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Abstract 

Critical illness syndromes including sepsis, acute respiratory distress syndrome, and acute kidney injury (AKI) are asso-
ciated with high in-hospital mortality and long-term adverse health outcomes among survivors. Despite advance-
ments in care, clinical and biological heterogeneity among patients continues to hamper identification of efficacious 
therapies. Precision medicine offers hope by identifying patient subclasses based on clinical, laboratory, biomarker 
and ‘omic’ data and potentially facilitating better alignment of interventions. Within the previous two decades, numer-
ous studies have made strides in identifying gene-expression based endotypes and clinico-biomarker based pheno-
types among critically ill patients associated with differential outcomes and responses to treatment. In this state-of-
the-art review, we summarize the biological similarities and differences across the various subclassification schemes 
among critically ill patients. In addition, we highlight current translational gaps, the need for advanced scientific tools, 
human-relevant disease models, to gain a comprehensive understanding of the molecular mechanisms underlying 
critical illness subclasses.
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Graphical abstract

Background
Critical illness syndromes including sepsis, acute res-
piratory distress syndrome (ARDS), and acute kidney 
injury (AKI) affect pediatric and adult patients admitted 
to intensive care units (ICUs) across the world [1–5, and 
are associated with high mortality. Moreover, survivors 
of critical illness syndromes remain at risk of long-term 
health consequences including chronic debilitation 6, 
technology dependence 7, and late death [8–10. Despite 
this burden of disease, care for such patients remains 
largely limited to antibiotics and intensive organ sup-
port. One-size-fits-all approaches to modulate the host 
response among critically ill patients have been met with 
repeated failure in clinical trials 11. This lack of efficacy of 
drugs has been attributed to administration of therapies 
in unselected populations and due to unaccounted vari-
ation among patients 12, 13. Thus, identification of the 
right drug in the right patient at the right time remains a 
major challenge.

Era of precision critical care medicine
Precision medicine approaches seek to address these 
challenges by identifying subsets of critically ill patients 
based on shared features including clinical, laboratory, 
biomarker, or ‘omic’ data 13. Broadly, these include (1) 
prognostic enrichment tools that seek to identify groups 

of patients based on risk of outcomes such as mortality, 
and (2) predictive enrichment tools that seek to identify 
groups of patients based on shared biological pathways, 
which may be amenable to therapeutic intervention 14. 
While numerous promising subclassification schemes 
have emerged within the previous two decades, each 
with prognostic, predictive implications, or both, few 
have translated into the clinical realm. Moreover, we lack 
a comprehensive understanding of underlying disease 
mechanisms, a challenge further hampered by the lim-
ited translation of current disease models used to study 
critical illness pathobiology. Thus, much progress needs 
to be made in identifying treatable traits underlying criti-
cal illness subclasses. 13

In this state-of-the-art review, we summarize subclassi-
fication schemes that have demonstrated reproducibility 
in identifying biologically distinct subgroups of patients. 
While the relevance of critical illness subclasses have 
been previously considered elsewhere 15, 16, we seek 
to highlight key molecular similarities and differences 
across the subclassification schemes. Finally, we highlight 
current knowledge gaps, translational approaches, and 
disease models that may help augment our mechanistic 
understanding of subclass-specific biology and accelerate 
progress toward drug repurposing as well as the discov-
ery of de novo targeted therapies.
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Evolving understanding of the host response 
in critical illness
The classical paradigm of dysfunctional host responses 
among critically ill patients imply a sequential activa-
tion of the host innate and adaptive immune response 
resulting in a systemic inflammatory response syndrome 
(SIRS) followed by a compensatory anti-inflammatory 
response (CARS) syndrome 17, 18. However, it is increas-
ingly understood that both the innate and adaptive arms 
of the host immune response may contribute to pro- 
and anti-inflammatory responses relatively early in the 
course of illness with significant crosstalk between them. 
An evolving paradigm of dysfunctional host response 
among those critically ill suggests that patients manifest 

a spectrum of maladaptive responses at illness onset that 
are subject to change over the course of disease under the 
influence of myriad pathogen-host-environment related 
factors. This concept is illustrated in Fig. 1.

Recognition of pathogen- and damage- associated 
molecular patterns (PAMPs and DAMPs) initiate and 
propagate the host response in critical illness. Although 
not the primary objective of this review, we provide an 
overview of the perturbations in intra-cellular pathways 
linking inflammatory signaling, metabolic state, and 
cellular fate central to the dysregulated host response 
among critically ill patients in Fig.  2. Further, the shifts 
in immune states and cellular landscape among critically 
ill patients that contribute to pro- and anti-inflammatory 

Fig. 1  An evolving paradigm of dysfunctional host response in critical illness. Critically ill patients exhibit a spectrum of dysfunctional 
pro- and anti- inflammatory responses at illness onset, which are subject to change over the longitudinal course of critical illness influenced 
by host–pathogen-environment related factors. Each column of figures represent time points across the course of critical illness (T0-T90 in days). 
Each row (E1-4) represents critical illness endotypes. Viewed through an alternate lens, the top two rows together represent a hyperinflammatory 
phenotype (P1) and the bottom two rows together represent a hypoinflammatory phenotype (P2). The uppermost row represents patients 
characterized by overexpression of the innate immune response (red) and repression of the adaptive immune response (blue). Given the lack 
of negative feedback by the adaptive immune system, these patients continue to have sustained and unchecked hyperinflammation. On the other 
end of the spectrum, are patients with overactivation of anti-inflammatory pathways resulting in severely immunosuppressed state. Further, 
patients may exhibit temporal subclass switching over the course of critical illness, including those in response to treatments or interventions 
received
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responses are summarized in Fig.  3. Our objective here 
is to provide the reader the necessary context to under-
stand the biological basis of critical illness subclasses 
discussed herein. 

