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Abstract 

Background Sepsis is a life‑threatening condition arising from an aberrant host response to infection. Recent 
single‑cell RNA sequencing investigations identified an immature bone‑marrow‑derived  CD14+ monocyte phe‑
notype with immune suppressive properties termed “monocyte state 1” (MS1) in patients with sepsis. Our objec‑
tive was to determine the association of MS1 cell profiles with disease presentation, outcomes, and host response 
characteristics.

Methods We used the transcriptome deconvolution method (CIBERSORTx) to estimate the percentage of MS1 cells 
from blood RNA profiles of patients with sepsis admitted to the intensive care unit (ICU). We compared these profiles 
to ICU patients without infection and to healthy controls. Host response dysregulation was further studied by gene 
co‑expression network and gene set enrichment analyses of blood leukocytes, and measurement of 15 plasma bio‑
markers indicative of pathways implicated in sepsis pathogenesis.

Results Sepsis patients (n = 332) were divided into three equally‑sized groups based on their MS1 cell levels (low, 
intermediate, and high). MS1 groups did not differ in demographics or comorbidities. The intermediate and high 
MS1 groups presented with higher disease severity and more often had shock. MS1 cell abundance did not differ 
between survivors and non‑survivors, or between patients who did or did not acquire a secondary infection. Higher 
MS1 cell percentages were associated with downregulation of lymphocyte‑related and interferon response genes 
in blood leukocytes, with concurrent upregulation of inflammatory response pathways, including tumor necrosis 
factor signaling via nuclear factor‑κB. Previously described sepsis host response transcriptomic subtypes showed dif‑
ferent MS1 cell abundances, and MS1 cell percentages positively correlated with the “quantitative sepsis response sig‑
nature” and “molecular degree of perturbation” scores. Plasma biomarker levels, indicative of inflammation, endothelial 
cell activation, and coagulation activation, were largely similar between MS1 groups. In ICU patients without infection 
(n = 215), MS1 cell percentages and their relation with disease severity, shock, and host response dysregulation were 
highly similar to those in sepsis patients.
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Introduction
Sepsis is a life-threatening condition resulting from a 
dysregulated host response to infection [1]. Sepsis and 
septic shock continue to represent significant risks for 
mortality in critically ill patients [2]. In 2017, there were 
approximately 49 million new cases of sepsis and 11 mil-
lion sepsis-related deaths worldwide [3].

The pathophysiology of sepsis is complex, encompass-
ing a variety of proinflammatory and immunosuppressive 
responses [4]. Myeloid-derived suppressor cells (MDSCs) 
have been implicated in sepsis-induced immune sup-
pression [5]. Two main subpopulations are usually con-
sidered: polymorphonuclear MDSCs (PMN-MDSCs) 

and monocytic MDSCs (M-MDSCs) [5]. MDSCs have 
the capacity to hinder immune responses, encompass-
ing those modulated by T cells, B cells, and natural killer 
(NK) cells. PMN-MDSCs and M-MDSCs share critical 
biochemical attributes that enable the suppression of 
immune responses [6].

Recent studies applied single-cell RNA sequencing 
(scRNA-seq) to understand the spectrum of immune 
cell states in the blood of sepsis patients [7–9]. scRNA-
seq has identified an immature bone-marrow-derived 
 CD14+ monocyte phenotype, denoted as “monocyte 
state 1” (MS1), which is reminiscent of M-MDSCs [7, 8]. 
This monocyte phenotype is characterized by elevated 

Conclusions High MS1 cell percentages are associated with increased disease severity and shock in critically ill 
patients with sepsis or a non‑infectious condition. High MS1 cell abundance likely indicates broad immune dysregula‑
tion, entailing not only immunosuppression but also anomalies reflecting exaggerated inflammatory responses.
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expression levels of RETN, ALOX5AP and IL1R2, and 
reduced expression of class II major histocompatibility 
complex (MHC-II). MS1 cells can be induced from bone 
marrow precursors, and display several immunosup-
pressive properties, including suppression of T cell pro-
liferation and inhibition of the inflammatory activation 
of epithelial and endothelial cells [7, 8]. Furthermore, 
an independent investigation reported the presence of 
a neutrophil subset, designated as “IL1R2+ Neu” in sep-
sis patients [9]. These cells exhibit gene expression pro-
files remarkably similar to those of MS1 cells, suggesting 
that common myelopoietic processes might underlie the 
development of both MS1 cells and  IL1R2+ Neu cells [9].

