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Abstract 

Background Sepsis, an acute and potentially fatal systemic response to infection, significantly impacts global health 
by affecting millions annually. Prompt identification of sepsis is vital, as treatment delays lead to increased fatalities 
through progressive organ dysfunction. While recent studies have delved into leveraging Machine Learning (ML) 
for predicting sepsis, focusing on aspects such as prognosis, diagnosis, and clinical application, there remains a nota‑
ble deficiency in the discourse regarding feature engineering. Specifically, the role of feature selection and extraction 
in enhancing model accuracy has been underexplored.

Objectives This scoping review aims to fulfill two primary objectives: To identify pivotal features for predicting sepsis 
across a variety of ML models, providing valuable insights for future model development, and To assess model efficacy 
through performance metrics including AUROC, sensitivity, and specificity.

Results The analysis included 29 studies across diverse clinical settings such as Intensive Care Units (ICU), Emergency 
Departments, and others, encompassing 1,147,202 patients. The review highlighted the diversity in prediction strate‑
gies and timeframes. It was found that feature extraction techniques notably outperformed others in terms of sensi‑
tivity and AUROC values, thus indicating their critical role in improving sepsis prediction models.

Conclusion Key dynamic indicators, including vital signs and critical laboratory values, are instrumental in the early 
detection of sepsis. Applying feature selection methods significantly boosts model precision, with models like Ran‑
dom Forest and XG Boost showing promising results. Furthermore, Deep Learning models (DL) reveal unique insights, 
spotlighting the pivotal role of feature engineering in sepsis prediction, which could greatly benefit clinical practice.
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Introduction
Sepsis, a severe and life-threatening condition triggered 
by an overwhelming immune response to infection, poses 
a significant global health challenge [1]. It is responsible 
for an estimated 31.5 million cases of sepsis and 19.4 mil-
lion cases of severe sepsis annually, leading to approxi-
mately 5.3 million deaths worldwide [2]. The critical 
nature of timely sepsis identification in clinical practice is 
underscored by findings that even a brief delay in initiat-
ing treatment can substantially increase mortality rates, 
owing to irreversible organ damage[3]. This urgency has 
catalyzed research into advanced predictive methodolo-
gies, notably the application of Machine Learning (ML) 
techniques aimed at the early detection of sepsis[4]. Such 
research endeavors have largely concentrated on the 
development of ML models and tools with a focus on 
improving prognosis, diagnosis, and the integration of 
clinical workflows, thereby highlighting the potential for 
constructing sophisticated computerized decision sup-
port systems[5].

Despite these advancements, traditional sepsis pre-
diction methodologies, including the Sequential Organ 
Failure Assessment (SOFA), Systemic Inflammatory 
Response Syndrome (SIRS), and quick SOFA (qSOFA), 
exhibit significant limitations[6]. These methods often 
rely heavily on clinical judgment and are subject to vari-
ability in interpretation across different levels of clinical 
expertise, which can lead to inconsistencies in early sep-
sis detection. Moreover, traditional approaches tend to 
identify sepsis at a more advanced stage, missing the cru-
cial window for early intervention [6, 7]. Conversely, ML 
models offer a dynamic and continuous analysis of real-
time patient data, enabling early detection and providing 
dynamic risk assessments. By harnessing data analysis 
and pattern recognition capabilities, ML models aim to 
enhance patient outcomes and alleviate the burden on 
healthcare systems[7].

Feature engineering emerges as a critical component 
in the optimization of ML models for sepsis prediction. 
This process entails the selection, transformation, and 
creation of relevant features from raw data, aiming to 
improve the predictive accuracy of models. While the 
significance of identifying and utilizing critical features 
in constructing robust and precise predictive models 
is well-recognized, the field continues to grapple with 
uncertainties surrounding the effectiveness of specific 
features and the methodologies for feature selection and 
extraction[8]. Variability in the approaches to feature 
engineering and their impact on model performance 
necessitates a comprehensive scoping review to evaluate 
the evidence and discern which strategies yield the most 
significant benefits in terms of prediction accuracy.

In the context of feature engineering for sepsis predic-
tion, the current literature has focused on the importance 
of selecting and extracting the most relevant patient-
related variables to enhance the model accuracy [9]. 
Though some studies have explored clinical and labora-
tory features to improve sepsis prediction models, such 
as vital signs (e.g., temperature, heart rate, respiration 
rate, blood pressure), laboratory values (e.g., white blood 
cell count, lactate levels), patient demographics, and clin-
ical history to improve sepsis prediction models; but still 
there is uncertainty regarding the effectiveness of specific 
features and feature selection/extraction methods in sep-
sis prediction[10]. Our current study employed differ-
ent approaches to feature engineering, and their impact 
on model performance varies. This variability highlights 
the need for a scoping review to comprehensively evalu-
ate the available evidence and provide insights into which 
feature-engineering strategies offer the greatest benefits 
in terms of sepsis prediction accuracy.

This scoping review seeks to address these gaps by 
assessing the critical features that enhance sepsis predic-
tion and by providing insights into identifying patterns 
that may lead to improved clinical outcomes. The primary 
objective of this review is twofold: firstly, to explore the 
feature engineering strategies utilized in ML models for 
sepsis prediction, thereby offering valuable insights for 
future research and model development; and secondly, to 
evaluate the performance of these models through a criti-
cal analysis of existing studies, focusing on metrics such 
as the Area Under the Receiver Operating Characteristic 
curve (AUROC), Sensitivity, and Specificity.