Subclassification schemes in critical illness
It is worth noting that the subclassification schemes that 
have emerged sample various facets of the host response–
the proverbial ‘biological pie’– in differing permutations 

and combinations and at varying depth. Given that gene-
expression and clinico-biomarker models using peripheral 
blood have been most frequently utilized to identify critical 
illness subclasses and likely provide the most comprehen-
sive understanding of biological mechanisms thus far, we 
have chosen to focus our attention on these approaches. In 
Table 1, we have compiled biological similarities and differ-
ences across numerous subclassification schemes among 
critically ill patients. Key studies have been summarized in 
the following paragraphs.

Fig. 2  Intra-cellular signaling links immune response, metabolic state, and cellular fate. Pathogen recognition receptors (PRR) including toll 
like receptors (TLR), nucleotide oligomerization domain (NOD)-like receptors, and retinoic acid inducible gene-I-like receptors (RIG-I) detect 
extra- and intra-cellular pathogens. Activation of PRRs results in transcription of key pro-inflammatory pathways including nuclear factor kappa 
B (NFκB) and mitogen activated protein kinase (MAPK) signaling. This is facilitated by adaptor proteins including myeloid differentiation primary 
response 88 (MyD88) protein or toll-interleukin receptor domain–containing adaptor protein–inducing interferon-β (TRIF) – the latter being 
dominant in the host response to viral infections. Under hypoxic conditions, hypoxia inducible factor 1α (HIF1α) signaling triggers metabolic 
shift from oxidative phosphorylation towards glycolysis and cholesterol biosynthesis through mammalian target of rapamycin (mTOR) signaling. 
Although an efficient mechanism to maintain cellular function, a side effect of anerobic respiration is the production of reactive oxygen 
species (ROS). ROS induce a second hit and induce activation of inflammasome through nod like receptor pyrin domain 3 (NLRP3) protein 
resulting in activation of caspases. The latter serve to propagate the host response by cleaving protein precursors of inflammatory cytokines 
including interleukin-1 and 18 or serve to activate cell death pathways including apoptosis. Thus, the host immune response is inextricably linked 
to cellular metabolism and cellular fate. As detailed in the Table and illustrated in Fig. 4, although current subclassification schemes among critically 
ill patients sample the same set of key biological pathways they yield non-synonymous class outputs
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Gene‑expression based endotypes
Wong and colleagues first used whole blood RNA 
microarrays to identify the gene-expression signatures 
associated with mortality among children with septic 
shock 19, 20. Subsequently, among the most differen-
tially expressed genes (DEGs), 100 subclass defining 
genes broadly reflective of the adaptive arm of the 
host immune response, T-cell function, and gluco-
corticoid signaling were used to identify patient sub-
classes through unsupervised clustering analyses 21, 

22. Subsequently, two subclasses or endotypes A and 
B were validated, with patients belonging to endo-
type A being characterized by repression of the adap-
tive immune and glucocorticoid signaling, relative 
to patients with endotype B. 23 Of note, endotype A 
was associated with a nearly threefold higher odds of 
mortality 21. Further, patients with endotype A who 
received adjunctive corticosteroids had a fourfold 
higher rate of ICU mortality compared to endotype B 
who received corticosteroids 23. In follow up studies, 