The proportion of MS1 cells can be estimated by 
deconvolution of bulk RNA expression data from whole 
blood [7, 8, 10]. In this study, we leveraged this validated 
deconvolution method to evaluate the percentage of MS1 
cells using whole blood transcriptome data from a well-
characterized cohort of sepsis patients. By doing so, we 
aimed to determine the association of MS1 cell profiles 
with disease presentation, outcomes and host response 
characteristics, using non-infected critically ill patients 
and healthy individuals as comparators.

Methods
Study design and population
This study was conducted as part of the Molecular Diag-
nosis and Risk Stratification of Sepsis (MARS) project 
(ClinicalTrials.gov identifier NCT01905033), a pro-
spective observational study conducted in two tertiary 
hospitals in the Netherlands between January 2011 and 
January 2014 (Academic Medical Center, Amsterdam, 
and University Medical Center Utrecht, Utrecht) [11]. 
For this investigation, we enrolled consecutive patients 
who received a sepsis diagnosis within 24  h of admis-
sion to the intensive care unit (ICU). The sepsis defini-
tion used was based on the Sepsis-3 criteria [1]; patients 
were retrospectively classified as meeting these criteria 
using prospectively collected data. In additional analyses, 
we compared the percentage of MS1 cells of patients with 
sepsis to those admitted to the ICU for non-infectious 
conditions. We excluded patients who were readmit-
ted or transferred from another ICU, unless the transfer 
occurred on the initial day of ICU presentation. For defi-
nitions of comorbidities, organ dysfunctions and compli-
cations, see Additional file  1. Furthermore, we analyzed 
transcriptomic data from healthy controls (Gene Expres-
sion Omnibus access number: GSE65682).

Measurements
For detailed information on microarray experiments, 
RNA processing protocols, plasma biomarker assays, and 

the corresponding analysis methods, please refer to the 
methods provided in Additional file 1.

Bulk data deconvolution
We utilized CIBERSORTx [10] to estimate the percentage 
of MS1 cells from the bulk normalized gene expression 
matrix. To deconvolute the whole blood gene expression 
data, we used the cell state signature matrix generated 
from scRNA-seq of peripheral blood mononuclear cells 
as reference [7]. The matrix was previously optimized to 
finding the minimum number of genes where the reduc-
tion in prediction error is saturated. This signature matrix 
encompasses 16 immune cell states. CIBERSORTx was 
performed with batch correction, quantile normaliza-
tion, absolute mode, and 100 permutations. Patients were 
ranked by the percentage of MS1 cells and then divided 
into tertiles—three groups of similar size—correspond-
ing to low, intermediate and high percentage of MS1 
cells. As a sensitivity analysis, we also stratified patients 
applying one-dimensional k-means clustering based on 
MS1 cell percentages [12]; the optimal number of clus-
ters was determined using a consensus-based algorithm.

Bioinformatics
We conducted gene co-expression network and module 
analysis, correlation with gene expression matrix, and 
correlation with other molecular signatures (see Addi-
tional file 1 for details).

Statistical analysis
Statistical analyses were performed using R (version 
4.3.0). Normality was assessed using the Shapiro–Wilk 
test and Quantile–Quantile plots, and all data showed 
non-normal distribution. Variables are reported as 
median values with 25th and 75th percentiles. Com-
parisons between groups were performed using either 
the Mann–Whitney U test or the Kruskal–Wallis test, 
followed by Dunn’s test with Benjamini–Hochberg 
(BH) correction for multiple comparisons. For categori-
cal data, the chi-squared test was utilized for compari-
son. Host response plasma biomarkers were stratified 
into three pathophysiological domains (inflammatory 
response, endothelial cell activation, and coagulation 
activation) as described [13–15]. To visualize the overall 
differences among the plasma biomarkers between MS1 
groups a principal component analysis (PCA) was con-
ducted, following previously established methods [13, 
14]. Briefly, prior to PCA, the plasma biomarker data 
were centered and scaled to unit variance. Subsequently, 
differences in the principal component (PC) scores 
between MS1 groups were analyzed using analysis of var-
iance. Differences in individual biomarker levels between 
the three MS1 groups were quantified using the Hedges’ 