Through an exhaustive evaluation of 29 selected stud-
ies, this review aims to analyze and synthesize various 
feature engineering techniques applied in sepsis predic-
tion models, assess their impact on model performance, 
and evaluate the overall effectiveness of ML models in 
predicting sepsis. By adopting a systematic approach, the 
review intends to provide a comprehensive understand-
ing of the role of feature engineering in enhancing sepsis 
prediction models, ultimately contributing to more effec-
tive clinical decision-making and patient care.

Methods
Search strategy
The search strategy for this scoping review was meticu-
lously devised in alignment with the Preferred Report-
ing Items for Scoping Reviews (PRISMA) guidelines. 
PRISMA represents a rigorously developed framework, 
outlining a comprehensive set of standards for reporting 
scoping reviews. This methodology ensures transparency 
and reproducibility in the review process, as illustrated in 
Figure 1.[11]
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On 13th March 2023, a comprehensive literature search 
was conducted across PubMed, Embase, and Scopus, tar-
geting publications from the past five years (13 March 
2018 to 13 March 2023). This search employed a detailed 
strategy, utilizing Boolean operators "AND" and "OR" to 
combine key phrases, specifically: "Machine Learning" 
and "Prediction" along with "Sepsis" and "Septic Shock". 
Each database was queried with these terms to ensure 
a thorough retrieval of relevant studies. Subsequently, 
the titles and abstracts of the retrieved studies were 

meticulously reviewed by an investigator (SB) to ascer-
tain their suitability for inclusion in the review.

Inclusion and exclusion criteria
Inclusion criteria:

• Research articles published in the English language.
• Studies appearing in peer-reviewed journals.
• Research focusing on the prediction of sepsis and 

associated outcomes.

Identification of Studies via Database 
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The total no. of articles extracted from 
(SCOPUS/PubMed/EMBASE) 

n = 4636

No. of articles included.
n= 2671

No. of articles included. 
n= 156

No. of articles included.
n= 47

1965 articles excluded based 
on duplicates

2515 Articles excluded based on the following 
criteria- 

1. Type of Publications (Review, Case 
Study, Articles in press, Note, Book 
Chapters, Editorial, Conference papers) 
Articles  

2. Type of study (Mobile Applications/ 
Web Portal) 

3. Non-Relevant Studies Articles  
4. Wet Lab based research article 

1. 109 Records excluded by abstract. 

No. of articles included.
n= 29

1. 3 Articles focused on Mortality 
prediction.  

2. 3 Article focused on 
inflammation and coagulation.  

3. 2 Articles focused on Neonatal 
sepsis.

Fig. 1 Preferred Reporting Items for Scoping reviews and Meta‑Analysis (PRISMA) flow diagram for the conducted study
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• Studies investigating ML (Machine Learning) models 
for sepsis prediction, emphasizing significant features 
for model optimization.

Exclusion criteria:

• Conference abstracts and preliminary proof of con-
cept studies.

• Research  studies exclusively  predicting  mortality 
related to sepsis.

• Research studies published in the subscribed journals

These criteria ensured a comprehensive and focused 
review of the literature on ML models for sepsis predic-
tion  by  excluding preliminary findings and studies that 
were not directly aligned with the core objectives of effi-
cient prediction and feature analysis.

Data extraction and quality assessment
Data extraction was meticulously carried out by a pri-
mary reviewers (SB) and (JP), who cataloged essential 
details such as Title, Publication year, First author, Study 
objectives, Clinical setting, Patient cohort size, ML model 
utilized, Feature count, Sepsis classification, Observation 
period, Gender distribution, AUROC, Innovation, Model 
evaluation criteria,Training-test split, Data source, Sensi-
tivity, and Specificity, in addition to the criteria used for 
sepsis diagnosis.

To ensure the accuracy and integrity of the data extrac-
tion process, two additional reviewers (ED and UU) col-
laboratively worked with the primary reviewer (SB) to 
scrutinize and validate the extracted information. Studies 
failing to align with the predetermined inclusion criteria 
were systematically excluded. Discrepancies encountered 
during the review process were resolved through com-
prehensive mutual discussion and further literature con-
sultation, facilitating consensus among the reviewers.

Results
Characteristics of studies
The scoping review included 29 studies (See in Table 1), 
encompassing a total patient cohort of 1,147,202 
(909,462 cases and 237,740 controls). The majority of 
the studies, numbering 20, (3,4,12,13,17,18,19,20,21,5,23
,24,25,28,30,31,32,33,34,36) were conducted in Intensive 
Care Units (ICUs), while four were based in Emergency 
Departments (EDs) 16,26,29,35, and one was carried 
out in a general hospital setting[14]. These studies var-
ied in patient demographics, prediction timeframes, 
and sepsis types, utilizing diverse database sources. For 
instance, the research by Meicheng Yang et al. [3]focused 
on hourly sepsis risk prediction in ICU settings with the 
EASP model, emphasizing interpretability. Maximiliano 

Mollura et al. [12] and Xin Zhao et al. [13] explored ICU 
data and PhysioNet/Clinic Challenge 2019 data, respec-
tively, each applying distinct approaches to sepsis predic-
tion and addressing specific challenges.

Figure 2’s pie chart illustrates the data source distribu-
tion, revealing a nearly equal split between private (55%) 
and public databases (45%), such as MIMIC, indicating 
the varied origins of data in these studies. This compre-
hensive review underscored the array of strategies and 
methodologies employed to enhance sepsis prediction 
across different clinical environments, contributing to 
the ongoing advancement in the field.