Fig. 3  Summary of shifts in cellular states and landscape among critically ill patients. The left half of the image shows the innate arm while the right 
half shows the adaptive arm of the immune response. The top half of the figure shows molecular features that drive a pro-inflammatory state. 
Neutrophils release extracellular traps (NETs) resulting in NETosis that serve to facilitate phagocytosis of pathogens. Monocytes may be driven 
toward a pro-inflammatory M1 macrophage under the influence of NFκB, HIF1α, signal transducer and activator of transcription 1 (STAT1), 
and interferon regulatory factor 3 (IRF3). Innate immune antigen presenting cells (APC) engage T-helper (Th) cells through expression of human 
leukocyte antigen (HLA) DR. B-lymphocytes produce antibodies driving the humoral adaptive response. Th1 differentiation of helper cells results 
in secretion of pro-inflammatory cytokines including interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) which further propagates 
the innate immune response. Finally, cytotoxic T cells release granzyme and result in cell death. The bottom half depicts features that drive 
an anti-inflammatory state in patients. There may be a shift towards immature innate cells including developing neutrophils and myeloid derived 
suppressor cells (MDSCs)– the early and late phases of critical illness, respectively. Monocytes may be polarized to an immunosuppressive M2 phase 
under the influence of interleukins -4, 10, and 13. There is decrease in HLA-DR expression and activation of co-stimulatory programmed cell death 
(PD-1L-PD-1) pathway. Differentiation towards a Th2 phenotype results in secretion of IL-4 and 13. Expansion of regulatory T cells result in IL-10, 
transforming growth factor beta (TGFβ) and vascular endothelial growth factor (VEGF) that are immunosuppressive and thought to promote tissue 
repair and remodeling. With prolonged illness, B- and T- lymphocytes may exhibit immune exhaustion with metabolic failure ultimately triggering 
cell death. As detailed in the Table and illustrated in Fig. 4, although current subclassification schemes among critically ill patients largely represent 
shifts across similar cellular states and landscape they yield non-synonymous class outputs
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Grunwell et al. identified that 11,630 gene probes were 
differentially regulated between patient endotypes A 
and B 24. Targeted analyses of nuclear factor eryth-
roid-related factor 2 (Nrf2), a transcription factor that 
regulates expression of anti-oxidant genes, revealed 
greater downregulation among patients with endotype 
A. More recently among children with septic shock in 
secondary analyses of the Coagulation and Fibrinolysis 
in Pediatric Insulin Titration (CAF-PINT) study, Yang 
et al. identified two septic shock subclasses using bulk 
mRNA sequencing 25. Although the mortality among 
patients included in this cohort was low, Subclass 1 had 
higher burden or organ dysfunction compared to Sub-
class 2 and characterized by upregulation of the innate 
immune and downregulation of the adaptive immune 
pathways, with evidence of systemic inflammation and 
endothelial injury based on plasma protein biomarkers. 
Deconvolution analyses of cellular composition sug-
gested a decrease of CD4 T- and B-lymphocytes, and a 
lower diversity of T-cell receptors (TCR). 25

Several efforts to identify gene-expression endotypes 
have been undertaken among adults. Davenport et  al. 
conducted peripheral blood leukocyte expression pro-
files among patients with community acquired pneu-
monia with sepsis recruited through the U.K. Genomic 
Advances in Sepsis (GAinS) study 26. They identified two 
distinct sepsis response signatures (SRS), where SRS1 
was associated with an immune-suppressed phenotype 
with downregulation of pathogen recognition receptors 
(PRRs), decreased expression of human leukocyte antigen 
(HLA) class II on antigen presenting cells (APCs), and 
T-cell exhaustion, relative to those with SRS2 endotype. 
Patients with SRS1 had a two to threefold higher odds 
of mortality, relative to those with SRS2 membership. In 
secondary analyses of the vasopressin, norepinephrine, 
and steroids (VANISH) trial, Antcliffe et  al. identified 
that patients with the immunocompetent SRS2 endotype, 
had an ~ eightfold higher mortality with receipt of ran-
domized hydrocortisone relative to patients designated 
as SRS1. 27 The authors speculated that among patients 
with SRS2, receipt of corticosteroids may have contrib-
uted to greater downregulation of HLA-DR expression 
contributing to a detrimental response to corticoster-
oids in this subgroup. The authors took the illuminating 
step of integrating whole genome genotyping with gene-
expression data allowing them to identify expression 
quantitative trait loci (eQTL) associated with endotypes 
26. Interleukin 18 receptor (IL18RAP) and chemokine 
receptor 1 (CCR1) were upregulated, while CCR3 was 
downregulated among patients with SRS1. Moreover, 
hypoxia inducible transcription factors HIF1α (HIF1A) 
and HIF2α (EPAS1), mammalian target of rapamycin 
(mTOR) pathway a key determinant of cell metabolism 

and fate (Fig. 2), were among the most upregulated genes 
with evidence of cis-eQTL among patients with SRS1.

Sweeney et  al. pooled pediatric and adult datasets 
across 14 discovery cohorts comprising 700 patients and 
utilized meta-clustering approach to identify 3 sepsis 
endotypes, which they termed Inflammopathic, Coagu-
lopathic, and Adaptive. 28 The Inflammopathic subclass 
was characterized by pathogen recognition receptor 
signaling, pro-inflammatory cytokine signaling and 
complement activation and had ~ 30% mortality. The 
Coagulopathic subclass was characterized by pathways 
involved in platelet degranulation, glycosaminoglycan-, 
heparin-, and fibrinogen-binding, and broadly reflective 
of coagulation cascades and had ~ 25% mortality. Finally, 
the Adaptive subclass was characterized by activation 
of pathways related to antigen presentation activity, 
T-cell receptor binding, activation of lymphocytes, and 
had a mortality of ~ 8%. This group deployed a 33-gene 
classifier to assign endotypes which has demonstrated 
reproducibility in when applied in secondary analyses 
of observational cohort of patients with surgical sep-
sis 29, COVID19 patients 30, and heterogeneous treat-
ment effects in a randomized trial assessing Outcomes of 
Metabolic Resuscitation using Ascorbic acid, Thiamine, 
and Glucocorticoids in the Early Treatment of Sepsis 
(ORANGES) trial 31, and most recently interleukin-1 
receptor antagonist in the SAVE-MORE trial among 
patients with COVID19. 32