Page 4 of 15Leite et al. Critical Care           (2024) 28:88 

g effect size and visualized using heatmaps [16]. The 
very few missing biomarkers were imputed by random 
forest, with the function rfImpute in the randomForest 
package in R. Differences in 30-day survival were visual-
ized by Kaplan–Meier survival curves. Additionally, in a 
regression analysis exploring the risk of 30-day mortal-
ity with MS1 cell percentage modeled as a continuous 
variable, we employed a restricted cubic spline function 
with three inner knots at default quantile locations. We 
also estimated the risk of ICU-acquired infections with 
the cumulative incidence function, which takes account 
of ICU death and ICU discharge as competing risks, 
comparing cumulative incidence curves among the three 
MS1 groups (Gray’s competing-risks analysis).

Results
Association of MS1 percentage with clinical presentation 
and outcome in patients with sepsis
We determined the percentage of MS1 cells in 332 
patients diagnosed with sepsis and stratified these into 
tertiles based on their relative abundance of MS1 cells: 
low, intermediate, and high (Additional file  1: Fig. S1; 
Table 1). The range of the MS1 cell proportions aligned 
with findings in prior studies [7, 8]. MS1 groups were 
largely similar regarding demographics, chronic comor-
bidities, and site of infection, although the proportion 
of abdominal infections was higher in the intermediate 
and high MS1 groups, as compared with the low MS1 
group. These groups also presented with a higher dis-
ease severity upon ICU admission, as indicated by higher 
sequential organ failure assessment (SOFA) scores, Acute 
Physiology and Chronic Health Evaluation (APACHE) 
IV scores, and Acute Physiology Scores (APS), as well 
as higher frequencies of acute kidney injury (AKI) and 
shock. Length of ICU or hospital stay did not differ 
between MS1 groups.

Interestingly, patients with abdominal infections in 
our cohort presented higher disease severity upon ICU 
admission, as indicated by higher SOFA scores, and 
increased frequencies of AKI and shock compared to 
patients with respiratory infections (Additional file  1: 
Table  S1). In a sensitivity analysis, adjusting for disease 
severity on admission (SOFA, APACHE IV APS score, 
shock, ARDS, and AKI) in a logistic regression model, 
the proportion of MS1 cells did not differ anymore 
between patients with abdominal and respiratory infec-
tions (adjusted p value = 0.31). Additionally, we directly 
compared patients with abdominal infections and shock 
to those with respiratory infections and shock. This com-
parison showed no statistically significant differences in 
MS1 cell percentages or severity scores (Additional file 1: 
Table  S2), suggesting that the severity of the disease, 

rather than the infection source, predominantly impacts 
MS1 cell proportions.

No overall differences were observed in the propor-
tion of surviving patients between the three MS1 groups 
(log-rank, p = 0.43) (Additional file 1: Fig. S2A). Mortal-
ity rates showed a nonlinear relationship with MS1 cell 
percentages (Additional file 1: Fig. S2B); according to this 
model the increase in MS1 levels did not have a signifi-
cant impact on the probability of the 30-day mortality 
event (p = 0.13).

The intermediate and high MS1 groups more frequently 
developed ARDS while in the ICU. The frequency of sec-
ondary ICU-acquired infections was comparable between 
MS1 groups. We also assessed the risk of ICU-acquired 
infections with the cumulative incidence function. 
Patients classified in the high MS1 group exhibited the 
highest cumulative incidence of ICU-acquired infections; 
however, no overall differences between MS1 groups were 
observed (Gray’s Test, p = 0.2) (Additional file 1: Fig. S3).

To test the robustness of our results, we attempted to 
stratify the cohort using a different methodology. This 
involved conducting a sensitivity analysis using one-
dimensional k-means clustering based on MS1 cell 
percentages. The optimal number of clusters was deter-
mined to be 2 clusters, supported by 11 out of 28 meth-
ods (Additional file  1: Table  S3). This analysis yielded 
results similar to those observed in the comparison of 
MS1 cell tertiles, with the group of patients classified as 
cluster 2 (high MS1 cell abundance) showing a higher 
incidence of sepsis due to abdominal infections, higher 
disease severity upon ICU admission, and a more fre-
quent development of ARDS while in the ICU (Addi-
tional file 1: Table S4).

