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Abstract 

Background  The aim of this retrospective cohort study was to develop and validate on multiple international data-
sets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive 
care unit (ICU).

Methods  We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the “Kidney Disease: 
Improving Global Outcomes” criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h 
while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-
center databases and externally validated on two multi-centers databases.

Results  A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 
to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The 
model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92–0.95) in the US external 
validation cohort and 0.85 (95% CI 0.83–0.88) in the Italian external validation cohort.

Conclusions  A machine learning approach fed with the proper data pipeline can accurately predict onset of Per-
sistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model 
has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.
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Background
Acute kidney injury (AKI) is a common complication 
during acute critical illness, which is estimated to affect 
one in two patients admitted to the intensive care unit 
(ICU) [1] exhibiting an increasing incidence over the past 
decade [2]. Li et  al. [3] argued that AKI is often under-
diagnosed and undertreated, despite its common occur-
rence, resulting in a potential increase in the risk of 
in-hospital mortality.

In the last years, researchers have focused on AKI epi-
sodes that do not resolve within 48  h. The Acute Dis-
ease Quality Initiative (ADQI) 16 Workgroup defined 
this condition as persistent AKI, in opposition to com-
plete renal recovery within a brief time, referred as tran-
sient AKI. This distinction is clinically relevant since 
AKI episodes present different outcomes according to 
their duration. Indeed, patients without renal recovery 
within 3–7  days showed reduced survival over the fol-
lowing year (40% vs 90%) and increased risk of develop-
ing chronic renal disease than those who recovered renal 
function [4]. Early identification of patients at risk of per-
sistent AKI would allow a more accurate risk stratifica-
tion and individualized management [5, 6]. Nonetheless, 
48  h time-frame has been chosen by guidelines to war-
rant prompt clinical intervention, but stage 3 AKI last-
ing more than 72 h (p-AKI3) may be a better definition 
of non-resolving AKI, eventually requiring renal replace-
ment therapy.

Due to the various aetiologies of AKI and the complex 
mechanisms behind renal dysfunction, traditional bio-
logical indicators or renal-specific biomarkers proved 
poor performance to predict pAKI 3 [7, 8]. Experimental 
studies suggested that, because of different existing injury 
pathways, multiple biomarkers may be necessary in this 
context [9]. As such, a variety of measurement dedicated 
to the early prediction of pAKI 3 have been proposed, 
including urinary parameters, renal ultrasonography, 
estimates of glomerular filtration rate and biomarkers of 
kidney damage. Although predicting short-term recov-
ery might help in optimizing patient management and 
anticipate outcome, available imaging tests, biomarkers, 
and scores have not yet been validated and, at best, were 
found to be poorly efficient in preliminary studies [10].

A novel approach to predict pAKI3 could involve the 
use of Artificial Intelligence (AI) and Machine Learn-
ing (ML), that could assess clinical data and predict the 
severity and duration of AKI episodes, overcoming the 
traditional biomarker approaches [11], more expensive 
and time-consuming.

ML techniques have been already developed and exter-
nally validated to predict AKI stage 2 or 3 within 24  h 
[12] or AKI stage 3 within 48 h [13]. To our knowledge, 
the only works that focused on the prediction of pAKI3 

focused only on septic patients [14] or post postopera-
tive patients [15]; these models are still not externally 
validated. Our approach focused on a novel set of fea-
tures based on time series trends not assessed by these 
methods.

In the current study we presented a machine learn-
ing model for the prediction of pAKI 3, together with its 
validation on the same population of the development 
cohort, and the external validation on the unseen popu-
lation extracted from eICU and MIMIC-III, two large 
multi-center clinical databases.