Scicluna et al. identified 4 endotypes among adults with 
sepsis enrolled in the prospective observational cohort by 
the molecular diagnosis and risk stratification (MARS) 
consortium based in the Netherlands 33. The Mars1 
endotype was associated with higher hazard of mortal-
ity relative to the other 3 endotypes, and characterized 
by repression of both innate and adaptive genes including 
PRR signaling, nuclear factor κB (NFκB) signaling, APC 
signaling, T-helper cell differentiation and TCR signal-
ing (Figs. 2 and 3). Clinical outcomes were similar among 
Mars 2–4 endotypes. This group developed a 140-gene 
classifier which demonstrated reproducibility. Of note, 
Mars3 endotype showed a significant association with 
the immunocompetent SRS2 and Adaptive endotypes, 
described previously. 26, 34

Transcriptomic studies among patients withs ARDS 
focused on identifying subclasses have been limited 35. 
Yehya et al. identified 3 subclasses named the Children’s 
Hospital of Philadelphia ARDS Transcriptomic Subtypes 
(CATS) among 96 pediatric patients using whole blood 
mRNA. CATS1 subclass was characterized by persis-
tent hypoxemia and ~ 30% mortality. Nearly half of the 
patients assigned to CATS2 had an immunocompromised 
status but rapidly resolved hypoxemia and ~ 25% mortal-
ity. Patients among CATS3 had the lowest mortality ~ 8%. 
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CATS1 was characterized by T helper cell differentiation 
and programmed cell death (PD-1) signaling. CATS2 
showed enrichment for complement activation and 
CATS3 had repression of TCR signaling. Pathway analy-
ses suggested activation of upstream regulators of inflam-
matory cytokines among CATS1 and repression among 
CATS3 patients. Receipt of and response to corticoster-
oids were not reported in this cohort.

Latent class or clustering based phenotypes
In seminal work, Calfee et  al. leveraged latent class 
analyses using clinical, laboratory, and biomarker data 
to identify two subphenotypes of ARDS among patients 
recruited through the ARDS network trials 36. Patients 
with higher probability of membership among pheno-
type 2, identified as hyperinflammatory based on higher 
plasma concentrations of proinflammatory cytokines 
and markers of endothelial activation including IL-6, 
IL-8, soluble tumor necrosis factor receptor-1 (sTNFr1) 
and plasminogen activating inhibitor-1 (PAI-I) and lower 
concentrations of protein C, had a higher prevalence 
of sepsis and worse clinical outcomes relative to those 
without this phenotype. Dahmer et  al. showed repro-
ducibility and prognostic utility of this approach among 
children with ARDS in secondary analyses of the Rand-
omized Evaluation of Sedation Titration for Respiratory 
Failure (RESTORE) trial 37; similar findings have been 
made in other observational cohorts 38. Of note, latent 
profile phenotypes have demonstrated interaction with 
several interventions 36, 39 and simvastatin therapy in 
the HARP-2 trial, on clinical outcomes 40. Using a differ-
ent set of clinical variables and fewer biomarker inputs, 
Sinha et al. identified two phenotypes among adults with 
COVID19 with treatment with corticosteroids being 
associated with improved survival among those with 
hyperinflammatory phenotype and higher mortality 
among those with a hypoinflammatory phenotype. 41

Studies conducted by investigators in the MARS con-
sortium have reproduced the findings of Calfee and 
colleagues. Bos et  al. used cluster analyses to identify 
a reactive and uninflamed phenotype, with worse out-
comes observed among those with a reactive phenotype 
42. Assessment of leukocyte-expression profiles revealed 
genes were broadly representative of innate immune 
signaling and neutrophil activation 43. Pathway analy-
ses revealed that that oxidative phosphorylation path-
ways, cholesterol biosynthesis, and antioxidant signaling 
through Nrf2 were upregulated among patients with a 
reactive phenotype (Fig.  2). In contrast mitogen acti-
vated protein kinase (MAPK) pathways, T-cell signaling, 
and apoptosis were upregulated among patients with an 
uninflamed phenotype. Heijnen et al. identified that these 
phenotypes maintained their biological distinctiveness 

among mechanically ventilated patients irrespective of 
whether they met ARDS criteria, and showed similarity 
with outputs of latent class analyses. 44

Sinha and colleagues recently published on molecular 
phenotypes among adults with sepsis 45. In two pro-
spective observational cohorts, the authors established 
the prognostic utility of latent class phenotypes among 
adults with sepsis with high concordance with pheno-
types among patients with ARDS. When re-analyzing 
data from the PROWESS-SHOCK study 46, the authors 
noted a differential response to recombinant human acti-
vated protein C between phenotypes, with patients with 
a greater probability of a hyperinflammatory phenotype 
demonstrating a beneficial effect with receipt of therapy. 
Of note, there was no evidence of differential responses 
among phenotypes based on vasopressor choice when 
re-examining results of the Vasopressin in Septic Shock 
Trial (VASST); these results are concordant with findings 
with similar studies. 47, 48