Weighted gene co‑expression network analysis
To obtain a first insight into differences in the blood 
transcriptomes across patients with different MS1 cell 
abundances, we determined the number of differentially 
expressed genes between the three MS1 groups in pair-
wise comparisons (Additional file  1: Fig. S4). The low 
MS1 group was clearly distinct from the intermediate 
and high MS1 groups.

To investigate subgroup-specific transcriptional 
regulation in sepsis patients based on the percentage 
of MS1 cells, we conducted a comprehensive gene co-
expression network analysis followed by an unbiased 
overrepresentation analysis. This analysis revealed 
nine gene expression modules, of which four modules 
(Fig. 1A) were significantly different between the three 
groups (by Kruskal–Wallis test comparing the modules’ 
eigengene) and overrepresented with distinct biological 
pathways (Additional file  1: Table  S5). Modules 1 and 
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Table 1 Baseline characteristics and outcomes of patients admitted to the ICU with sepsis stratified into tertiles by percentage of MS1 
cells

Bold indicates that the values are statistically significant

AKI acute kidney injury, APACHE acute physiology and chronic health evaluation, APS acute physiology scores, ARDS acute respiratory distress syndrome, BMI body 
mass index, COPD chronic obstructive pulmonary disease, CNS central nervous system, LOS length of stay, SOFA sequential organ failure assessment
a Median (IQR); n/N (%)
b–d Groups that have no superscript in common are significantly different from each other after post-hoc tests with Benjamini–Hochberg correction (p < 0.05)

Characteristic Low (N = 111)a Intermediate (N = 111)a High (N = 110)a p value

Percentage of MS1 cells 19.0 (17.4, 20.2)b 23.7 (22.6, 25.0)c 30.3 (27.9, 34.0)d < 0.00001