Feature engineering techniques
Feature selection is a process of selecting feature subsets 
which are applied to the model construction. It is used 
in areas where there any many features and relatively few 
samples. On the other hand, feature extraction generates 
new features from the original features, which means that 
the new features after feature extraction is a mapping of 
the original features (See Figure 3). [35]

Feature selection methods: Filter methods
Filter methods employ variable ranking techniques as 
their core criterion for feature selection, arranging vari-
ables based on their relevance. This relevance, termed 
feature relevance, measures a feature’s utility in distin-
guishing between different classes within the data. Uti-
lizing methods like Info Gain, GINI, and Relief, Jevier 
Enrique Camacho-Cogollo et  al.[20] applied the filter 
approach to score and rank features according to their 
class label relevance, selecting features above a speci-
fied relevance threshold (0.0020). This process identified 
31 medically relevant features and 88 statistical features, 
with Info Gain, GINI, and Relief methods selecting 75, 
47, and 76 relevant features respectively. Similarly, Dong-
hun Yang et al. [15] employed the filter method to narrow 
down from 1,738 initial features to the 50 most critical 
features, encompassing both laboratory data and drug 
interactions, thereby underscoring their significance in 
enhancing the accuracy of their predictive model.

Feature selection methods: Wrapper methods
Wrapper methods optimize feature selection by treating 
the prediction model as a “black box," utilizing the mod-
el’s performance metrics as the objective function for 
evaluating subsets of variables. [2]This approach typically 
yields higher performance subsets than filter methods by 
leveraging actual modeling algorithms for evaluation.[38] 
Yash Veer Singh et al.[31] applied backward elimination, 
a wrapper method, effectively removing non-contrib-
utory features to identify 11 critical features, achieving 
a model accuracy of 0.96 with their Ensemble model. 
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Meicheng Yang et al. employed forward feature selection, 
another wrapper strategy, categorizing their 168 selected 
features into raw features, information missingness, time 
series, and empiric categories, showcasing the adaptabil-
ity of wrapper methods in refining feature sets for predic-
tive modeling.

Feature selection methods: Embedded methods
Embedded methods integrate the feature selection pro-
cess directly within the training phase of ML models, 
offering a nuanced approach that  inculcates  the com-
plexity of model training with the simplicity of feature 
optimization. These methods, such as Lasso and Elastic 
Net, operate on the principle of regularization, which 
aims to minimize overfitting by penalizing the magni-
tude of feature coefficients, effectively shrinking some to 
zero. [38] This not only aids in identifying features that 
have little to no predictive value but also enhances model 
generalizability.

In the realm of sepsis prediction, embedded methods 
have shown considerable promise. For instance, the use 

of Random Forest importance as an embedded method 
highlights its capability to discern the relative value 
of each feature within a dataset. By analyzing feature 
importance, researchers can pinpoint which variables 
most significantly impact the model’s predictions, par-
ticularly in the context of sepsis where timely and accu-
rate prediction can save lives. Dong Wang et  al.’s [5] 
application of this method led to the selection of a con-
cise set of 20 features critical for sepsis prediction in 
ICU patients, underscoring the method’s efficiency in 
distilling a dataset to its most informative components.

Further exploration by Cesario et  al. [20]into Mean 
Decrease Accuracy and Mean Decrease GINI as 
embedded methods provides insights into the multifac-
eted nature of feature selection. These techniques eval-
uate the impact of each feature on the model’s accuracy 
and the overall reduction in data impurity, respectively, 
offering a comprehensive view of feature significance. 
Such methodologies have elucidated the paramount 
importance of certain predictors, like age, which exhib-
ited a profound influence on the model’s predictive 
capabilities.

Rishikesan Kamaleswaran et al.’s [25] study stands out 
for its broad application of feature selection methods, 
spanning both embedded and wrapper techniques. By 
employing a wide array of methods, including para-
metric and non-parametric tests, Ridge, Lasso, and 
Recursive Feature Elimination (RFE), alongside Ran-
dom Forest-based variable importance, the study show-
cases the depth of possible  analysis when integrating 
feature selection with model development. The adop-
tion of Recursive Feature Elimination, in particular, 
highlighted its effectiveness in isolating 22 highly pre-
dictive features, demonstrating the potential of embed-
ded methods to refine and enhance model performance 
through targeted feature selection.

45%
55%

Database Split across all studies

MIMIC (Open
Source)

Other Database
(Personal Data)

Fig. 2 Database sources used in the studies

Fig. 3 Classification of feature selection methods
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This comprehensive approach to feature selection, 
particularly within the scope of embedded methods, 
exemplifies the dynamic interplay between algorithmic 
complexity and model optimization. By embedding fea-
ture selection within the model training process, these 
methods provide a robust framework for developing 
highly accurate and generalizable predictive models, 
essential for advancing sepsis prediction and improving 
patient outcomes.

Feature extraction methods
Zhengling He et  al. [19] and colleagues explored the 
potential of LSTM (Long Short-Term Memory networks) 
for deriving features from sequential data, employing 
an ablation study to gauge the impact of individual fea-
tures. Their findings highlight the ICU Length Of Stay 
(LOS) as a pivotal predictor, alongside other significant 
LSTM-derived features like the pseudo SOFA score and 
body temperature. These insights underscore the value of 
deep learning in identifying nuanced indicators for sepsis 
onset prediction.

Further innovation in feature engineering was demon-
strated through the development of second-order derived 
features and aggregate features [17], capturing complex 
relationships and condensing data into insightful met-
rics. This approach yielded a comprehensive set of 672 
features, with 192 identified as unique, revealing the syn-
ergistic effect of body temperature and heart rate, among 
others, on sepsis prediction accuracy and lead time.