Recent studies by Neyton et al. among adults with sep-
sis revealed overexpression of genes representative of 
the innate arm among those with a hyperinflammatory 
phenotype and those of the adaptive arm among patients 
with an hypoinflammatory phenotype 49. Patients in the 
VANISH study were subsequently assigned to the phe-
notypes based on a gene-expression classifier and the 
authors identified that patients with hypoinflammatory 
phenotype overlapped with the immune competent SRS2 
endotype and demonstrated higher mortality with receipt 
of hydrocortisone compared to placebo. Such an effect 
was not noted among patients with the hyperinflamma-
tory phenotype. Sinha et  al. conducted transcriptomic 
analyses among a subset of patients assigned to ARDS 
phenotypes enrolled in the re-evaluation of the systemic 
early neuromuscular blockade (ROSE) trial yielding simi-
lar results 50. Of note, temporal shifts in gene-expression 
identified among subclasses influenced by patient sur-
vival, rather than phenotypic assignment, highlighting 
the dynamic nature of critical illness and molecular com-
plexities involved.

Finally, Bhatraju et al. used latent class analyses using 
biomarkers of inflammation and endothelial activation to 
identify two subphenotypes of AKI- AKI-SP1 and AKI-
SP2 in independent discovery and validation cohorts 51. 
The AKI-SP2 subgroup characterized by elevated Angi-
opoietin-2/Angiopoietin-1 ratio had a ~ 2.5-fold higher 
risk of 28-day mortality and increased risk of renal non-
recovery, relative to patients with AKI-SP1. In secondary 
analyses of the VASST trial, patients with AKI-SP1 had 
a differential response to vasopressors with lower 28- 
and 90-day mortality among those receiving vasopressin 
compared to norepinephrine. However, this was not the 
case with the high-risk AKI-SP2 subphenotype. Studies 
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by Wiersema et  al. in secondary analyses of the Finnish 
AKI (FINNAKI) study yielded similar subclasses with 
prognostic utility 52. It is worth noting that the biomark-
ers used for phenotyping patients are not specific to AKI 
and generalizable across critical illness syndromes.

Corroboration in pre‑clinical models
Few studies have attempted to develop animal models 
capable of recapitulating biological heterogeneity noted 
among critically ill patients. In cecal ligation puncture 
(CLP) model of sepsis, Wong et al. identified that murine 
analogues of pediatric sepsis mortality risk biomarkers 
(PERSEVERE) could be utilized to risk-stratify experi-
mental mice 53. In an analogous approach, Seymour 
et  al. have used biotelemetry-enhanced CLP coupled 
with latent class analyses to identify two phenotypes 
among experimental mice, with one of the classes dem-
onstrated shorter time to deterioration and greater con-
centrations of biomarkers of systemic inflammation 54. 
Interestingly, in a subset of mice that were randomized 
to receive immediate vs. delayed fluid resuscitation and 
antibiotics; only the sicker subset demonstrated improve-
ments with therapy. To model complexity, investigator 
groups have utilized large animal models. Millar et  al. 
have developed an ovine model of ARDS using a two-
hit approach 55. Importantly, animals received intensive 
care. A priori clustering analysis was used to identify 
two phenotypes, with one of the phenotypes character-
ized by higher plasma concentrations of IL-6, IL-8, and 
IL-10 and manifesting similar features as ARDS patients 
with a hyperinflammatory phenotype. Targeted study of 
gene-expression revealed that this phenotype was char-
acterized by overexpression of neutrophil genes also 
implicated in the human host response 56. In subsequent 
studies the group identified that randomization to corti-
costeroids was associated with a benefit only among the 
ovine hyperinflammatory group 57. A few important 
limitations worth considering including the fact that 
experimental approaches described may merely account 
for variance in the procedures to induce critical illness 
in animals. More importantly, models either use ani-
mals with a homogenous genetic background or those 

with knockout of select genes. While the latter are useful 
to understand the mechanism of individual genes, they 
do not reflect the tremendous genetic diversity among 
patients that vitally contribute to patient-, organ-, and 
cell-specific heterogeneity, thus inherently limiting their 
translational potential. Lastly, to the best our knowl-
edge, no in vitro models have thus far been developed to 
recapitulate genetic heterogeneity nor the organotypic 
responses observed among critically ill patients –an area 
of interest emphasized by the U.S National Advisory 
General Medical Sciences Council (NAGMSC) working 
group on sepsis. 58

Current translational gaps
The identification of subclasses with prognostic and pre-
dictive relevance is a commendable feat. Yet, we remain 
in the relative infancy of our understanding of subclass-
specific disease mechanisms. As an analogy, the endo-
types and phenotypes described thus far may serve as 
lenses of a compound microscope through which we 
are able to begin to grasp a more granular understand-
ing of the mechanisms underlying critically ill patients. 
However, there is an urgent need for implementation 
of advanced scientific tools and disease models to open 
new vistas for the discovery of biological drivers under-
lying subclasses. Further, it remains possible that there 
exist relevant yet undiscovered biological pathways that 
are not restricted by the current framework for critical 
illness subclasses. Accordingly, development of both top-
down and bottom-up approaches, which consider cur-
rent subclasses, are necessary to better understand causal 
biological pathways underlying critical illness.