Demographics

 Age years 62.0 (49.0, 72.5) 65.0 (56.0, 74.0) 64.5 (56.0, 75.0) 0.2

 White race 88 (79%) 96 (86%) 98 (89%) 0.1

 Male sex 70 (63%) 62 (56%) 65 (59%) 0.5

 Admission type, surgery 25 (23%) 39 (35%) 27 (25%) 0.07

 BMI 24.8 (22.5, 29.4)b,c 25.7 (23.1, 29.5)b 24.0 (21.7, 27.3)c 0.04

Comorbidity

 Charlson score 3.0 (2.0, 5.0) 4.0 (3.0, 6.0) 4.0 (2.0, 5.0) 0.2

 Cardiovascular insufficiency 3 (2.7%) 7 (6.3%) 6 (5.5%) 0.4

 Respiratory insufficiency 9 (8.1%) 6 (5.4%) 9 (8.2%) 0.7

 Renal insufficiency 13 (12%) 14 (13%) 11 (10%) 0.8

 Hypertension 35 (32%) 32 (29%) 22 (20%) 0.1

 Diabetes mellitus 21 (19%) 20 (18%) 18 (16%) 0.9

 COPD 16 (14%) 16 (14%) 17 (15%) 1.0

 Cerebrovascular disease 6 (5.4%) 13 (12%) 8 (7.3%) 0.2

Site of infection

 Respiratory 47 (42%) 35 (32%) 40 (36%) 0.2

 Abdominal 14 (13%)b 24 (22%)b,c 32 (29%)c 0.01

 Cardiovascular 8 (7.2%) 6 (5.4%) 2 (1.8%) 0.2

 Urinary 6 (5.4%) 7 (6.3%) 11 (10%) 0.4

 CNS 0 (0%) 3 (2.7%) 1 (0.9%) 0.2

 Skin 6 (5.4%) 5 (4.5%) 6 (5.5%) > 0.9

 Other 5 (4.5%) 5 (4.5%) 0 (0%) 0.1

 Unknown 1 (0.9%) 2 (1.8%) 2 (1.8%) 0.8

 Mix infection 24 (22%) 24 (22%) 16 (15%) 0.3

Disease severity on admission

 SOFA Score 6.0 (4.0, 9.0)b 8.0 (5.0, 10.0)c 7.5 (5.0, 10.0)c 0.005

 APACHE IV score 73.0 (55.0, 88.5)b 84.0 (66.0, 104.5)c 81.0 (63.3, 103.8)c 0.003

 APS 60.0 (48.0, 77.0)b 71.0 (56.0, 91.0)c 69.5 (50.0, 90.8)c 0.01

 ARDS 23 (21%) 36 (32%) 31 (28%) 0.1

 AKI 32 (29%)b 52 (47%)c 43 (39%)b,c 0.02

 Septic shock 29 (26%)b 44 (40%)b,c 51 (46%)c 0.01

Outcomes

 Hospital LOS, days 14.0 (8.0, 35.0) 17.0 (8.5, 36.5) 15.5 (7.3, 39.5) 0.9

 ICU LOS, days 4.0 (2.0, 10.0) 5.0 (3.0, 11.0) 6.0 (2.0, 11.0) 0.2

ICU‑acquired complications

 ARDS 6 (5.4%)b 17 (15%)c 18 (16%)c 0.02

 Infection 10 (9.0%) 11 (9.9%) 18 (16%) 0.2

Mortality

 Death in ICU 19 (17%) 24 (22%) 23 (21%) 0.7

 30‐day mortality 26 (23%) 34 (31%) 33 (30%) 0.4

 60‐day mortality 31 (28%) 38 (34%) 40 (36%) 0.3

 90‐day mortality 32 (29%) 40 (36%) 45 (41%) 0.2
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Fig. 1 Co‑expressed gene modules and gene set enrichment analysis in patients with sepsis stratified according to MS1 cell percentages in blood. 
A The co‑expression module identification analysis revealed distinct gene modules based on MS1 cell levels in patients with sepsis. Patients were 
categorized into low MS1 (n = 111), intermediate MS1 (n = 111), and high MS1 groups (n = 110). The size of each circle in the graph is proportional 
to − log10(BH adjusted p value), and the color represents the normalized enrichment score (NES). Blue indicates a decreased NES, and red color 
represents an increased NES. B The network diagrams depict the two largest differential co‑expression gene modules (Module 2 and Module 3) 
identified in the analysis; the network highlights the hub genes, which are crucial regulatory genes within each module, C The graph illustrates 
the correlation between the percentage of MS1 cells and the normalized gene expression matrix. Positive correlations with a BH adjusted p 
value < 0.05 are shown in red, negative correlations in blue; and non‑significant correlations are depicted in gray. Gene names indicate the top 
five positively correlated (in red) and the top five negatively correlated (in blue) genes. D Gene set enrichment analysis performed on genes 
that correlated with MS1 levels. The color‑coded NES values signify the enrichment score for each pathway; all pathways displayed a BH adjusted p 
value < 0.05, except for pathways marked by an asterisk (*), which indicates a BH adjusted p value < 0.1



Page 7 of 15Leite et al. Critical Care           (2024) 28:88  

2 exhibited increased normalized enrichment scores 
(NES) in the low MS1 group. Module 1 demonstrated 
significant enrichment in pathways related to the adap-
tive immune system, while Module 2 displayed enrich-
ments primarily linked to interferon signaling. On the 
other hand, Modules 3 and 4, which showed elevated 
NES in the intermediate and high MS1 groups, were 
associated with inflammatory response and tumor 
necrosis factor (TNF) signaling via nuclear factor-κB, 
as well as with neutrophil degranulation, respectively 
(Fig.  1A). To identify potential key regulatory genes 
governing these pathways, we focused on the central 
hub genes within each module (most connected genes). 
In the network of Module 1, several lymphocyte-related 
genes emerged as hubs, including IL23A, TCF7, SKAP1, 
IMPDH2, and NFATC2 (Fig.  1B). In the network of 
Module 3, hub genes of interest comprised CD163, 
CD59, IL1RAP, JMJD6, LDHA, HK3, and GYG1.

Next, we utilized the proportion of MS1 cells on a 
continuous scale and performed a functional enrich-
ment analysis based on the correlation value (rho) 
with the genes in the normalized expression matrix. 
These results corroborated the findings observed in 
the module analysis (Fig.  1C). Moreover, this analysis 
uncovered additional enriched pathways that were not 
evident in the module analysis. Specifically, pathways 
with increased NES included IL-6/JAK/STAT3 sign-
aling, hypoxia, mTORC1 signaling, and complement. 
Pathways with negative NES consisted of Elongation 
Factor (EF)-2 signaling, oxidative phosphorylation, and 
unfolded protein response (Fig. 1D).