Table  2 consolidates various feature selection and 
extraction methods, ranging from wrapper and embed-
ded methods to unsupervised techniques, highlighting 
their effectiveness in distilling critical predictors from a 
broad spectrum of clinical and demographic data. This 
table illustrates the evolution from initial feature iden-
tification to the final selection, emphasizing the top ten 
features across studies, and showcasing the diversity and 
impact of feature selection and extraction strategies on 
enhancing model performance.

The analysis of the top 10 features, as depicted in Fig-
ure 4, highlights the most critical physiological markers 
for sepsis prediction. These indicators are crucial for rec-
ognizing the onset of sepsis, emphasizing the necessity 
of vigilant monitoring of such parameters. The graphi-
cal representation serves to underline the significant 
role these features play in the early detection and predic-
tion of sepsis, pointing to the potential changes in these 
parameters as early signs of sepsis. This insight is vital for 
the development of effective early diagnosis and inter-
vention strategies in sepsis management, illustrating the 
clinical importance of these markers.

To comprehensively assess the influence of various 
feature selection and extraction methodologies on the 

predictive accuracy of sepsis models, a meticulous analy-
sis was carried out. This scrutiny was confined to inves-
tigations leveraging publicly accessible databases, namely 
MIMIC and PhysioNet, to ensure an unbiased compari-
son across diverse studies. By filtering through an expan-
sive array of research, significant contributions from 
each category—Filter, Wrapper, Embedded, and Feature 
Extraction—were identified and their optimal results 
meticulously synthesized.

The graphical representation, depicted in Figure  5, 
elucidates the differential efficacy of these methodolo-
gies, with a particular spotlight on the Feature Extraction 
technique. This method emerged as notably superior, 
showcasing enhanced sensitivity and AUROC metrics, 
thereby suggesting its unparalleled effectiveness in sep-
sis prediction. Such findings are instrumental, indicat-
ing that feature extraction methods when specifically 
adapted for the nuances of sepsis prediction, are capable 
of significantly elevating the predictive precision of mod-
els. This detailed comparative analysis not only highlights 
the distinct advantages of tailored feature extraction 
techniques but also serves as a critical resource, offering 
insights into the optimization of sepsis prediction models 
through strategic feature selection and extraction.

Model performance
Table 3 synthesizes outcomes from a spectrum of studies 
dedicated to sepsis prediction, encapsulating the applica-
tion of Machine Learning (ML) and Deep Learning (DL) 
strategies. It meticulously outlines the top-performing 
models, highlighting their Area Under the Receiver 
Operating Characteristic Curve (AUROC) values, Sensi-
tivity, Specificity, and the Distribution of data for train-
ing, testing, and validation phases. The compilation 
reveals a broad array of algorithmic approaches, under-
scoring the dynamic potential of different ML models in 
accurately predicting sepsis. For instance, Kim et al.’s [30] 
bespoke model showcases exemplary performance met-
rics, whereas Yang et al.’s [13] study presents a contrasting 
scenario with their Random Forest model. This diversity 
in model efficacy and algorithmic application illustrates 
the ongoing evolution and complexity in the quest for 
improved sepsis prediction methodologies, aiming to sig-
nificantly uplift patient care standards through enhanced 
diagnostic accuracy.

Impact of prediction time window on model performance
The prediction time window is crucial as it plays an 
important role in clinical intervention, resource alloca-
tion, treatment planning, false positive rates, clinical 
workflow, and model evaluation. Figure  6 depicts the 
impact of the different prediction time windows on the 
model performance.
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Table 2 Feature Selection Methods and Important Features in the Included Studies

References Feature selection/extraction 
method

Total. no. of Features No. of Final Features Top 10 Features

Intensive care unit

Meicheng Yang et al. [3] Wrappers 168 20 ICULOS, Hospital Admission, Time, 
Temp, Fio2, Fio2_interval, Lactate, 
WBC, Creatinine, Unit 1, BUN

Maximiliano Mollura et al. [12] Embedded + Wrapper 75 30 SDPAT, SD_Ratio, PAT_HF, AVPAT, 
Vent_Flag, NN50, pNN50, AVSAP, 
Avg _ssr_hfn, DAP_VLF

Xin Zhao et al. [13] Embedded 40 25 Temp, O2Stat, Resp, BUN, Mag‑
nesium, HR, Potassium, Biliru‑
bin_total, DBP, PTT, PH

Ekanath Srihari Rangan et al. [17] Feature Extraction (2nd order 
derived aggregate features)

672 240 HR, Temp (baseline),Respiration, 
Temp Variance,SP02,HR(baseline), 
SP02(Delta between 2 and base‑
line), Temp(between 4 and 3)

Yu Bai et al. [18] Unsupervised 27 27 APACHE_4,HC03_max,Lactate_
Max,Lactate_Min,HC03_
Min,Creatinine_Min, Albu‑
min_Min, Creatinine_Max, 
Albumin_Max and Glucose_Min

Zhengling He et al. [19] Feature Extraction (LSTM) 82 82 Bilirubin_total, Creatinine, Fi02, 
HR, MAP, PaCo2, Platelets, RR, SBP, 
SIRS_Resp

Everton Osnei Cesario et al. [20] Embedded 16 16 Age, DBP, HR, SBP, RR, Blood 
Glucose, Admission Days, Temp, 
Gender, Surgical Procedure (for 
RF)

Kim Huat Goh et al. [21] Filter Method 100 Topics 100 Topics NR

Dong Wang et al. [5] Embedded 55 20 Neutrophil%, D‑Dimer, Neutro‑
phils, Eosinophils %,Lymphocyte 
%, Albumin,WBC,Direct Bilirubin, 
Potassium and Calcium

Jevier Enrique Camacho‑ 
Cogollo et al. [22]

