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Abstract 

Background  The spontaneous breathing trial (SBT) technique that best balance successful extubation with the risk 
for reintubation is unknown. We sought to determine the comparative efficacy and safety of alternative SBT 
techniques.

Methods  We searched Medline, EMBASE, and the Cochrane Central Register of Controlled Trials from inception 
to February 2023 for randomized or quasi-randomized trials comparing SBT techniques in critically ill adults and chil-
dren and reported initial SBT success, successful extubation, reintubation (primary outcomes) and mortality (ICU, 
hospital, most protracted; secondary outcome) rates. Two reviewers screened, reviewed full-texts, and abstracted data. 
We performed frequentist random-effects network meta-analysis.

Results  We included 40 RCTs (6716 patients). Pressure Support (PS) versus T-piece SBTs was the most common com-
parison. Initial successful SBT rates were increased with PS [risk ratio (RR) 1.08, 95% confidence interval (CI) (1.05–1.11)], 
PS/automatic tube compensation (ATC) [1.12 (1.01 –1.25), high flow nasal cannulae (HFNC) [1.07 (1.00–1.13) (all mod-
erate certainty), and ATC [RR 1.11, (1.03–1.20); low certainty] SBTs compared to T-piece SBTs. Similarly, initial successful 
SBT rates were increased with PS, ATC, and PS/ATC SBTs compared to continuous positive airway pressure (CPAP) SBTs. 
Successful extubation rates were increased with PS [RR 1.06, (1.03–1.09); high certainty], ATC [RR 1.13, (1.05–1.21); 
moderate certainty], and HFNC [RR 1.06, (1.02–1.11); high certainty] SBTs, compared to T-piece SBTs. There was lit-
tle to no difference in reintubation rates with PS (vs. T-piece) SBTs [RR 1.05, (0.91–1.21); low certainty], but increased 
reintubation rates with PS [RR 2.84, (1.61–5.03); moderate certainty] and ATC [RR 2.95 (1.57–5.56); moderate certainty] 
SBTs compared to HFNC SBTs.

Conclusions  SBTs conducted with pressure augmentation (PS, ATC, PS/ATC) versus without (T-piece, CPAP) increased 
initial successful SBT and successful extubation rates. Although SBTs conducted with PS or ATC versus HFNC increased 
reintubation rates, this was not the case for PS versus T-piece SBTs.

Keywords  Weaning, Spontaneous breathing trial, Extubation, Reintubation, Network meta-analysis

*Correspondence:
Karen E. A. Burns
Karen.burns@unityhealth.to
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-024-04958-4&domain=pdf


Page 2 of 13Burns et al. Critical Care          (2024) 28:194 

Background
For intubated critically ill adults and children, clinicians 
strive to reduce patients’ exposure to invasive mechanical 
ventilation to limit development of intubation and venti-
lator-related complications [1]. Identification of the earli-
est time that patients can resume spontaneous breathing 
is expected to reduce the time to successful extubation 
and thereby the duration of invasive ventilation [2, 3]. 
Simultaneously, clinicians must ensure that extubation 
does not increase the chance that critically ill patients 
will require reintubation. The risk of reintubation overall 
is approximately 10% but may be higher in selected popu-
lations including those who are at high risk of extubation 
failure [4].

Current clinical practice guidelines recommend sys-
tematically performing a spontaneous-breathing trial 
(SBT) before extubation [5]. A SBT is a focused assess-
ment of patient’s capacity to breathe with either low lev-
els or no ventilator support for a brief period of time [6]. 
Although conducted with an endotracheal tube in-situ, 
SBTs aim to assess readiness for extubation by simulat-
ing physiologic condition after extubation. SBTs can be 
performed using a variety of techniques that offer vari-
able amount of inspiratory assistance and/or expiratory 
assistance. An international survey of stated practices 
in liberating critically ill patients from ventilators and 
a large observational study of actual liberation prac-
tices identified that pressure support (PS) with positive 
end-expiratory pressure (PEEP) and T-piece were the 2 
most commonly used SBT techniques [7, 8]. Although a 
clinical meta-analysis suggested that significantly more 
patients were successfully extubated with a PS versus 
T-piece SBT, a concurrently conducted physiologic meta-
analysis found that work of breathing during a PS trial 
was markedly lower than that needed during a T-piece 
SBT and after extubation [9, 10]. Concerns remain as 
to whether PS SBTs, while increasing rates of successful 
extubation, may increase the risk for reintubation due to 
underestimation of postextubation work of breathing [9, 
11]. At present, considerable uncertainty exists regarding 
the best SBT for clinicians to use in clinical practice.