Materials
Data sources
The data used in this study derived from the following 
sources:

•	 MIMIC-III [16], a single-center database from 
patients admitted at the Beth Israel Deaconess Medi-
cal Center in Boston (MA) from 2001 to 2012 (61,532 
admissions, 46,476 distinct patients). In our explora-
tion, we made use of the improvements introduced in 
MIMIC-III v1.4, released on September 2, 2016 [17]. 
The enhanced data quality and the considerable addi-
tion of diverse data elements provided valuable sup-
port for our analyses;

•	 eICU collaborative research multicenter database 
[18], a multicenter database which contains data 
from 208 different United States ICU wards, reg-
istered from 2014 to 2015 (200,859 admissions, 
139,367 patients);

•	 AmsterdamUMC database (AmsterdamUMCdb) 
[19], a single-center database from patients admit-
ted at the University hospital ICU of Amsterdam, in 
the Netherlands between 2003 and 2016, for a total 
of admissions (23,106 admissions, 20,109 distinct 
patients);

•	 MargheritaTre database, developed by the Group 
for the Evaluation of Interventions in Intensive Care 
Medicine (GiViTI) founded in 1991 [20] and availa-
ble for research purposes. We were granted access to 
data collected from 2001 to 2022 in 27 different Ital-
ian centers (60,430 ICU admissions, 55,702 patients).

Unit of measure of these registries were horizontally 
standardized to build the present homogeneous cohort 
study.

The development cohort for this study was randomly 
drawn from the MIMIC-III and AmsterdamUMC data-
bases for two key reasons: first, they represent older 
cohorts, allowing testing the generalizability of the pre-
diction tool on newer cohorts. Secondly, they are both 
single-center databases, providing an opportunity to 
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assess the performance of the model on a more diverse 
multicenter cohort, as represented by MargheritaTre and 
eICU databases. This approach ensures the evaluation of 
the model’s effectiveness across different time periods 
and diverse healthcare settings.

Persistent acute kidney injury stage 3 definition
While the definition of AKI and its staging has been for-
malized by the “Kidney Disease: Improving Global Out-
comes” (KDIGO) organization during its 2012 annual 
conference [21], the definition of persistent AKI stage 3 
has not been unanimously accepted. As primary predic-
tion endpoint, we defined Persistent AKI Stage 3 (pAKI3) 
as a combination of AKI Stage 3, lasting at least 72  h 
(T72) or AKI Stage 3 lasting at least 48 h and leading to 
death (D48) or the initiation of renal replacement ther-
apy after more than 24 h of AKI Stage 3, excluding cases 
where Stage 3 was solely attributed to RRT (RRT24). 
The rationale of such categorization, relies on the idea of 
selecting those patients presenting AKI 3 who were more 
likely to need renal replacement therapy. In Suppl. Info 
S1 Section the rationale for the choice of the endpoint is 
described.

We defined any portion of an ICU stay with constant 
AKI stage 3 a severe AKI event. If the severe AKI event is 
marked as persistent stage 3, we call it a persistent event. 
We use the notation Tp to indicate the time of the persis-
tent event, i.e., the first hour of a persistent event.

We say that a patient underwent transient AKI if no 
persistent event occurred during his stay.

The baseline serum creatinine (bSCr) was established 
by modifying the nadir serum creatinine (sCr). For ICU 
stays with RRT, we chose the minimum sCr between 
admission and RRT initiation. For stays without RRT, 
the minimum sCr among all patient-related stays was 
selected, excluding those involving RRT.

Additional details on the motivation behind our pAKI3 
definition can be found in Suppl. Info S1 Section. In 
Suppl. Info S4 Section we presented the labeling of time 
samples close to Tp.

Variables selection and uniform resampling
We started the analysis by considering a series of clini-
cal, anamnestic, and demographic data, generally 
believed to have a role in AKI development (Suppl. Info 
S1 Table). This table also highlights the variables that 
have been measured in more than 70% of the stays of 
AmsterdamUMCdb, MIMIC-III and eICU. These are 
the variables used by our digital prediction model. The 
machine-learning model uses clinical variables measured 
during all AKI Stage 2 and AKI Stage 3 episodes in the 
ICU stay of the patient till the onset of the first Persis-
tent AKI Stage 3 episode. After the first Persistent AKI 

Stage 3 event, subsequent AKI episodes were not ana-
lyzed by the model. The model also leverages time-series 
of clinical variables as described in Sect.  3.5 on Feature 
Engineering.