Filter Method 913 Infogain:75
Gini:47
Relief:76

Min Glasgow Score, Temp_min, 
Glucose, SP02_max, HR_Min. 
Meanbp_min, Ph_max, 
FE2,Temp_max, DiasBP_min

Bilal Yaseen Al‑Mualemi et al. 
[23]

Feature Extraction (ACNN) 34 7 NR

Margherita Rosnati et al. [24] Embedded 24 24 SBP, DBP, Mean BP, RR, HR, 
Sp02_pulsary, Temp., Bicarbonate, 
Creatinine, Chloride

Rishikesan Kamaleswaran et al. 
[25]

Embedded + Wrapper 311 Ridge:52
Lasso:12
RFE:22

SBP_SD, SBP_sum_values, RR_
mean, SBP_mean, SBP_min, SBP_
max, HR_length, SBP_median, 
RR_sum_value, RR_min

Jacob Calvert et al. [28] Filter Method 6 6 NR

Kuo‑ Ching Yuan et al. [30] Feature Extraction & Filter (Fea‑
ture Weight)

106 5 Infection (any site), Resp_Infect, 
Neuro_Infect, LAB_CRP, LAB_WBC, 
UT_Infect, GI_Infect, HBT_Infect, 
Skin_Infect, CVS_Infect

Yash Veer Singh et al. [31] Wrapper & Feature Extraction 
(PCA)

23 23 Age, Gender, Temp, RR, HR, SBP, 
DBP Positive Blood Culture, MAP, 
Lactate, WBC

Jae Kwan Kim et al. [32] Embedded 13,000 40 Age, HR, SBP, Temp, RR, GCS, 
Mechanical Ventilation, Pa02, Fi02, 
Urine Output

Yongrui Duan et al. [33] Feature Extraction
(Early Fusion)

451 451 NR

Simon Meyer Lauritsen et al. [34] Feature Extraction 30 30 NR
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Some studies including [18, 21, 34] showed that the 
ML model gave dependable results (higher AUROC 
while minimizing false positive and false negative rates) 
when predicting sepsis at different time intervals 12, 24 
and 48 h. These results have clinical significance as they 
demonstrate that the model’s predictive power remains 
consistent across the crucial time windows. It’s also 
worth noting that some studies [12–14, 32–34, 36] have 
shown consistent results across early time points (1 to 
6 h) which indicates that they can identify septic cases 
in their early stages.

In the course of this investigation in a study [4], a novel 
Smart Sepsis Predictor (SSP) model was meticulously 

developed, employing a Recurrent Neural Network 
(RNN) architecture. The SSP model was thoughtfully 
designed to operate in two distinct modes, each harness-
ing crucial inputs encompassing a spectrum of patient 
data, including vital signs, demographics, and labora-
tory values. What sets this model apart is its remarkable 
proficiency in achieving higher Area Under the Curve 
(AUC) scores when applied to a 12-h prediction window. 
This capability arises from its unique capacity to discern 
intricate and nuanced relationships within vital sign data, 
thereby facilitating timely alerts to healthcare practition-
ers. It is noteworthy that the findings reported herein 

Table 2 (continued)

References Feature selection/extraction 
method

Total. no. of Features No. of Final Features Top 10 Features

Matthieu Scherpf et al. [36] Feature Extraction 101 101 NR

Alireza Rafiei et al. [4] Feature Extraction (LSTM) 14 14 NR

Emergency department

Gabriel Wardi et al. [16] Embedded 40 20 SBP, BUN, RR, Temp, ΔSBP, HCT, 
WBC, Lactate, Creatinine, HR

Pei Chen Lin et al. [26] Embedded 15 15 C‑Reactive Protein, Sodium level, 
lymphocyte, Creatinine, Blood 
Temp, Platelet, Red Cell Distribu‑
tion Width, GPT, HB, Segment

Massimiliano Greco et al. [29] Embedded 40 40 Age, Sodium. HR, CRP, Potassium, 
RR, Neutrophil, p02, SOFA, HC03

Heather M. Giannini et al. [35] Embedded 587 48 + NI DBP, Non Invasive SBP, Pulmo‑
nary Service, HR, BUN, BP, Temp. 
(most recent), Temp. (24 h. max), 
%Monocytes and Temp (24 h. 
variation)

In-Hospital

Debdipto Mishra et al. [14] Unsupervised 65 15 Lactic Acid, SVP, Blood Culture, 
Creatinine, MAP, Whole Blood 
Count, Platelet Count, Respiration, 
Pulse, DBP

Combined

Donghun Yang et al. [15]
(ICU&ED)

Filter Method 1738 50 Albumin, Platelet Count (Blood), 
Bilirubin (Total), PT(INR), A/G Ratio, 
Protein Total Cholesterol, ANC, 
AST, Calcium

Brandon DeShon et al. [1] 
(ICU,TCU,ED)

NR NR NR Age, Weight, GCS, Platelets, BUN, 
Creatinine, Arterial_pH, Temp, RR, 
WBC Count

Supreeth P. Shashikumar et al. 
[27]
(ICU, ED)

Feature Extraction 108 40 Temp, BUN, Baseline WBC, ΔWBC, 
ΔTemp, HR, Elapsed Time, RR, 
Baseline HR, Baseline Platelets