Towards consensus endophenotypes
In Fig.  4a, activation (green) and inactivation (red) of 
intra-cellular signaling pathways identified through gene 
expression studies are shown according to critical illness 
syndrome and the subclassification scheme used; evi-
dently some approaches are more congruent than others. 
In a recent study van Amstel et  al. compared class out-
puts of several critical illness subtyping schemes within 
the same set of patients and identified relatively low to 

(See figure on next page.)
Fig. 4  a Similarities and differences in activation of key signaling pathways based on gene-expression data among critical illness subclasses 
according to scheme used. Key biological facets shown include pathogen recognition receptor signaling, pro-inflammatory cytokine signaling, 
hypoxia induced factor signaling, oxidative phosphorylation, antioxidant signaling, antigen-presenting cell signaling, T-helper lymphocyte 
activation, B-lymphocyte receptor signaling, and T-lymphocyte apoptosis. The green dots indicate activation while the red dots represent 
inactivation, as detailed in the referenced articles. The studies are grouped based on age and critical illness syndromes including sepsis, septic 
shock, and acute respiratory distress syndrome as detailed in the y-axis. b Conceptual overview of (1) current critical illness subclassification 
schemes sampling the proverbial ’biological pie’ in varying slices and depth, (2) the need to move toward consensus critical illness endophenotypes 
through which the underlying molecular mechanisms can be unraveled, and (3) identification of subclass-specific molecular features or treatable 
traits that may be amenable to targeted therapeutic intervention
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Fig. 4  (See legend on previous page.)
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moderate overlap between clinical, biomarker, and tran-
scriptomic data-based approaches 59. Furthermore, 
several studies have identified that integrated subclas-
sification approaches, for example those that combine 
biomarker and transcriptomic approaches, may be more 
informative than using a single approach alone [59–61. 
Moreover, it is established that nearly half of the patients 
switch between gene-expression endotypes assigned 
on day 1 by day 3 among adults 62 and children 63. In 
contrast, limited data among adult ARDS phenotypes 
suggest that ~ 95% of patients maintained original class 
assignment. It remains possible that given the greater 
molecular depth afforded by gene-expression, in com-
parison with clinico-biomarker approaches, that subclass 
switching is more readily apparent when using the for-
mer approach.

Given these challenges, achieving consensus 
approaches to identify clinically relevant, biological 
informative, and temporally characterized subclasses 
agnostic of underlying syndromic assignments and host 
developmental age is crucial, as illustrated in Fig.  4b. 
Towards this end, efforts towards identifying consen-
sus endotypes are underway through the SUBtyping in 
SePsis And Critical illnEss (SUBSPACE) consortium – a 
partnership between academia and industry to identify 
consensus gene-expression endotypes among critically 
ill adults and children. Similar outputs may be expected 
from the recently formed ARDS, Pneumonia, Sepsis 
(APS) consortium—funded by the U.S National Insti-
tute of Health. Forward thinking adaptive study designs 
as with the Precision medicine Adaptive Network plat-
form Trial in Hypoxemic acutE respiratory failuRe 
(PANTHER) 64 and the treatable traits in acute critical 
illness (TRAITS) study 65 are likely to further inform the 
biology of critical illness subclasses. Finally, temporally 
sampled biospecimens from both prospective cohort 
and randomized clinical trials before and after inter-
vention hold tremendous potential to inform efficacy of 
biological response to therapies among critical illness 
subclasses 66. Several challenges are worth considering. 
(1) Clinical phenotyping alone in the absence of bio-
logically informative inputs may limit reproducibility of 
subclasses. (2) Inclusion of appropriate non-critically ill 
controls is essential, especially to gain insights into criti-
cally ill patients who have relatively repression of pro-
tein or genes in comparison with the sickest subset of 
patients. (3) Sampling the host response at multiple-time 
points is necessary to characterize longitudinal disease 
trajectories 67 among patients with emphasis on under-
standing the molecular drivers that predispose patients 
toward these trajectories. (4) Given the statistical power 
necessary, investment in federated databases that allow 
for pooled analyses of a large sample size of patients with 

rich clinical annotations will be needed. (5) Finally, prior-
itization of subtyping methods, especially in the absence 
of obvious overlaps between class outputs, with prefer-
ential weighting of approaches that yield reproducible 
subclasses with demonstrated heterogeneity in treatment 
effect to interventions and therapies will be crucial.