Most randomized controlled trials have compared the 
two most commonly used techniques, PS and T-piece. 
In a recent pairwise meta-analysis, including trials that 
compared 13 alternative SBT techniques, we identified 
that patients undergoing PS versus T-piece SBTs were 9% 
(95% CI, 6–12%) more likely to pass an SBT (after exclu-
sion of an outlier trial with discordant effects on SBT 
and extubation outcomes) and 7% (95% CI, 4–10%) more 
likely to be successfully extubated without an increase in 
reintubation rate [12]. Since pair-wise meta-analysis only 
includes direct comparisons and reintubation was less 
commonly reported compared to SBT and extubation 

outcome, we sought to clarify the effects of alternative 
SBT techniques using direct and indirect evidence on 
important outcomes including SBT outcome (success vs. 
failure), successful extubation (success vs. failure), reintu-
bation, and mortality.

Methods
Data sources and search strategy
An experienced health sciences librarian searched three 
databases utilizing database specific strategies with-
out language restrictions (Medline, EMBASE, and the 
Cochrane Central Register of Controlled Trials) from 
inception through February 2023 to identify potentially 
eligible trials. We used the optimally sensitive search 
strategies for MEDLINE, EMBASE and the Cochrane 
Collaboration [13–15]. Additionally, 3 authors (VP, VT, 
JOF) hand-searched conference proceedings of 5 scien-
tific meetings from 1990–April 2023: American Thoracic 
Society, American College of Chest Physicians (except 
1999–2002, unavailable), International Symposium of 
Intensive Care and Emergency Medicine, European 
Society of Intensive Care Medicine, and Society of Criti-
cal Care Medicine, where feasible to April 2023. Ethics 
approval was not required. A registered protocol (PROS-
PERO CRD42023466265) guided conduct of the network 
meta-analysis.

Study selection
Pairs of reviewers (VP, VT, CGB, BG, KL, DC, KD, JOF) 
independently screened citation titles, abstracts, and 
assessed full-text versions of potentially relevant trials. 
We included randomized or quasi-randomized trials 
that compared two or more SBT techniques in critically 
ill children and adults and reported at least one clinical 
important outcome including initial SBT or extubation 
outcome (success or failure), reintubation, time to first 
successful SBT, time to extubation or successful extuba-
tion, ventilator-associated pneumonia, intensive care 
unit (ICU) or hospital length of stay (LOS), mortality, 
post-extubation use of noninvasive ventilation (NIV) and 
high flow nasal cannula (HFNC), total duration of ven-
tilation or adverse events as defined by the authors. We 
excluded trials that evaluated SBTs as part of a weaning 
strategy; neonatal patients, or tracheostomized patients 
(who do not undergo focused assessments using SBTs 
but rather tracheostomy mask trials); and trials evaluat-
ing automated SBTs (e.g., SmartCare,™ Intellivent®), NIV, 
and SBT versus no SBT. Two authors (KEAB, JOF) inde-
pendently selected trials that met inclusion criteria and 
adjudicated disagreements.

The critical outcomes of interest for the network meta-
analysis were SBT outcome (success/failure), extubation 
outcome (success/failure), and reintubation. Additional 
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outcomes of interest included ICU mortality, hospital 
mortality, and the most protracted mortality reported by 
trial authors.

Data extraction
Two investigators (KEAB, JOF) independently abstracted 
information regarding study characteristics, interven-
tions, and data on outcomes of interest using a prede-
signed data extraction form and resolved disagreements 
through discussion [16].

Risk of bias assessment
Two reviewers (KEAB, JOF) independently assessed the 
risk of bias (RoB) (including allocation concealment, 
randomization, blinded outcomes assessment, selective 
outcomes reporting, completeness of follow-up, stopping 
early for benefit). We judged each criterion for each trial 
as yes, no, unclear and assigned an overall RoB rating 
(high, unclear, low) [17]. As almost no trials had blinded 
outcome assessment, we focused on allocation conceal-
ment and incomplete outcome reporting in assessing 
each trial’s risk of bias. Reviewers resolved disagreements 
through discussion.

Data synthesis and analysis
For all direct comparisons with at least two trials available 
for pooling, we performed random-effects meta-analysis 
for all outcomes and explored heterogeneity using the 
I2 statistic [18, 19] and visual inspection of forest plots. 
We categorized heterogeneity into intervals of 0%-40% 
(potentially negligible), 30%-60% (moderate), 50%-90% 
(significant), and 75% or more (considerable) [18, 19]. For 
pairwise meta-analyses, we calculated and reported risk 
ratio (RRs) for dichotomous outcomes with correspond-
ing 95% confidence intervals (CIs). We performed Egger’s 
tests to assess for small-study effects when 10 or more 
trials were available for comparison [20].