The two external validation cohorts take on two dis-
tinct roles: while eICU is a real-world example of how 
our model generalize in ICU with similar data quality and 
data availability, MargheritaTre will assess the robust-
ness of the model under high rate of missing features, 
that could degrade model performances. As shown in S1 
Table, Suppl. Info., the percentage of ICU stays having at 
least a measurement of several clinical variables used by 
the model was significantly lower.

Table S2 shows standardized vital signs and lab results; 
values beyond limits were flagged and excluded. Each 
variable has a specified validity duration (Max_gap). 
Urine output was transformed from volume to flow, con-
sidering the distance between measurements based on 
Max_gap. Hourly resampling was done within the ICU 
stay timeframe, enabling hourly AKI stage computation 
and prediction endpoint determination for serum creati-
nine and urine output.

Inclusion and exclusion criteria
We included ICU adult (≥ 18 years of age) patients hav-
ing recorded sex, height, and weight. To assess KDIGO 
staging, concomitant measurement of serum creatinine 
(sCr) and urine output (UO) starting in the first 12 h of 
the ICU stay were required. By looking at the last sCr 
measurement and the last 24 h of urine output we com-
puted the AKI stage at any hour of any stay; then we 
selected only those stays having at least one hour marked 
as AKI stage 2 (for UO resampling technique, please refer 
to Suppl. Info. S2 Section).

Exclusion criteria can be divided into four categories: 
demographic exclusion, staging exclusion, imminence 
exclusion and aambiguity exclusion. A graphical version 
of the inclusion and exclusion criteria can be found in 
Table 1.

Further details on inclusion and exclusion criteria can 
be found in Suppl. Info. S3 Section and its graphical ver-
sion in Suppl. Info. S2 Figure.

Model definition and feature engineering
For this study, we selected a gradient boosted trees 
approach. This model lends itself well to optimization for 
imbalanced data issues, as seen in the context of predict-
ing pAKI3, which exhibits a low incidence rate. Further-
more, its output can be readily elucidated using SHAP 
values [22].

Selecting this technique also allowed to manage high 
dimensional data: at each timestamp, the model uses 
a vector of 542 components encapsulating statistical 
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features of the near past of each variable, distance 
from the last measurement and whether the variable is 
missing.

The features were generated from medical variables by 
analyzing the time series, their differences, and macro 
measurements in the recent past. For instance, the fea-
ture "creatinine_diff_48h_mean" represents the mean 
value over the last 48  h in the time series, which is 
obtained by taking the differences between consecutive 
serum creatinine measurements.

For each medical variable, we included a time series 
indicating the duration since the last measurement and, 
excluding creatinine and diuresis, a boolean time series 
indicating the absence.

We trained and optimized the model on 70% of the 
ICU stays of AmsterdamUMCdb and MIMIC-III, while 
we calibrated the cutoff threshold and validated the 
model on the remaining 30%.

Additional details on problem formulation and sample 
labeling are described in Suppl. Info S4 Section.

Model performance
To assess the performance of this model, we considered 
the computed risk scores only for those time samples that 
were associated to AKI stage 2 and 3. This means that, 
once the patient displays AKI 2, we want the model to 
predict whether he will develop persistent pAKI3 or, once 
the patient displays AKI 3, the model has to predict that 
this severe event will translate into a persistent event.

To penalize late alarms, stays displaying persistent 
stage 3 and transient AKI were treated differently: tran-
sient ICU stays are considered in their entirety, while the 
risk scores of a persistent ICU stay are computed up to 
timestamp Tp + 12 hours.

For each ICU stay we took the maximum rate. For any 
given cutoff point the stay will be classified as predicted 
persistent if and only if its maximum rate exceeded the 
cutoff within 12  h from Tp. We call this measurement 
strategy the MAX_Metric.