A/G Ratio: Albumin/Globulin Ratio, ALC: Absolute Lymphocyte Count, ALP: Alkaline Phosphatase, ANC: Absolute Neutrophil Count, APACHE: Acute Physiology and 
Chronic Health Evaluation, AST: Aspartate Aminotransferase, AVPAT: Average of PAT, BUN: Blood Urea Nitrogen, CRP:C-Reactive Protein, DAP_VLF: Diastolic Arterial 
Pressure Very Low Frequency, DBP: Diastolic Blood pressure, Fio2: Fraction of Inspired Oxygen, GCS: Glasgow Coma scale, GI: Gastrointestinal, GPT: Glutamate 
pyruvate transaminase, HBT: Hydrogen Breadth Test,HCO3: Bi Carbonate, HCT: Haematocrit Test, HF: High Frequency, HR: Heart Rate, ICULOS: ICU Length of Stay, INR: 
International Normalized Ratio, MAP: Mean Average Precision, Max: Maximum, Min: Minimum, NN 50: Neural Network 50, PAT_HF: High Frequency Power of PAT, 
PAT: Pulse Arrival Time, PH: Potential of Hydrogen, PLT: Platelets, PNN 50: Probabilistic Neural Network 50, PT: Prothrombin Time, PTT: Partial Thromboplastin Time, 
Paco2 = Partial Pressure of Carbon Dioxide from Arterial Blood, RR: Respiratory Rate, SBP: Systolic Blood Pressure, SD: Standard Deviation, SDPAT: Standard Deviations 
of Pulse Arrival time, SIRS: Systemic inflammatory response syndrome, SOFA: Sequential Organ Failure Assessment, SPo2/O2 Stat: Pulse Oximetry, SSR_HFN: The sum 
of squares due to regression, Temp: Temperature, UT: Urinary Tract, WBC: White Blood Cell,qSOFA: Quick Sequential Organ Failure Assessment, NR: Not Reported NI: 
Non Invasive
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Fig. 4 Frequency of features identified in studies
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Fig. 5 Performance analysis of different feature selection and extraction methods across open database
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Table 3 Evaluation Measures for ML Models in Different Studies

References ML models/deep 
learning

Best models AUROC Sensitivity Specificity Model split 
training/test/
validation

Xin Zhao et al. [13] XG Boost, Light GBM 
algo

GBM algo 0.98 NR NR 75%,25%,

Rishikesan Kama‑
leswaran et al. [25]

XGB, LR, SVM, RF XG boost 0.97 0.94 0.9 NR

Yash Veer Singh et al. 
[31]

RF, SVM, NB, LR, XG 
boost, Ensemble 
Model, Proposed 
Ensemble Model

Proposed ensemble 
model

0.96 NR 0.97 80%,20%

Supreeth P. Shashiku‑
mar et al. [27]

COMPOSER module COMPOSER module ICU:0.95 ED:0.95 ICU:91.6 ED:95.6 ICU:93.0 ED:93.5 80%,20%

Debdipto Mishra et al. 
[14])

RF, XG Boost, C5.0, 
Decision Tree, Boosted 
LR, SVM, LR, Regular‑
ized LR, Bayes General 
Linear Model

Random forest 0.95 83.9 0.88 80%,20%

Jae Kwan Kim et al. [32] SOFA, qSOFA, SAPSII, 
LSTM, Proposed Model

Proposed model 0.94 0.93 0.91 NR

Ekanath Srihari Rangan 
et al. [17]

XG Boost XG Boost 0.94 0.85 0.9 80%,20%

Kim Huat Goh et al. 
[17]

NLP, LDA, GBT, SERA 
Algo

SERA Algo 0.94 0.87 0.87 NR

Maximiliano Mollura 
et al. [12]

LR, XGB, KNN, MLP, 
SVM, TREE

LR 0.92 0.68 0.96 80%,20%,

Yongrui Duan et al. [28] Hybrid Deep Learning 
Model, CNN, GRU, 
GBDT, DFN, DFSP

DFSP 0.92 (6) 0.8 0.87 NR

Jevier Enrique Cama‑
cho—Cogollo et al. 
[22]

XG Boost Model, SVM, 
ANN, KNN NVC, RF, 
Adaboost

XG Boost 0.92 NR NR 75%,25%

Jacob Calvert et al. [28] MLD MLD 0.92 0.8 0.86 80%,20%

Dong Wang et al. [5] Random forest Random forest 0.91 0.87 0.89 80%,20%

Yu Bai et al. [18] AdaBoost, NB, LR, 
Gradient, Boosted 
Tree, RF

AdaBoost 0.9 78.11 78.74 70%,30%

Kuo‑ Ching Yuan et al. 
[30]

XGB, DT, LR, Convolu‑
tional neural network, 
SVM

XG Boost 0.89 93.47 0.16 80%,20%

Alireza Rafiei et al. [4] RNN, CNN, LSTM, SSP‑
LSTM

SSP‑LSTM 0.89 0.74 0.74 90%,10%,NR

Heather M. Giannini 
et al. [35]

Random Forest, Early 
Warning System

Random Forest 0.88 0.26 0.98 NR

Massimiliano Greco 
et al. [29]

Dummy_strat, 
Dummy_strat*, LR, LR*, 
LR_balanced, LR_bal‑
anced*, RF, RF*, SOFA, 
APACHEII, qSOFA

Random Forest 0.86 NR NR 90%,NR,10%

Pei Chen Lin et al. [26] XG Boost XG boost 0.86 IV:0.80,EV:0.67 IV:0.78 EV:0.70 80%,NR,20%

Simon Meyer Lauritsen 
et al. [34]

GB, Multilayer Percep‑
tion, CNN‑LSTM, 
SERA IP

CNN‑LSTM 0.86 [3] NR NR 80%,10%,10%

Brandon DeShon 
et al. [1]

DeepSurv, Cox/Lasso 
and Cox Model

Deepsurv 0.85 0.83 0.7 70%,30%

Meicheng Yang et al. 
[3]

EASP EASP 0.85 0.9 0.64 85%,15%,

Gabriel Wardi et al. [16] AI Sepsis Expert Algo AI Sepsis Expert Algo 85 0.85 0.68 80%,20%
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align consistently with the outcomes observed in prior 
studies, specifically references [34] and [36].