To assess the feasibility of performing network meta-
analysis, we ascertained that all SBT techniques were 
jointly randomizable, the network of evidence was con-
nected for each outcome of interest, and the number 
of trials available for each network was more than the 
number of interventions [21, 22]. We used the ‘design-
by-treatment’ model to assess the coherence assump-
tion (consistency) for each network and the side-splitting 
method to evaluate local (loop-specific) incoherence [23–
25]. We used a frequentist contrast-based random-effects 
model for network meta-analysis using the methodology 
of multivariate meta-analysis assuming a common het-
erogeneity parameter [26, 27]. For each outcome, we also 
estimated ranking probabilities using the surface under 
the cumulative ranking curve (SUCRA) and mean treat-
ment rankings.

For the primary analysis, we evaluated the comparative 
efficacy and safety of alternative SBT techniques as nodes 
on important outcomes [SBT success, successful extu-
bation, reintubation (primary outcomes)] and mortality 
(ICU, hospital, most protracted) with T-piece SBTs as the 
reference category.

In a planned sensitivity analysis we excluded one trial 
with internally inconsistent SBT and extubation outcome 
findings. We performed random-effects network meta-
regression to investigate the impact of overall risk of bias 
(low versus unclear/high) on our findings.

Assessing certainty of the evidence
We rated the certainty of evidence for each network esti-
mate using the grading of recommendations, assessment, 
development, and evaluation (GRADE) framework, 
which classifies evidence as high, moderate, low, or very 
low certainty [28]. Two experienced reviewers (KEAB, 
JOF), familiar with GRADE assessments, rated the cer-
tainty of evidence for each direct comparison considering 
risk of bias, inconsistency, indirectness, and publication 
bias. We rated the certainty in none-zero (null) effect and 
when the point estimate was close to zero, we changed 
our target to trivial or no effect. We considered a mini-
mally important difference of 3–4% to be important in 
network estimates [28–30].

Indirect effect estimates were calculated from available 
loops of evidence, which included first order loops (based 
on a single common comparator treatment—that is the 
difference between treatment A and B is based on com-
parisons of A and C as well as B and C) or higher order 
loops (more than one intervening treatment connect-
ing the two interventions). We assessed the evidence for 
indirect estimates focusing on the dominant first order 
loop or, in the absence of a first order loop, a higher order 
loop [28] and rating certainty of indirect evidence as the 
lowest certainty of the contributing direct comparisons 
informing that dominant loop. We considered further 
rating down each indirect comparison for intransitivity 
if the distribution of effect modifiers differed in the con-
tributing direct comparisons [28].

For the network estimate, we started with the certainty 
of evidence from the direct or indirect evidence that 
dominated the evidence and, subsequently, considered 
rating down our certainty in the network estimate for 
incoherence between the indirect and direct estimates, 
and for imprecision (wide credible intervals) around the 
treatment effect estimates. When serious incoherence 
was present, we used, as the best estimate, that with the 
higher certainty of the direct and indirect evidence [31].
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Results
Search strategy and trial identification
We identified 1,982 new unique citations (Fig.  1). Of 
these, 19 studies were assessed further for eligibility. We 
excluded 9 studies [32–40]. In addition to the previously 
identified 31 trials [41–71], we identified 10 additional 
trials [72–80] (one of which was a full publication [73] of 

a previously published abstract) for inclusion; the 9 new 
trials reported on 3,130 patients. In total, we included 40 
trials reporting on 6,716 patients.

Study characteristics, risk of bias, and certainty of evidence
The characteristics of the included trials are presented 
in Table  1, Additional file  1: Table  S1. Among the 40 

Unique citations (duplicates removed) updated search
1,982 unique citations

19 trials reviewed in detail

9 studies excluded 
2 crossover studies [32, 33] 

    1 SBT vs. no SBT [34] 
    1 weaning strategy + SBT [35] 

2 systematic reviews [36,37]
    2 different modes of mechanical ventilation [38,39] 

1 post extubation monitoring [40] 

40 included trials 

10 full trial publications (including 9 new publications + 
1 full publication of a previously included abstract) 

1,963 citations excluded

31 previously identified trials
(less 1 trial previously 

published as an abstract)

Fig. 1  Identification of Trials included in the Network Meta-Analysis. SBT = spontaneous breathing trial
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Table 1  Characteristics of included trials

Trial characteristics Number of trials (%) Number of patients (%)

Continent of study

 Europe (including United Kingdom) 9 (22.5%) 2855 (43%)

 Asia 6 (15%) 1241 (18%)

 Middle East (including Turkey) 11 (27.5%) 932 (14%)

 North America 6 (15%) 359 (5%)

 South America 6 (15%) 588 (9%)

 Europe (Spain) & South America 2 ( 5%) 741 (11%)

 Total 40 (100%) 6,716 (100%)

Year of publication

 Before 1990 4 (10%) 104 (2%)

 1990–1994 2 ( 5%) 168 (3%)

 1995–1999 3 ( 7.5%) 594 (9%)