Even though the analysis of the Receiver Operating 
Characteristic (ROC) curve is the golden standard for 
assessing the performance of a clinical predictive mod-
els, in imbalanced problems the Precision Recall (PR) 
should be preferred [23]. The ROC curve, while useful, 
can be misleading in imbalanced datasets by resulting in 
high auROC values only due to the low incidence of the 
prediction endpoint. This is because ROC curve treats 
true positives and false positives equally. In  situations 
with low incidence of prediction endpoints (rare condi-
tions), and where model false positives may have serious 
consequences, precision-recall metrics are more suitable. 
Precision-recall analysis accurately evaluates positive 
predictions, emphasizing precision (Positive Predictive 
Value) and highlighting the impact of false positives. This 
is especially important in developing prediction tools for 
low-incidence conditions (such as persistent AKI Stage 3) 
and where misdiagnosis could lead to significant conse-
quences for patient outcomes. We computed both curves 
for the MAX_Metric as well as their areas, i.e. auROC 
and auPR.

As cutoff criterium, we selected the threshold cor-
responding to 80% sensitivity on the internal validation 
cohort. For this cutoff we computed sensitivity, namely 
recall or true positive rate (TPR), specificity, namely 
1-false positive rate (FPR), and precision, namely predic-
tive positive value (PPV).

Models measured on dataset with low incidence dis-
play low precision [24]. We then computed the theoreti-
cal precision assuming prevalence of persistent AKI stage 
3 of 10%.

Finally, for any persistent stay predicted as persistent 
we computed the distance from Tp, i.e., the lead time of 
the alert.

To evaluate potential biases of our model across diverse 
patient sub-groups, we evaluated the Average Odds Dif-
ference metric from fairness analysis statistics. This metric 
evaluates how much the model is able accurately identify 
positive and negative cases in binary classification models, 
promoting consistent performance across various sub-
groups like race or gender. This principle, akin to medical 
tests, underscores the importance of fairness and reliability 
in healthcare by demanding consistent model performance 

Table 1  Exclusion criteria

Legend: n-th hour is meant from the first hour of the persistent event

Type of exclusion Exclusion

Demographic exclusion Age < 18 years

Height < 130 cm and > 200 cm

Renal Transplant at admission

Staging exclusion Less than 24 h of data

Oliguria (no Anuria) at start of data

Imminence Exclusion Death after less than 48 h of AKI stage 3

RRT after less than 24 h of AKI stage 3

Ambiguity exclusion
(subsequent events)

Primary:
1. AKI stage 3 for less than 72 h
2. No measurement till 72nd hour
3. Discharge

Death:
1. AKI stage 3 for less than 48 h
2. No measurement till 48th hour
3. Death

RRT​
1. AKI stage 3 for less than 24 h
2. No measurement till 24th hour
3. RRT administration
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across demographic or clinical subgroups. The computa-
tion of the Average Odds Difference (AOD) metric is as 
a single-metric approach to the Equalized Odds. Given 
a monitored sub-group, let the reminder of the cohort 
the reference group. The AOD of the monitored group is 
defined as:

Here, subscripts denote the subpopulation for which the 
metric is being calculated.

The ideal value of this metric is 0 and fairness for this 
metric is between −0.1 and 0.1[25]. All the analyses were 
both conducted on internal and external validation cohort 
with the fixed threshold described above. We evaluated the 
AOD according to age, comorbidities, reason for admis-
sion, ICU type and gender.

Results
Dataset preprocessing
The selection procedure described in section "Model per-
formances" identified: serum creatinine, urine output, 
hematocrit, hemoglobin, bicarbonate, blood urea nitrogen, 
chloride, glucose, heart rate, platelets, potassium, sodium, 
white blood cells count.

As shown in and Fig. 1, starting from a total of 345,927 
ICU admissions we obtained: 1607 stays and 11.2% inci-
dence in the AmsterdamUMCdb, 1497 stays and 11.4% 
incidence in the MIMIC-III, 3562 stays and 5.7% incidence 
in the eICU dataset coming from 139 centers, and 1093 
stays and 18.6% incidence in the MargheritaTre dataset 
from 16 centers.

Among those ICU stays that displayed AKI stage greater 
than 1, subsequent exclusions are described in Suppl. Info 
S2 Section and Suppl. Info S5 Table. In Suppl. Info S6 Table 
we show the percentages of the four final classes defined in 
section  "Hyperparameter tuning and feature importance": 
Transient AKI, T72, D48 and RRT24.