Comparison of the two MS1 clusters derived by 
k-means clustering (Additional file 1: Table S4) resulted 
in similar differential gene expression patterns between 
MS1 groups. For instance, cluster 2 (high MS1 cell 
abundance) exhibited an elevated expression of genes 
associated with inflammatory and innate immune 
responses, along with a decreased expression of genes 
related to adaptive immunity (Additional file 1: Fig. S5 
and Table S6).

Distinctive and overlapping host response biomarker 
profiles in MS1 groups
We determined 15 host response biomarkers reflective 
of three key pathophysiological domains (inflammatory 
response, endothelial cell activation, and coagulation 
activation) in plasma obtained on admission to the ICU 
(for concentrations of individual biomarkers see Addi-
tional file  1: Table  S7). First, we generated domain-spe-
cific PCA plots to compare patient tertiles with varying 
MS1 percentages (low, intermediate, and high) (Fig.  2). 
There was substantial overlap in plasma biomarker 
responses between MS1 groups; significant differences 
were detected between the low MS1 group versus the 
intermediate and high MS1 groups with regard to the 
PC1 of the inflammatory response (Fig. 2A) and coagu-
lation domains (Fig.  2B). PCA of the endothelial cell 
response did not reveal differences between MS1 groups 
(Fig.  2C). The complete contribution of each biomarker 
to a PC score is depicted in Additional file  1: Table  S8. 
Additional file 1: Fig. S6 presents the magnitude of indi-
vidual biomarker differences in the low MS1 group rela-
tive to the MS1 other groups, expressed as Hedges’ g. 
This analysis showed that most biomarkers reflective of 
the inflammatory response and endothelial activation 
were lower in patients categorized within the low MS1 
group, while coagulation activation markers demon-
strated a mixed pattern. Notably, these results showed 
to be robust in the two-group comparison (low vs. high 
MS1 cell percentage) derived from the k-means cluster-
ing approach (Additional file 1: Fig. S7). Taken together, 
these findings suggest that the relative abundance of MS1 
cells has a modest influence on plasma biomarker profiles 
indicative of pathophysiological pathways implicated in 
sepsis pathogenesis.

Relation between MS1 cell proportions and previously 
described molecular subtypes and signatures in patients 
with sepsis
In the recent past, patients with sepsis have been divided 
into several subtypes based on blood RNA expression 

Fig. 2 Distinctive and overlapping host response biomarker profiles in plasma among sepsis patients stratified based on MS1 cell percentage 
in blood. A Inflammatory response. B Endothelial cell activation and C Coagulation activation. Principal component analysis (PCA) in which 
principal components (PC) 1 and 2 are plotted per pathophysiological domain. Each domain is represented along the x‑ and y‑axes, labeled 
with the respective percentage of total variance explained by PC1 and PC2. The contribution of each biomarker to a PC score is detailed 
in Additional file 1: Table S3. The ellipse illustrates the central 10% of each MS1 group. Arrows in the plot indicate both the direction (arrow 
orientation) and magnitude (arrow length) of the correlation existing between each biomarker and the PCs. Adjacent to each PCA plot, boxplots 
facilitate group comparisons concerning PC1 and PC2. It is important to note that even a negative trend within a boxplot of a PC may denote 
a positive correlation with biomarker concentrations, as reflected by the direction of the arrows. Post‑hoc analysis was conducted using a Tukey 
Test. Significance levels are represented as follows: ***p < 0.001, *p < 0.05. IL interleukin, MMP8 matrix metalloproteinase 8, NGAL neutrophil 
gelatinase‑associated lipocalin, ANG1 angiopoietin 1, ANG2 angiopoietin 2, sE‑selectin soluble E‑selectin, sICAM‑1 soluble intercellular adhesion 
molecule 1, PT prothrombin time