 2000–2004 5 (12.5%) 702 (10%)

 2005–2009 7 (17.5%) 870 (13%)

 2010–2014 10 (25%) 633 (9%)

 2015–2019 6 (15%) 2462 (37%)

 2020–2023 3 ( 7.5%) 1183 (18%)

 Total 40 (100%) 6716 (100%)

Patient population

 Adults 37 (92.5%) 6372 (95%)

 Children 3 (7.5%) 344 (5%)

 Total 40 (100%) 6716 (100%)

Type of ICU

 Medical-Surgical 10 (25%) 1628 (24%)

 General/Not Specified 11 (27.5%) 3088 (46%)

 Medical 5 (12.5%) 451 (7%)

 Respiratory 1 (2.5%) 166 (3%)

 Coronary 1 (2.5%) 120 (2%)

 Surgical 3 (7.5%) 702 (10%)

 Cardiac-Surgical 6 (15%) 217 (3%)

 Pediatric Intensive Care Unit 3 (7.5%) 344 (5%)

 Total 40 (100%) 6716 (100%)

Alternative SBT Technique Comparisons

 T-piece versus PS 18 (33%) 4862 (64%)

 T-piece versus CPAP 10 (18%) 528 (7%)

 T-piece versus ATC​ 4 (7%) 267 (4%)

 T-piece versus HFNC 3 (5%) 386 (5%)

 T-piece versus PAV+ 1 (2%) 118 (2%)

 T-piece versus IMV 1 (2%) 40 (0.5%)

 PS versus CPAP 3 (5%) 130 (2%)

 PS versus ATC​ 5 (9%) 502 (7%)

 PS versus PAV+ 1 (2%) 96 (1%)

 PS versus HFNC 1 (2%) 178 (2%)

 PS versus PS/ATC​ 1 (2%) 100 (1%)

 CPAP versus ATC/CPAP 2 (4%) 129 (2%)

 CPAP versus ATC​ 2 (4%) 178 (2%)

 CPAP versus IMV 2 (4%) 59 (0.8%)

 IMV versus SVT 1 (2%) 28 (0.4%)

 Total 55 (100%)* 7601 (100%)
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included trials, 6 trials [46, 47, 52, 53, 69, 77] compared 
3 SBT techniques (though for one of these 3-arm tri-
als [47] we combined the two 5 cm H2O and 10 cm 
H2O continuous positive airway pressure (CPAP) arms 
for a single comparison to the T-piece arm) and 1 trial 
[71] compared 4 SBT techniques. Two trials [61, 72] 
appeared to be published, at least in part, in duplicate 
[81, 82]. Risk of bias assessments for each included trial 
are depicted in Additional file 1: Table S2.

Outcomes
Initial SBT success
We present the comparative efficacy of the alternative 
SBT techniques on initial SBT success from 35 trials 
(including 48 comparisons), excluding a single outlier 
trial [73] with their associated GRADE certainty ratings 
in Fig. 2A. We considered this to be the primary analy-
sis as heterogeneity was reduced from 73 to 0% follow-
ing exclusion of this trial. The network plot for initial SBT 

Table 1  (continued)
SBT = spontaneous breathing trial, PS = pressure support, T-piece = T tube, ATC = automatic tube compensation, PS/ATC = pressure support ventilation/automatic tube 
compensation, CPAP = continuous positive airway pressure, HFNC = high flow nasal cannulae, IMV = invasive mechanical ventilation, PAV +  = proportional assistance 
ventilation plus, SVT = spontaneous ventilation

*Includes 5 trials with 3 groups (3 comparisons) and 1 trial with 4 groups (6 comparisons) for a total of 15 additional comparisons. For a 6th trial with 3 groups (CPAP 5 
cm H2O vs CPAP 10 cm H2O vs T-piece), we combined the two CPAP groups for a single comparison versus T-piece

A) Ini�al SBT Success 

PS SBTs
0.95 (0.91,1.01) ATC SBTs
0.96 (0.87,1.06) 1.00 (0.90,1.12) PS/ATC SBTs
1.08 (1.04,1.12) 1.13 (1.07,1.19) 1.12 (1.01,1.25) CPAP SBTs
1.01 (0.95,1.08) 1.06 (0.98,1.14) 1.05 (0.93,1.18) 0.94 (0.88,1.00) HFNC SBTs
1.08 (0.99,1.17) 1.13 (1.03,1.24) 1.13 (0.99,1.28) 1.00 (0.93,1.08) 1.07 (0.97,1.18) IMV SBTs
0.97 (0.81,1.18) 1.02 (0.84,1.24) 1.02 (0.82,1.26) 0.90 (0.75,1.09) 0.97 (0.79,1.18) 0.90 (0.73,1.11) PAV+ SBTs
1.08 (0.92,1.26) 1.13 (0.96,1.33) 1.12 (0.93,1.35) 1.00 (0.86,1.17) 1.07 (0.90,1.26) 1.00 (0.87,1.14) 1.11 (0.87,1.41) SVT SBTs
1.08 (1.05,1.11) 1.13 (1.07,1.19) 1.12 (1.01,1.25) 1.00 (0.97,1.03) 1.07 (1.00,1.13) 1.00 (0.92,1.08) 1.11 (0.92,1.34) 1.00 (0.86,1.17) T-piece SBTs