This study [31] introduced a novel early warning model 
known as the Double Fusion Sepsis Predictor (DFSP), 
which stands as a hybrid deep-learning framework amal-
gamating deep features with meticulously engineered 
attributes encompassing statistical metrics and clinical 

scores. The outcomes of this investigation present com-
pelling evidence for the superior performance of DFSP 
when juxtaposed with a pure deep learning model. Spe-
cifically, DFSP demonstrates a substantial enhancement 
in the Area Under the Receiver Operating Characteristic 
(AUROC) curve across 6, 12, and 24-h prediction hori-
zons. This improvement is attributed to the utilization 

Table 3 (continued)

References ML models/deep 
learning

Best models AUROC Sensitivity Specificity Model split 
training/test/
validation

Matthieu Scherpf et al. 
[36]

RNN, Insight algo RNN 0.81 0.9 0.81 9/16,1/16,3/16

Donghun Yang et al. 
[15]

LR, Random Forest, 3 
Deep Learning ANN, 
CNN, RNN

Random Forest 0.75 NR NR NR

Margherita Rosnati 
et al. [24]

RETAIN Model, AttTCN 
Model, LR, Insight 
model, MGP‑AttTCN

AttTCN Model 0.64 NR NR NR

Zhengling He et al. [19] LSTM, XG Boost, GBDT Ensemble Model 0.40(NUS) 0.64 0.84 90%,10%

Everton Osnei Cesario 
et al. [20]

LSTM, Random Forest LSTM, Random forest AUROC‑NR 0.97(ACC) 0.61 0.99 70%,10%,20%

Bilal Yaseen Al‑
Mualemi et al. [23]

RNN‑LSTM, SVM & 
Adoptive CNN

Adoptive CNN 0.78 0.93 0.93 NR

APACHE II: Acute physiology and chronic health evaluation II, AUROC: Area Under the Receiver Operating Curve, Att-TCN: Attention Temporal Convolutional 
Network,CNN: Convolutional Neural Network Dummy_strat: Dummy stratifier (baseline comparison), DFN: Deep Functional Network, DFSP: Double Fusion Sepsis 
Predictor, EASP: Explainable AI Sepsis Predictor Model, EV: External Validation, GB: Gradient Boosting, GBDT: Gradient Boosting Decision Tree, GRU: Gated Recurrent 
Unit, IV: Internal Validation, KNN: K-Nearest Neighbours,LDA: Latent Dirichlet allocation, LR: Logistic Regression, LSTM: Long Short Term Memory, MLD: Machine 
Learning Based Diagnostic, MLP: Multilayer Perceptron, NB: Naïve Bayes NUS: Normalized Utility Score, RF: Random Forest, RNN: Recurrent Neutral Network, SERA: 
Sepsis Early Risk Assessment, SOFA: Sequential Organ Failure Assessment, SSP: Smart Sepsis Predictor, SVM: Support Vector Machine, XGB: Extreme Gradient Boosting, 
qSOFA: quick Sequential Organ Failure Assessment, NR: Not Reported

Fig. 6 Predicting the performance of multi‑time window



Page 14 of 16Bomrah et al. Critical Care          (2024) 28:180 

of fusion strategies, which not only enhance predictive 
capabilities but also significantly elevate the AUROC 
scores.

In this study [19], an advanced Sepsis Early Risk Assess-
ment (SERA) algorithm was devised, incorporating both 
structured and unstructured clinical notes. Through data 
mining techniques, the SERA algorithm demonstrated 
enhanced predictive accuracy compared to utilizing 
solely clinical metrics. The Receiver Operating Charac-
teristic (ROC) analysis of the SERA algorithm consist-
ently surpassed predictions made by physicians across 
all examined time intervals, exhibiting notably high Area 
Under the ROC Curve (AUROC) scores even up to 48, 
24, 12, 6, and 4 h preceding the onset of sepsis.

Discussion
From the list of 29 included studies, almost all of them, 
ICU-based studies (68%) and ED-based studies (13%), 
were conducted in critical care settings in the hospitals, 
thus showing the significance of ML in critical care data 
analytics. Early diagnosis and treatment play an impor-
tant role in reducing the mortality due to sepsis, but 
advanced and accurate detection of sepsis is still a chal-
lenge in the clinical domain. When we discuss the elec-
tronic monitoring of sepsis patients for predicting and 
detecting early symptoms of complications, that’s where 
the ML algorithms come in and play their role by identi-
fying patterns and relationships from vast / big patients’ 
datasets to solve this complex problem [37]. While 
reviewing the related literature, we found several stud-
ies using ML models and algorithms for sepsis predic-
tion as mentioned in the above results section. Linked 
with the subject of our current study, we found  three 
important scoping reviews / meta-analysis that focused 
on the potentials of ML for sepsis prediction [2, 38,39]. 
The review from Deng et  al. included 21 studies focus-
ing on early sepsis detection, prediction and mortality. 
It concluded that no model could be adopted widely yet 
in general due to the lack of unified validation standards 
/ procedures and the heterogeneity in patients’ cohort, 
though it referred Deep Neural Networks (DNNs) as 
more suitable tool as compared to the other traditional 
tools for high-dimensional and highly heterogeneous 
patients’ sepsis data. Interestingly, it recommended 
using ML as a feature engineering tool, which reflects 
the need for and importance of our conducted study in 
this field; and suggested AUROC as evaluation standard 
for model performance as in our results. The review and 
meta-analysis from Fleuren et al. [38] showed ML models 
prediction for Sepsis ahead of time using retrospective 
data by examining 28 included studies out of which 24 
reported AUROC as their performance metric in critical 
care settings. and focused on AUROC to analyze model 

performance whereas we looked at the other metrics like 
sensitivity and specificity in addition to AUROC. Though 
the results of this review showed that individual models 
outperformed the traditional scoring tools, the authors 
suggested the need of development of reporting guide-
lines for ML models in critical/intensive care settings and 
their implementation with diverse patient populations to 
see the clinical impact. Similarly, another meta-analysis 
study from Islam et al. [39] included seven observational 
studies to quantify the performance of ML models for 
Sepsis prediction. The outcomes showed that.