(See figure on next page.)
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profiles, including Mars1 to Mars4 [17], subtypes named 
“inflammopathic, “adaptive” and “coagulopathic” [18], 
and SRS1 and SRS2 [19]. We observed distinct patterns in 

the distribution of MS1 cell proportions across these sub-
types (Fig. 3A and Additional file 1: Fig. S8A, B). Patients 
classified as the Mars3 subtype—characterized by 

Fig. 2 (See legend on previous page.)
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upregulated adaptive immunity and T cell function and 
associated with the lowest mortality risk [17]—displayed 
the lowest percentage of MS1 cells. Likewise, patients 
within the “adaptive” subtype, characterized by adap-
tive immune activation and lower mortality [18], also 
exhibited a lower percentage of MS1 cells. With regard 
to SRS subtypes, the percentage of MS1 cells was higher 
in patients of the SRS1 subtype when compared with the 
SRS2 subtype. The SRS1 subtype entails an immuno-
compromised profile, encompassing attributes of endo-
toxin tolerance, T cell exhaustion, downregulation of 
HLA class II genes, and increased risk of death [19, 20]. 
Beyond blood RNA profile-based subtypes, patients with 
ARDS and/or sepsis have also been stratified into hyper-
inflammatory and hypoinflammatory subtypes [21, 22]. 
MS1 cells were more abundant in the hyperinflammatory 
subtype (Additional file 1: Fig. S8C); this subtype is char-
acterized by stronger inflammatory responses, higher 
mortality rates, and a higher incidence of shock [21].

Based on the SRS subtyping, a quantitative continu-
ous score named SRSq has been generated [20]. SRSq is a 
score between 0 and 1, with lower values reflecting tran-
scriptomes closer to health and higher values indicating 
the most severe immune dysregulation. The proportion 
of MS1 cells showed a moderate positive correlation 
with SRSq (rho = 0.47, p < 0.0001; Fig. 3B). Similarly, the 
MDP score—which quantifies transcriptional perturba-
tion [23–25]—exhibited a positive correlation with the 
percentage of MS1 cells (rho = 0.55, p < 0.0001; Fig.  3C). 
Based on the “inflammopathic, “adaptive” and “coagu-
lopathic” subtyping, a continuous probability score has 
been generated [18]; patients with a high probability 

score for a given subtype are more likely to belong to 
that group. Interestingly, MS1 levels showed a positive 
correlation with the probability scores of the inflammo-
pathic (rho = 0.41, p < 0.001; Additional file  1: Fig. S8D) 
and coagulopathic (rho = 0.22, p < 0.01; Additional file 1: 
Fig. S8E) subtypes, which are characterized by a higher 
disease severity and mortality [18], and a negative cor-
relation with the probability score of the adaptive phe-
notype (rho = − 0.42, p = 0.0001; Additional file  1: Fig. 
S8F). MS1 cell percentages also showed a negative cor-
relation with the mean expression levels of HLA class 
II genes (rho = − 0.48, p = 0.0001; Additional file  1: Fig. 
S8G). HLA class II molecules play a crucial role in driv-
ing adaptive immune responses by presenting pathogen-
derived peptides to  CD4+ T cells [26]. Collectively, these 
results suggest that a higher abundance of MS1 cells is 
associated with more severe immune dysregulation and 
immunosuppression.

MS1 cell proportions in non‑infected critically ill patients
We next compared the percentage of MS1 cells in criti-
cally ill patients with sepsis to those in 42 healthy con-
trols and 215 critically ill patients without infection 
(Fig. 4 and Additional file 1: Table S9 for the comparison 
of non-infected and sepsis patients). Both groups of criti-
cally ill patients displayed elevated MS1 cell proportions 
in comparison to healthy controls. However, a direct 
comparison between critically ill patients with sepsis and 
those with non-infectious conditions did not reveal a sta-
tistically significant difference in MS1 cell proportions 
(Fig.  4A). Notably, in both patient groups, the presence 

Fig. 3 Relation between MS1 cell proportions and previously described molecular subtypes and signatures in patients with sepsis. A Percentage 
of MS1 cells in Sepsis Response Signature (SRS) subtypes. Correlation analysis between the percentage of MS1 cells and B quantitative sepsis 
response signature (SRSq) score, and C Molecular Degree of Perturbation (MDP) score. ****Mann–Whitney U test p < 0.0001. rho spearman 
correlation coefficient
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of shock was associated with higher MS1 cell proportions 
(Fig. 4B).