B)      Successful Extuba�on

PS SBTs
0.94 (0.88,1.01) ATC SBTs
0.93 (0.81,1.07) 0.99 (0.85,1.16) PS/ATC SBTs
1.02 (0.96,1.08) 1.08 (1.01,1.16) 1.09 (0.94,1.27) CPAP SBTs
1.00 (0.96,1.04) 1.06 (0.98,1.15) 1.07 (0.92,1.23) 0.98 (0.91,1.05) HFNC SBTs
1.03 (0.83,1.27) 1.09 (0.88,1.36) 1.10 (0.86,1.42) 1.01 (0.82,1.24) 1.03 (0.83,1.28) IMV SBTs
1.00 (0.87,1.14) 1.06 (0.91,1.23) 1.07 (0.88,1.29) 0.98 (0.85,1.13) 1.00 (0.87,1.15) 0.97 (0.75,1.24) PAV+ SBTs
1.03 (0.80,1.32) 1.09 (0.84,1.40) 1.10 (0.82,1.46) 1.01 (0.79,1.28) 1.03 (0.80,1.33) 1.00 (0.87,1.14) 1.03 (0.77,1.37) SVT SBTs
1.06 (1.03,1.09) 1.13 (1.05,1.21) 1.14 (0.99,1.31) 1.04 (0.98,1.10) 1.06 (1.02,1.11) 1.03 (0.83,1.27) 1.06 (0.93,1.22) 1.03 (0.80,1.33) T-piece SBTs

C)     Reintuba�on 

PS SBTs
0.96 (0.71, 1.30) ATC SBTs
1.50 (0.26, 8.60) 1.56 (0.27, 9.16) PS/ATC SBTs
0.84 (0.52, 1.36) 0.88 (0.55, 1.41) 0.56 (0.09, 3.44) CPAP SBTs
2.84 (1.61, 5.03) 2.95 (1.57, 5.56) 1.90 (0.30, 11.90) 3.36 (1.62, 6.97) HFNC SBTs
0.69 (0.01, 32.46) 0.72 (0.02, 33.72) 0.46 (0.01, 31.56) 0.82 (0.02, 37.30) 0.24 (0.00, 11.88) IMV SBTs

Fig. 2  Network Estimates and Certainty Ratings for Alternative SBT Techniques on Primary Outcomes. SBT = spontaneous breathing 
trial, PS = pressure support, ATC = automatic tube compensation, PS/ATC = pressure support ventilation/automatic tube compensation, 
CPAP = continuous positive airway pressure, HFNC = high flow nasal cannulae, IMV = invasive mechanical ventilation, PAV+  = proportional assistance 
ventilation plus, SVT = spontaneous ventilation, T-piece = T tube. Spontaneous breathing trial network meta-analysis results with corresponding 
GRADE (grading of recommendations, assessment, development, and evaluation) certainty of evidence (dark green , high certainty; light green, 
moderate certainty; light orange, low certainty; and dark orange, very low certainty) for A initial SBT success, B successful extubation and C 
reintubation rates excluding a single outlier trial (73). Values correspond to difference between columns and rows in the rate of A initial SBT success 
[excluding a single outlier trial (73)], B successful extubation and C reintubation. Values in bold indicate a statistically significant treatment effect
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success is shown in Fig.  3A. Surface under the cumula-
tive ranking curve rankings are displayed in Additional 
file 1: Table S3 and the direct and indirect estimates with 
tests of incoherence for initial successful SBT are shown 
in Additional file 1: Table S4. Compared to T-piece SBTs, 
PS SBTs [RR 1.03, (95% CI 0.98–1.08); low certainty] may 
result in little or no difference in initial SBT success rates. 
However, when a single trial with internally inconsist-
ent results between initial SBT and extubation outcomes 
was removed PS (vs. T-piece) SBTs likely increase initial 
SBT success rates [RR 1.08, 95% CI (1.05–1.11); moderate 
certainty].