The 88% of the AmsterdamUMCdb cohort has transient 
AKI, 8.15% has persistent AKI stage 3 due to primary end-
point T72, 2.99% has persistent AKI stage 3 due to RRT 
administration, while 0.06% is persistent due to death after 
prologued AKI stage 3. In MIMIC-III 88.58% of stays dis-
played transient AKI, in 8.82% of stays the patient develops 
persistent AKI stage 3 due to T72 endpoint, 2% was admin-
istered with RRT after AKI 3, and 0.60% died after AKI 3.

AODmonitored =
FPRmonitored − FPRreference + TPRmonitored − TPRreference

2

In the external eICU and MargheritaTre validation 
cohorts we find 94.30% and 81.43% Transient AKI, 4.21% 
and 16.47% T72 endpoint, 1.12% and 0.37% RRT24 end-
point, and 0.36% and 1.74% D48 endpoint respectively.

These final populations are described in detail in Suppl. 
Info S7 Table according to sex, age, ethnicity, reason for 

admission, comorbidities, and ICU characteristics.

Hyperparameter tuning and feature importance
Thanks to the high L1 regularization parameter, out of 
the 542 features only 214 have a non-null feature impor-
tance. In Fig. 2 we showed how sCr and its derivatives are 
the most important features, still other features can con-
tribute to the prediction task.

Model performances
In Table  2 we presented the performances of the final 
predictive model using the MAX_Metric.

In the internal AmsterdamUMCdb and MIMIC-III 
validation cohort the model achieved auROC 0.90 and 
0.93 respectively, while it reached auPR 0.48 and 0.54. In 
the external eICU and MargheritaTre the model achieved 
auROC 0.94 and 0.85 respectively, with auPR of 0.45 and 
0.50.

In Table 3 we reported the performance of the models 
for the threshold that better represent an 80% sensitiv-
ity on the combined AmsterdamUMCdb and MIMIC-II 
internal validation cohort. For these two datasets, this 
choice achieved specificity of 0.83 and 0.86, and Precision 
(Positive Predictive Value) of 0.38 and 0.42 respectively. 
For the eICU dataset the same working point corre-
sponds to 0.93 sensitivity, 0.82 specificity and 0.24 preci-
sion. For MargheritaTre we achieve 0.73 sensitivity, 0.78 
specificity and 0.43 precision. When evaluated on the 
same hypothetical incidence of 10%, Precision is 0.37 in 
eICU, while on MargheritaTre it is 0.27.

Figure 3 displays the ROC and PR curves of the model 
across four validation sets. Additionally, the performance 
at a fixed threshold is highlighted by a round marker. 
Dashed black lines represent the performances of the 
theoretical random classifier: the ROC corresponds to 
the bisector of the quadrant, and the PR curves are repre-
sented by horizontal lines with y-coordinates equivalent 
to the incidence of each dataset.

To evaluate the impact of using multiple variables for 
the prediction of pAKI 3, we also trained and validated 
baseline predictive models that leveraged only sCr as 
input feature. As shown in Suppl. Info. S11 Table and Fig. 1  Data splitting
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Fig. 2  Feature Importance of the first twenty features in term of F score and SHAP value

Table 2  Models’ results, MAX_Metric on validation cohort

Dataset ICU Stays Persistent AKI 
Incidence (%)

auROC auROC IQR auPR auPR IQR

Final model

 AmsterdamUMCdb 531 11.11 90.42 [87.57, 93.69] 48.05 [33.40, 58.94]

 eICU 3562 5.70 93.58 [92.37, 94.85] 44.57 [36.90, 51.07]

 MIMIC-III 495 11.52 92.63 [90.33, 95.50] 54.03 [40.14, 66.29]

 MargheritaTre 1093 18.57 85.29 [83.17, 87.54] 49.78 [42.82, 56.29]

Table 3  Performance for fixed 80% sensitivity MAX_Metric on validation cohort

Threshold Dataset F1 Sensitivity Specificity PPV NPV PPV (10% 
prevalence)

Final model
0.36435273 AmsterdamUMCdb 51.85 81.36 83.47 38.1 97.28 35.36

eICU 37.98 92.61 82.47 24.2 99.46 36.99

MIMIC-III 54.66 77.19 86.3 42.31 96.67 38.50

MargheritaTre 54.25 73.40 77.87 43.02 92.77 26.93
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Suppl. Info. S12 Table, a model using the lone creati-
nine as biomarker achieved 0.91 auROC in eICU and 
0.83 in MargheritaTre, while its auPR was 0.29 and 0.45 
respectively.