Multi‑compartment sampling of the host response
Progress and challenges in profiling the dysregulated 
immune response in critical illness has been excel-
lently summarized elsewhere 68. A major limitation has 
been that most studies among critically ill patients have 
focused on the peripheral blood compartment in isola-
tion and not considered the compartmentalized effects 
of the host response among patients 69. Heijnen et  al. 
profiled a limited set of inflammatory cytokines and 
lung microbiota using mini-BAL specimens among 26 
patients sampled among patients with reactive and unin-
flamed phenotypes identified based on blood biomarkers 
44. Although limited by sample size, the authors did not 
find significant differences between phenotypes lead-
ing them to conclude that the blood biomarker-based 
designation of phenotypes may not inform the alveolar 
compartment. Given the potential for both concordant 
and discordant effects of therapies on systemic and local 
pro- and anti-inflammatory responses, concerted efforts 
are necessary to sample multiple compartments among 
patients. To this end, some groups have had success with 
use of minimally invasive sampling to sample the tissue-
level host response. 70, 71

Multi‑omic profiling to unravel subclass‑specific 
biology
As opposed to Mendelian diseases that arise from very 
rare genetic variants with a high penetrance, critical ill-
nesses are inherently complex with several relatively 
common genetic variants with low penetrance acting in 
concert to influence patient outcomes. This polygenic 
nature of critical illness 72 has meant that while innu-
merable studies have characterized the roles of individual 
genes and related variants among critically ill patients, we 
are yet to identify approaches to synthesize this complex-
ity and tailor interventions based on knowledge of patient 
genotype or haplotype. Thus, systematic efforts to iden-
tify the influence of the host genome on subclass-specific 
biology is imperative. Further, given that sampling differ-
ent omic layers provides orthogonal evidence, integrated 
multi-omic analyses are likely to provide greater confi-
dence in subclass-specific biological pathways identified. 
Lastly, few small-scale studies have evaluated epigenome 
wide shifts among critically ill patients 73, 74. Given the 
increasing appreciation of the role of epigenetic regula-
tion in the coordination of orchestrated transcriptomic 



Page 17 of 21Stevens et al. Critical Care          (2024) 28:186 	

responses 75, simultaneous study of epigenome and tran-
scriptome both at a patient- and cellular-levels may allow 
for identification of gene-regulatory networks and drivers 
of subclass-specific biology.

Dawn of single‑cell omics in critical illness 
pathobiology
Advances in single cell RNA sequencing (scRNAseq) 
approaches have increasingly allowed for a greater under-
standing of molecular changes among cellular subsets 
among critically ill patients. Reyes et al. published a com-
prehensive atlas of the immune landscape among criti-
cally ill adults and identified a unique CD14 + monocyte 
state specific to septic patients 76. Notably, Kwok et  al. 
recently published a whole-blood multi-omic atlas and 
identified that developing neutrophils and emergency 
granulopoiesis were key drivers of an extreme endotype 
among critically ill adults with sepsis 77. Lastly, numer-
ous well designed multi-omics studies 78 including those 
by the COVID-19 Multi-Omic Blood Atlas (COMBAT) 
consortium 79 have shed light on organ- and cell-specific 
molecular perturbations among critically ill patients. 
Integration of such advanced sequencing technolo-
gies with conventional approaches to endophenotype 
patients holds potential to inform subclass-specific biol-
ogy. It remains yet unknown whether such knowledge 
can be harnessed to tailor cell-subset specific precision 
therapies.

Understanding host–pathogen and microbiome 
interactions
Advances in scientific methods have enhanced the ability 
to identify pathogens which contribute to critical illness 
but often not captured by conventional culture tech-
niques. Using 16s ribosomal RNA sequencing Dickson 
et  al. identified that in humans and experimental sep-
sis, gut-specific bacteria were more common and abun-
dant in bronchoalveolar lavage fluid and correlated with 
degree of systemic inflammation, relative to healthy con-
trols 80. Further alveolar inflammation was correlated 
with perturbations in the lung microbiome. Subsequent 
studies have identified that among critically ill patients 
enrolled through the Biomarker analyses in Septic ICU 
patients (BASIC) - a subset of the MARS consortium, 
patients with increased lung bacterial burden had fewer 
ventilator free days and associated with development of 
ARDS. Of note, the presence of gut-associated bacteria 
including Lachanospiraceae and Enterobacteriaceae in 
the lung were predictive of the worst outcomes. 81

Kalantar et  al. deployed metagenomic next genera-
tion sequencing (mNGS) to distinguish patients with 
and without critical illness due to infectious etiologies 
and enhance sepsis diagnosis 82. More recently, patients 

with a hyperinflammatory phenotype were observed to 
have a greater abundance of bacterial reads particularly 
Enterobacteriaceae species identified through mNGS 
relative to those with a hypoinflammatory phenotype, 
substantiating findings that patients with a hyperinflam-
matory phenotype were more likely to be bacteremic 
based on conventional results of culture 45. In summary, 
the interaction between host genetics, pathogen and anti-
biotic exposure, and alterations in host microbiome at a 
systems-level remains relatively understudied. Under-
standing their contribution to disease progression among 
critical illness subclasses may hold potential to inform 
targeted interventions.