Compared to T-piece SBTs, PS/automatic tube com-
pensation (ATC) [1.12 (95% CI 1.01–1.25); moderate 
certainty] and HFNC [1.07 (95% CI 1.00–1.13); moder-
ate certainty] SBTs increased the proportion of patients 
who passed an initial SBT. Similarly, compared to T-piece 
SBTs, ATC SBTs may increase initial SBT success rates 
[RR 1.13, (95% CI 1.07–1.19); low certainty]. Compared 
to CPAP SBTs, PS SBTs [RR 1.08, (95% CI 1.04–1.12); low 
certainty], and ATC SBTs [RR 1.13, (95% CI 1.07–1.19); 
low certainty] may increase initial SBT success rates and 
PS/ATC SBTs [RR 1.12, (95% CI 1.01–1.25); moderate 
certainty] likely increased initial SBT success rates.

Successful extubation
We present the comparative efficacy of the alternative 
SBT techniques on successful extubation from 31 trials 
(including 44 comparisons) with their associated GRADE 
certainty ratings in Fig.  2B. We depict the network plot 
for initial SBT success in Fig.  3B. Surface under the 

cumulative ranking curve rankings are displayed in Addi-
tional file  1: Table  S5 and the direct and indirect esti-
mates with tests of incoherence for successful extubation 
are shown in Additional file 1: Table S6.

In network estimates compared to T-piece SBTs, PS 
[RR 1.06, (95% CI 1.03–1.09; high certainty) and HFNC 
SBTs [RR 1.06, (95% CI 1.02–1.11); high certainty] 
increased the proportion of patients who were success-
fully extubated. Both ATC (vs. T-piece) SBTs [RR 1.13, 
(95% CI 1.05–1.21); moderate certainty] and ATC (vs. 
CPAP) SBTs [RR 1.08, (95% CI 1.01–1.16); moderate 
certainty] likely increased the proportion of successfully 
extubated patients.

Reintubation
We present the comparative efficacy of the alternative 
SBT techniques on reintubation from 30 trials (including 
41 comparisons) with their associated GRADE certainty 
ratings in Fig. 2C. We depict the network plot for initial 
SBT success in Fig.  3C. Surface under the cumulative 
ranking curve rankings are displayed in Additional file 1: 
Table S7 and the direct and indirect estimates with tests 
of incoherence for reintubation are shown in Additional 
file 1: Table S8.

Both PS (vs. HFNC) SBTs [RR 2.84, (95% CI, 1.61–
5.03); moderate certainty] and ATC (vs. HFNC) SBTs 
[RR 2.95 (95% CI, 1.57–5.56); moderate certainty) likely 
resulted in a large increase in the proportion of patients 
who were reintubated. PS (vs. T-piece) SBTs may result 
in little or no difference in reintubation rate [RR 1.05, 
(95% CI 0.91–1.21); low certainty].

Fig. 3  Network Plots. A–C Network plots A successful spontaneous breathing trial (SBT) B successful extubation C Reintubation. The size 
of the node corresponds to the number of patients randomized to that intervention. The thickness of the line and the associated numbers 
correspond to the number of studies comparing the two linked interventions. SBT = spontaneous breathing trial; CPAP = continuous positive airway 
pressure; ATC = automatic tube compensation; PSV = pressure support ventilation; HFNC = high flow nasal cannulae; IMV = intermittent mandatory 
ventilation; PAV+  = proportional assist ventilation plus; PSV/ATC = pressure support ventilation/automatic tube compensation; SVT = spontaneous 
ventilation
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Using a minimally contextualized framework [83], we 
summarize the comparative effectiveness and safety of 
the alternative SBT technique on primary outcomes in 
Table 2.

Secondary outcomes
Network meta-analysis of alternative SBT techniques 
on the incidence of ICU (Additional file  1: Table  S9, 
Additional file  1: Figure  S1), hospital (Additional file  1: 
Table  S10, Additional file  1: Figure  S2), and most pro-
tracted mortality (Additional file 1: Table S11, Additional 
file 1: Figure S3) were not significant.

Network meta‑regression
For the comparison of ATC versus PS SBTs on ini-
tial SBT outcome [excluding an outlier trial (73)], the 
effect estimate for trials at low (vs. unclear/high) risk of 
bias was RR 1.10 (95% CI 1.03–1.18) (test of interaction 
p-value = 0.018) (Additional file  1: Table  S12). Similarly, 
for the comparison of ATC (vs PS) SBTs on success-
ful extubation, the effect estimate for trials at low (vs. 
unclear/high) risk of bias was RR 1.19 (95% CI 1.06–1.34) 
(test of interaction p-value = 0.026). (Additional file  1: 
Table S13). There were no significant tests of interaction 
between SBT techniques and risk of bias for reintubation 
(Additional file 1: Table S14).