Model performances in different ICU subpopulation
We now explore the sub-populations where our model 
was unfair according to the Average Odds Difference 
(AOD) metric, that evaluates if the model performs with 
the same accuracy over different sub-populations with 
different characteristics. Optimal values of AODs are in 
the range [-0.1, 0.1].

In the AmsterdamUMCdb internal validation cohort 
(Suppl. Info S9 Figure) the AOD is outside the opti-
mal [-0.1, 0.1] range for patients admitted for Trauma: 
AODTrauma = -0.23. This subpopulation represents 4% of 
the patients, of which only 2 patients underwent a pAKI3 
episode.

In MIMIC-III internal validation cohort (Suppl. Info 
S11 Figure), we AODSepsis = −0.27 and AODCancer = -0.38. 
Patients with cancer do not display evident bias in the 
population and further analysis should be conducted. 
Septic patients represent only 5% of the population. 
AODage∈[18,39] = 0.21, this group represents only 3% of 
the population and the persistence incidence is 18%, sig-
nificantly higher than the 11% incidence encountered in 
the whole dataset.

In the external eICU validation cohort (Suppl. Info S10 
Figure) we encountered AODAsian = −0.40. Asian popula-
tion represents only the 0.56% of the dataset. Moreover, 
only 2% of these 20 individuals were positive, a small inci-
dence if compared with the 5.7% incidence of the whole 
dataset. In the same cohort AODCKD = 0.14.

In MargheritaTre (Suppl. Info S12 Figure) 
AODCKD = 0.19.

Discussion
We have shown that routinely acquired data, analyzed 
with a novel ML model, can predict the onset of pAKI 
3 in a large international and multi-centric cohort of 
intensive care patients. Given our analysis on external 
validation datasets, we can assert that our algorithm 
generalizes well on external eICU validation cohort, and 
fairly in MargheritaTre, which is characterized by higher 
percentage of missing data, as shown in Table S1, Suppl. 
Info (with a 0.09 difference in AUC across validation 
sets). The comparison of the performance of our model 
with that of sCr as biomarker shows that our model is an 
improvement in clinical practice.

Pattern recognition on medical variables can become 
a powerful tool in clinical management of patients with 
AKI in the ICU. In addition, using explainable models 
such as trees can potentially advance the understanding 
of renal mechanisms.

Fig. 3  ROC and PR curves of final predictive model on different datasets (MAX_Metric). Dashed line is the random classifier
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Our studies can be directly translated to a data pipe-
line which uses EHR collected in ICU for the continu-
ous prediction of future pAKI 3. The resulting risk score 
would aid in the prompt determination of which patients 
would require an early-start of RRT and which patients 
are likely to recover. To assess the cutoff criterium we 
used only the internal AmsterdamUMCdb and MIMIC-
III cohorts and applied the threshold to the external 
eICU and MargheritaTre cohorts; hence, no calibration 
on unseen population was employed. This means that a 
prediction tool built upon the model that we developed 
can perform excellently from day zero.

In the present study the model which was chosen for 
early prediction of pAKI3 is a boosted tree. There are 
multiple reasons why this model is preferable to more 
complex models such as artificial neural networks (NN).

Firstly, the model can easily handle missing data, learn-
ing the optimal value to use for imputation through the 
analysis of the optimal path in the tree. This reflects in 
robustness under missing data in the MargheritaTre 
cohort.

Secondly, the model manifests outstanding perfor-
mance. In recent years NN have been employed to pre-
dict AKI development [26, 27]. Still, from a systematic 
review on the topic, boosted trees showed the best per-
formances in predicting AKI [28].

Lastly, NN are often built as a black box, the correla-
tion between variables and the produced risk scores are 
unclear, hence clinicians are sceptical in using managerial 
tool which produce no explanation. Simple linear regres-
sion is still used nowadays to ensure interpretability. 
With our tree approach we preserve understanding of the 
model, while outperforming linear regression.