ML prediction models performed well as compared 
to existing sepsis scoring systems, such as SIRS, MEWS, 
SOFA, and qSOFA for identification and prediction of 
sepsis patients; and suggested for more multi-centered 
studies with more precise clinical variables for sepsis 
prediction in the future. In contrast to these review / 
meta-analysis studies, our review dedicatedly focused on 
different critical features and feature extraction meth-
ods. The results of our study showed the key dynamic 
features that are pivotal in early sepsis prediction; dem-
onstrated the critical role of feature selection methods 
in enhancing the efficacy of predictive models in sepsis; 
and proved the effectiveness of feature extraction mod-
els—Random Forest and XG Boost with high sensitivity 
and AUROC in facilitating the sepsis prediction, and DL 
showing excellent AUROC values for different predicting 
time windows (12–48 h.). Concisely, the increased accu-
racy of sepsis prediction using these ML models can lead 
to minimizing the hospital mortality rate, reducing the 
LOS, improving the patient safety, and at the same time 
saving millions of dollars of investment in large clinical 
settings, hence proving the potentials and importance of 
these models in this domain.

This scoping review has several strengths. It followed 
a comprehensive and systematic approach to assess the 
landscape of sepsis prediction using ML techniques. It 
offered a thorough compilation of feature selection and 
extraction techniques used in the sepsis prediction and 
identified the top features for sepsis prediction across all 
studies. Additionally, by categorizing the studies based 
on features, prediction time and model performance, 
this study provided a clear comparison of different 
approaches that can support researchers and healthcare 
professionals in informed decision making.

There were certain limitations related to features. 
Firstly, the feature variability, the studies examined in this 
review utilize a wide array of features reflecting the diver-
sity of clinical data sources and methodologies. However, 
the variability in selected features across studies can hin-
der direct comparisons and the identification of univer-
sally impactful features. Secondly, the features that prove 
influential in one clinical context may not necessarily 



Page 15 of 16Bomrah et al. Critical Care          (2024) 28:180  

generalize to other healthcare settings or patient popu-
lations. Thirdly, many studies identified critical features, 
but not all provided in-depth insights into the clinical sig-
nificance or mechanistic explanations of these features. 
Lastly, this review was constrained by the availability of 
data in the studies analyzed, as incomplete or restricted 
datasets can lead to incomplete representation of poten-
tially critical features.

We hope that this review will help clarify which fea-
tures and methods are most promising for improving the 
accuracy of sepsis prediction models for future research 
studies. Ultimately, the findings from this review will be 
valuable not only for researchers but also for healthcare 
professionals, as they seek to enhance early sepsis detec-
tion and patient care.

Conclusion
To our best knowledge, this is the first study of its kind 
that reviewed critical features and feature extraction 
methods for sepsis prediction. Spanning diverse stud-
ies, it encompassed over 18,841 features and explored 
techniques like wrapper, filter, and embedded extrac-
tion to assess their impact on sepsis prediction models. 
The findings of this study highlighted the pivotal role 
of dynamic features, notably encompassing vital signs, 
such as Temperature, Heart Rate, and Blood Pressure, 
alongside critical laboratory parameters including 
White Blood Cell count (WBC), Creatinine, Bilirubin, 
Platelet count, and Lactate levels in sepsis prediction. 
These dynamic features have shown consistent and 
substantial prominence in prognosticating the onset 
of sepsis, exhibiting remarkable discriminatory power 
and pivotal utility in the early detection of septic con-
ditions. In contrast, the demographic variables have 
evinced comparatively diminished influence in effec-
tively predicting sepsis. For enhancing the predictive 
efficacy of sepsis models, the strategic implementation 
of feature selection methodologies has emerged as a 
crucial factor. The judicious identification and inte-
gration of key predictors via Filter, Wrapper, and Fea-
ture extraction techniques, these methodologies have 
effectively mitigated data dimensionality issues and 
conferred enhanced model stability, thereby facilitat-
ing the development of accurate and refined predictive 
models. In terms of model efficacy, the Random Forest 
and XG Boost models have exhibited superior perfor-
mance, with commendable AUROC, sensitivity, and 
specificity scores. Additionally, Deep Learning models 
have demonstrated consistent and profound insights 
into the correlation between features and model pre-
dictions, an aspect that conventional Machine Learning 
models have not been able to fully elucidate yet. These 
Deep Learning models have demonstrated remarkable 

AUROC values across different prediction time win-
dows, ranging from 12 to 48 h.

We recommend standardization of feature engineer-
ing methods used in sepsis prediction models which 
will facilitate comparison across studies and will foster 
consistency. Also, researchers should provide detailed 
description of the feature engineering process in their 
publication, including the rationale behind selecting 
methods and detailed data preprocessing steps.

In summary, this study reaffirmed the crucial role 
of features in sepsis prediction. The careful choice of 
feature extraction methods can significantly impact 
the  model’s performance and provide clinicians with 
valuable insights into complex interrelationships.
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