Discussion
This network meta-analysis included a large number of 
trials and well-connected network plots with many direct 
and indirect comparisons. The largest number of tri-
als directly compared PS to T-piece SBTs. Using direct 
and indirect evidence, we identified that compared to 

T-piece SBTs, initial successful SBT rates were increased 
with PS (when an outlier trial was excluded), PS/ATC, 
and HFNC SBTs (all moderate certainty) and with ATC 
SBTs (low certainty). Compared to CPAP SBTs, 3 SBT 
techniques [PS (outlier excluded; low certainty), ATC 
(low certainty), and PS/ATC SBTs (moderate certainty); 
also increased initial successful SBT rates. Compared to 
T-piece SBTs, successful extubation rates were increased 
with PS and HFNC (both high certainty] and ATC (mod-
erate certainty) SBTs. Successful extubation rates were 
also increased with ATC (vs. CPAP) SBTs (moderate cer-
tainty). There may be little to no difference in reintubation 
with PS (vs. T-piece) SBTs (low certainty), but reintu-
bation rates were likely increased with ATC SBTs (low 
certainty) and PS SBTs (moderate certainty)] compared 
to HFNC SBTs. Taken together, network meta-analysis 
favored use of SBT techniques with pressure augmenta-
tion (PS, ATC, PS/ATC) versus without (T-piece, CPAP) 
for successful initial SBT and extubation rates (indirect 
evidence only, moderate certainty). There may be a trade-
off between pressure augmentation and reintubation risk 
in PS and ATC (vs. HFNC) SBTs (direct evidence, mod-
erate certainty), although data suggest there may be little 
to no difference in reintubation rate with PS (vs. T-piece) 
SBTs; (direct evidence; low certainty).

In the absence of a large equivalency trial comparing 
alternative SBT techniques, the best SBT technique for 
clinicians to utilize in practice remains unclear. Conse-
quently, considerable international practice variation 
exists in the conduct of SBTs [8]. For patients who are 
invasively ventilated for > 24 h, the American Thoracic 
Society/American College of Chest Physicians guideline 
[5] provided a conditional recommendation (moderate 

Table 2  Ranking tables for primary outcomes

Ranking of SBT techniques using minimally contextualized framework [83] with T-piece SBTs serving as the reference framework

SBT = spontaneous breathing trial; PS = pressure support; PS/ATC = pressure support/automatic tube compensation; HFNC = high flow nasal cannulae; 
ATC = automatic tube compensation; IMV = intermittent mandatory ventilation; CPAP = continuous positive airway pressure; SVT = spontaneous ventilation; 
PAV+  = proportional assist ventilation plus

*PS/ATC did not achieve statistical significance [RR 1.14 (95% CI, 0.99, 1.31)] and therefore could arguably be placed in the ‘maybe not different than T-piece’ (low to 
very low certainty) classification

Ranking classification Initial successful SBT Successful extubation Reintubation

Among the best (moderate to high certainty) PS
PS/ATC​
HFNC

PS
HFNC
ATC​

HFNC

Maybe among the best (low or very low certainty) ATC​ *PS/ATC​

No different than T-piece (moderate to high certainty) IMV CPAP

Maybe no different than T-piece (low to very low certainty) CPAP
SVT
PAV+

IMV
SVT
PAV+

PS
PS/ATC​
ATC​
PAV+
IMV
SVT
CPAP
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certainty) to conduct SBTs with inspiratory pressure aug-
mentation of 5–8 cm H2O versus without pressure aug-
mentation (vs. T-piece or CPAP) [5]. Our findings align 
with these guideline recommendations. Network meta-
analysis identified that both PS, ATC, and PS/ATC SBTs 
increased successful initial SBT rates and PS (vs. T-piece) 
and ATC SBTs (vs. T-piece and CPAP) increased suc-
cessfully extubation rates. Additionally, we identified that 
HFNC (vs. T-piece) SBTs increased both initial success-
ful SBT and extubation rates. Of these comparisons, the 
largest amount of direct evidence emanated from trials 
that compared PS (vs. T-piece). Compared to T-piece 
SBTs, PS SBTs likely increased the proportion of initial 
SBT successes (moderate certainty) and increased the 
rate of successful extubation (high certainty), and may 
result in little difference in reintubation rate (low cer-
tainty). Data supporting comparisons between ATC (vs. 
T-piece) and ATC (vs. CPAP) SBTs on initial success-
ful SBT and extubation were enhanced by indirect evi-
dence from the large number of trials that compared PS 
and T-piece SBTs. Similarly, direct evidence comparing 
HFNC (vs. T-piece) SBTs emanated from only 3 trials 
and were similarly enhanced by indirect evidence from 
PS comparisons.