Furthermore in previous study [14, 26, [27] the related 
models have been trained and evaluated only on the 
MIMIC-III, while we used horizontal integration to show 
that our model can generalize on external datasets and 
unseen populations. In recent years, generalizability of 
predictive models has been shown to be a critical issue in 
real-world implementation of these tools [29].

Works that applied ML to the prediction of persistent 
AKI stage 3 used the definition of AKI stage 3 for 48 h. 
This condition has a much higher incidence than the 72 h 
AKI stage 3 that we selected.

In a previous research, a total of 5984 septic patients 
with AKI were selected from MIMIC-III, 3805 (63.6%) of 
whom developed persistent AKI stage 3 [14]. The selected 
model achieved auROC 0.76 (95% CI 0.74–0.78) on the 
internal validation cohort. Compared to our model this 
work focused only on septic patients, achieved lower per-
formance, and was not validated on any external cohort.

Jiang et  al. enrolled 955 patients admitted to the ICU 
of Dongyang People’s Hospital after surgery complicated 

by AKI, and persistent AKI stage 3 incidence was 39.4% 
[15]. The model was externally validated on 3170 patients 
of MIMIC-III who were first admitted to the ICU and 
underwent surgical treatment; persistent AKI stage 
3 incidence was 45.1%. The selected model exhibited 
auROC 0.69 on the external validation cohort. Compared 
to our work, this model was externally validated only on 
a single-center ICU registry, while we performed external 
validation on two multi-center medical registries and on 
a much more variable cohort of patients.

This study has several limitations. Our analysis is ret-
rospective, indicating the need for a prospective study 
to validate the model’s performance. Additionally, we 
require a prospective interventional study to evaluate the 
impact of our AKI risk prediction score on clinical out-
comes and how it can be applied. A prospective obser-
vational study to confirm our model’s performance in 
real-world scenarios is currently underway.

While the random selection of the development cohort 
from MIMIC-III and AmsterdamUMC databases has 
advantages, it introduces potential limitations. Using 
older cohorts may not fully capture evolving healthcare 
trends, and focusing on single-center databases may limit 
the model’s exposure to multicenter complexities. These 
considerations should be acknowledged when interpret-
ing the study’s findings.

The second limitation is linked to the definition of AKI 
as KDIGO guidelines. The computation of the staging 
requires a baseline for sCr which has no formal defini-
tion for retrospective studies. In our analysis we used the 
nadir (minimum) in-hospital value when a pre-hospital 
baseline was not available. This approach was found to 
achieve 81.7% sensitivity and a specificity of 79.8% for the 
diagnosis of AKI, when compared with actual pre-hospi-
tal admission baseline values, and only 2.8% misclassified 
KDIGO stage 2 or 3 [30, 31]. Other techniques for bSCr 
imputation can be explored.

Third limitation is the impossibility of discriminating 
between AKI types (nephrotoxic, inflammatory, versus 
septic). This limitation also affects most prospective stud-
ies [11]. Multi-class classification could solve the problem 
of early detection of AKI types.

Moreover, as highlighted by the AOD metrics results, 
and in particular AODCKD measured on the external vali-
dation cohorts, subsequent studies should focus on CKD 
patients (excluding patients with CKD or using CKD as 
input to the model for performance and generalizabil-
ity improvement) and improving model performances 
on sepsis, cancer and Asian patients by including more 
patients with these condition in future patient cohorts. 
Low prevalence of the aforementioned subclasses in the 
training dataset of the model may have had a negative 
effect on the model ability to perform accurately on those 
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patients. Moreover, a low number of patients with these 
characteristics in the validation cohorts make the AOD 
metric calculation less reliable.

Conclusions
Through retrospective analysis of extensive ICU data, this 
study highlights the potential of AI, specifically a boosted 
tree model, in predicting the risk of persistent AKI stage 
3. Our model can predict elevated Persistent AKI Stage 
3 risk in advance using routine EHR data. While retro-
spective analysis has limitations, our multi-center study, 
outperforming existing models, suggests real-world 
implementation for proactive AKI management.
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