Urgent need for human relevant disease models
Current in  vitro models based largely on culture of 
monolayers of cells are reductionist and limited in their 
ability to reveal organ-specific and compartmental-
ized responses in critical illness. Recent advances in the 
field of regenerative medicine hold potential to begin 
to address these challenges. Human induced pluripo-
tent stem cells (hiPSCs), reprogrammed from somatic 
cells including PBMCs, are replenishable sources of cells 
which can be differentiated into any cell type 83. Human 
iPSCs have been used to develop sophisticated in  vitro 
3-D organoid models including multi-compartment 
models 84 and used for therapeutic drug screening and 
monitoring. Importantly, hiPSCs have been shown to 
recapitulate functional, phenotypic, and transcriptomic 
responses of primary—both circulating and tissue-resi-
dent cells [85–87. Several studies have used to study cel-
lular responses to pathogenic agents, [88–90 including a 
recent study where the investigators treated vascularized 
organoids with plasma from COVID19 patients to reca-
pitulate in vivo responses 91. Further, novel gene-editing 
tools including CRISPR-cas9 hold potential to develop 
in vitro models by efficiently knocking down or out one 
or more genes simultaneously and accelerate mechanis-
tic studies of candidate targets identified through reverse 
translational approaches. Lastly, patient-specific iPSCs 
have been used for precision disease modeling in a vari-
ety of chronic conditions with monogenic or polygenic 
inheritance patterns [92–95.Although untested, it is pos-
sible that patient-specific iPSCs derived from critically ill 
patients by capturing human genetic diversity may facili-
tate the development of avatars for precision medicine to 
study critical illness subclass-specific biology.

Multi‑modal approaches to inform patient care
The wealth of biological information generated among 
critically ill patients is likely to inundate human capac-
ity to meaningfully process and interpret the data, 
thus necessitating the deployment of supervised and 
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unsupervised machine learning approaches to distin-
guish signal from noise. Moreover, as illustrated in Fig. 5, 
future intensive care practitioners will be required to 
process a wealth of multi-modal data including electronic 

and biological data, the latter generated through rapid 
molecular assays. As such the role of artificial intelli-
gence (AI) for data integration, synthesis, and decision-
support cannot be overemphasized 96. Thus, concurrent 

Fig. 5  Overview of bedside-to bench-to bedside approaches necessary to better understand drivers of biological mechanisms underlying 
critical illness subclasses and inform patient care. Starting from center top illustration in a clockwise direction A. Multi-compartment sampling 
among critically ill patients including whole blood including single cell suspensions, nasal brushings, humidified moisture exchange (HME) filter, 
tracheal aspirate, broncho-alveolar lavage, urine, and stool (in light pink), B. Multi-omics profiling including epigenome, genome, transcriptome, 
metabolome, and metagenome sequencing of biospecimens, including at single-cell resolution where feasible (in light purple). Exploratory 
multi-omic-data generated from human biospecimens require validation and experimental testing to gain mechanistic insights, necessitating 
biologically relevant disease models. C. Humanized animal models to capture biological heterogeneity including use of ‘knock in’ of human genes 
in place of murine analogues and biomarker-based stratification or sub-classification of experimental animals and may be used to recapitulate 
biology of human critical illness phenotypes in vivo. In addition, large animal models subject to environmental factors such as invasive mechanical 
ventilation are needed to improve disease modeling and testing efficacy of interventions. D. Human derived organoid models including those 
healthy donor and patient-specific induced pluripotent stem cells (iPSCs) treated with sera/plasma from critically ill patients may be potentially 
used to recapitulate biology of patient endotypes in vitro. The use of CRISPR-cas9 gene-editing technology is anticipated to facilitate a more rapid 
understanding of genes identified in cell- and organ-specific responses in critical illness. Moreover, these human relevant models can be used 
to understand compartment-specific responses in vitro, facilitate therapeutic drug screening, and drug monitoring. Importantly, concerted efforts 
are necessary to integrate biological data with other data streams back at the bedside. E. Integration of multi-modal data including vital sign 
trajectories, physiological and radiological data, point of care ultrasound, although not directly biological informative, are essential to integrate 
with point of care diagnostic assays that provide biological insights. Built-in artificial intelligence (AI) systems will be essential in the future 
to synthesize data streams and provide decision-making support to treating clinicians
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advances are necessary to bridge the divide between sys-
tems-biology based understanding of patient-level patho-
biology and clinical informatics to inform patient care at 
the bedside.

Conclusions
Advances in precision medicine approaches of the 
previous two decades have led to the identification of 
numerous subclassification schemes among critically 
ill patients. Given the disparate outputs of current sub-
classification schemes, progress toward identifying con-
sensus endophenotypes is necessary. Furthermore, we 
remain at the very beginning of the path to identifying 
treatable traits underlying patient subclasses. Deploy-
ment of advanced ‘omic’ technologies and analytic tools 
are likely to yield subclass-specific candidate biological 
pathways for hypotheses testing. Moreover, development 
of robust human relevant disease models are necessary 
to disentangle mechanistic basis of molecular drivers of 
critical illness subclasses. Embracing such multi-dimen-
sional approaches may help catalyze the translation of 
subclass-specific insights into targeted and efficacious 
interventions and help deliver on the promise of preci-
sion critical care medicine to improve patient outcomes.
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