One of the novel findings of this network meta-anal-
ysis was the likely higher reintubation rates associated 
with both PS and ATC SBTs (vs. HFNC; both moderate 
certainty) conducted with augmented inspiratory sup-
port and the lower reintubation rate associated with 
HFNC versus T-piece (moderate certainty). There are 
several reasons why the effect estimates of alternative 
SBT comparisons on reintubation rates were differ-
ent. First, reintubation was less frequently reported (vs. 
initial SBT success and successful extubation) as a trial 
outcome and certainty of network estimates for reintuba-
tion (Fig. 2C) were lower than for successful initial SBT 
(Fig.  2A) and extubation (Fig.  2B). Second, HFNC data 
reflecting reintubation rate emanated from only 3 trials 
(n = 482) [66, 67, 72] that contributed data to 4 compari-
sons. Of these, a single three arm trial [66] included most 
patients (n = 268) and contributed to 2 HFNC pairwise 
comparisons. This trial [66] also had unclear risk of bias 
with regard to random sequence generation, allocation 
concealment, completeness of outcomes reporting, and 
early stopping. Third, the reintubation network figure 
(Fig. 3C) shows that only one trial directly compared PS 
versus HFNC SBTs and no trial directly compared ATC 
versus HFNC SBTs. Consequently, the evidence support-
ing these findings is largely indirect. By contrast, 13 trials 
directly compared PS versus T-piece SBTs and reported 
reintubation rates. On balance, although the inferences 
that can be made from PS and ATC (vs. HFNC) SBTs 
were limited, a large number of trials, though with only 

low certainty evidence, supported that there may be lit-
tle to no difference in reintubation rates with PS (vs. 
T-piece) SBTs. Taken together, the network meta-analysis 
supports use of PS (vs. T-piece) SBTs with a significantly 
higher successful extubation rate and similar reintu-
bation rate. To address the potential trade-off, a large 
well-designed trial powered to assess reintubation rates, 
would be required to clarify the effect of SBTs with (vs. 
without) pressure augmentation.

A single SBT technique is unlikely to be optimal for all 
intubated patients. Prior research has similarly identified 
that compared to T-piece, PS SBTs may offset clinician 
reluctance to extubate, thereby enabling timely and more 
successful extubation decision-making [9, 12, 84, 85]. 
Although combining direct and indirect evidence from 
randomized trials permitted comparisons between mul-
tiple SBT techniques, several points should be considered 
in interpreting our findings. First, many participants in 
the included trials likely had a high pretest probability of 
passing an SBT and being successfully extubated after an 
initial SBT [86]. Second, T-piece SBTs may be appropri-
ate, even ideal, for specific patients including those with 
left ventricular dysfunction, neuromuscular weakness, 
or marginal reserve). T-piece SBTs may also be preferred 
when clinicians are uncertain about SBT or extubation 
outcomes and therefore prioritize a technique with a low 
false positive rate to limit the likelihood of extubation fail-
ure [4, 9]. However, use of T-piece SBTs for all critically 
patients, including patients with a high pretest probabil-
ity of success, may lead to a high false negative rate and 
result in patients remaining on invasive ventilation longer 
than needed. To this end, most trials were conducted in 
medical, surgical, or mixed populations with limited data 
emanating from specific populations. Third, the included 
trials differed in how often the assigned SBT techniques 
were used with few trials applying interventions until a 
clinical outcome (successful extubation, death, transfer 
or discharge) was achieved. Fourth, successful extubation 
incorporates both the ability to pass a SBT and remain 
extubated and was variably defined in the included tri-
als. In modern day practice, successful extubation may be 
influenced by post-extubation use of bilevel NIV, CPAP, 
or HFNC [87].

Our review has strengths. We conducted a compre-
hensive literature search, performed duplicate eligibility 
appraisal, risk of bias assessment, and data abstraction. 
We conducted meta-regression to account for potential 
effect modifiers (risk of bias) and used GRADE to rate 
certainty of evidence. Inclusion of a large number of tri-
als, enabled creation of well-linked and connected net-
work plots with many direct and indirect comparisons. 
Our review also has several important limitations. First, 
there was not enough direct evidence for PS and ATC 
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(vs. HFNC) and, to a lesser extent, PS (vs. T-piece) com-
parisons on reintubation rate to make strong inferences. 
Second, we identified only 3 trials involving critically 
ill children where considerable uncertainty still exists 
regarding the role for SBTs in liberation from invasive 
ventilation. Third, there may be unknown and unmeas-
ured confounders that could have impacted the intransi-
tivity assumption in assessing certainty of the evidence. 
Fourth, publication bias may have impacted our find-
ings as few comparisons included more than ten trials. 
Finally, we did not involve patients or family members 
in the design or conduct of this study. Notwithstanding, 
we highlighted liberation and general outcomes that are 
important to visitors to ICUs in our primary and second-
ary outcomes [88].

Conclusions
SBTs conducted with pressure augmentation (PS, ATC, 
PS/ATC) versus without (T-piece, CPAP) increased 
initial successful SBT and successful extubation rates. 
Although SBTs conducted with PS or ATC compared 
to HFNC increased reintubation rates, this was not the 
case for PS versus T-piece SBTs.
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