of this review include the systematic 
search and comprehensive inclusion of all studies inves-
tigating immunomodulatory treatments in sepsis, includ-
ing studies on immunonutrition, Traditional Chinese 
Medicine and concomitant treatments. Furthermore, it 
gives an extensive overview of studies that used a person-
alized approach, which can be used as the foundation for 
new study designs and aims. A few limitations should be 
mentioned. Given that the objective of this review was to 
provide a comprehensive overview of all studies examin-
ing immunomodulatory treatments in sepsis, a scoping 
review was considered the most suitable approach. Con-
sequently, a risk of bias assessment was not conducted 
[84]. Although inevitable, different criteria for sepsis have 
been used over time [85], leading to heterogeneity in the 
population included. In this review treatments are con-
sidered personalized when a subgroup of subphenotype 
was selected based on biological characteristics possibly 
making the patient benefit more from a specific treat-
ment, however, the is no uniform definition for ‘person-
alized medicine’. Since no qualitative methods such as 
qualitative text analysis, evidence maps or evidence gap 
maps, were deployed, no information on the research 
gaps in the field could be given. Due to the extensive 
body of evidence, we refrained from reporting cohort 
studies in a structured manner in the main text. Even 
though these observational studies and non-randomized 
interventional studies were included in the supplemen-
tary materials, not discussing them in the main text of 
the paper could be perceived as selective reporting bias. 
Lastly, since the search yielded a large amount of studies 
there was only limited possibility for in-depth description 
of important trials, including descriptions of the different 
dosages given.

Conclusions
Decades of extensive investigation into immunomodula-
tory treatments has led to over 700 studies investigating 
these treatment for sepsis, with often conflicting results. 
The lack of therapeutic efficacy appears to be related to 
the difficulty to enroll the right patients for the inter-
vention. Since it is highly unlikely that one single immu-
nomodulatory treatment will be universally effective in 
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all sepsis patients, a personalized approach seems the 
way forward. To date, only a small proportion of studies 
have looked into enrichment strategies in sepsis, and for 
several interventions the therapeutic efficacy appears to 
emerge when a personalized approach was used. Patient 
stratification will play a pivotal role in the identification of 
patients that may benefit from targeted immunotherapy.
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