In an approach similar to our primary analysis, non-
infected critically ill patients were classified into tertiles 
based on their relative MS1 cell abundance: low, interme-
diate, and high. The high MS1 group exhibited elevated 
SOFA scores upon ICU admission and higher mortal-
ity frequencies (up to day 90) compared to the low MS1 
group (Additional file  1: Table  S10). Admission diagno-
ses did not differ between MS1 groups (Additional file 1: 
Table  S11). In a sensitivity analysis also done in sepsis 
patients, we employed one-dimensional k-means clus-
tering to stratify non-infected critically ill patients based 
on MS1 cell abundance. Two clusters were defined as the 
ideal number of clusters (Additional file  1: Table  S12). 
Cluster 2 (high MS1 cell abundance) exhibited elevated 
SOFA, APACHE IV and APS scores (Additional file  1: 
Table S13), largely reproducing the results of the compar-
ison between MS1 tertiles.

Furthermore, a gene co-expression network analy-
sis was conducted, first comparing the MS1 tertiles, 
revealing eight distinct gene expression modules, of 
which five modules (Fig.  5A) were significantly differ-
ent between the three groups, with different pathways 
overrepresented (Additional file 1: Table S14). Modules 
1 and 5 exhibited similar expression patterns and path-
way enrichments comparable to those seen in Modules 
1 and 3 observed in patients with sepsis. Notably, they 
shared central hub genes, including lymphocyte-related 
genes like IL23A, SKAP1, IMPDH2, and NFATC2 

(Fig. 5B). A significant overlap between sepsis patients 
(Fig. 1C, D) and non-infected ICU patients (Fig. 5C, D) 
was also identified in the functional enrichment anal-
ysis based on correlation values (rho) within the gene 
expression matrix, revealing 15 common pathways, 
such as EF-2 signaling, allograft rejection, oxidative 
phosphorylation, and fatty acid metabolism, displayed 
negative NES, while pathways like inflammatory 
response, TNF signaling via NF-κB, IL-6/JAK/STAT3 
signaling, and hypoxia exhibited increased NES. Inter-
estingly, the inflammatory response (higher in high 
MS1 group) and adaptive immunity pathways (higher 
in low MS1 group) were enriched regardless of how 
patients were stratified (tertiles vs. k-means clustering; 
Additional file  1: Table  S15 and Fig. S9), reproducing 
findings in patients with sepsis (Additional file  1: Fig. 
S5). This suggests that the expression of genes related 
to these pathways is associated with the percentage of 
MS1 cells irrespective of the presence of infection.

When classifying critically ill patients without infec-
tion according SRS subtypes, the percentage of MS1 
cells was higher in patients of the SRS1 subtype com-
pared to the SRS2 subtype (Fig.  6A). The proportion of 
MS1 cells showed a strong positive correlation with SRSq 
(rho = 0.63, p < 0.0001; Fig. 6B). Similarly, the MDP score 
exhibited a positive correlation with the percentage of 
MS1 cells (rho = 0.62, p < 0.0001; Fig. 6C). Overall, these 
two scores demonstrated stronger correlations with MS1 
cell abundance in critically ill patients without infection 
compared to those in patients with sepsis.

Fig. 4 MS1 cell proportions in sepsis patients relative to non‑infected critically ill patients. A Comparative analysis of MS1 cell levels in healthy 
controls (HCs, n = 42), critically ill patients with infection (Sepsis, n = 332) and critically ill patients without infection (Non‑Inf ICU, n = 215), and, B 
Comparative analysis of MS1 cell levels in patients with sepsis without shock (Sepsis, n = 208), patients with sepsis and shock (Septic Shock, n = 124), 
critically ill patients without infection and without shock (Non‑Inf ICU, n = 135), critically ill patients without infection yet with shock (Non‑Inf ICU 
Shock, n = 80). Statistical analyses were performed using the Kruskal–Wallis test with Dunn’s Post‑Hoc Test corrected by Benjamini–Hochberg 
method. ****Dunn’s post‑hoc test p < 0.0001, **p < 0.01, *p < 0.05
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Discussion
MDSCs are immature myeloid cells with immunosup-
pressive features found in increased numbers in the 
circulation of patients with inflammatory conditions. 
Expansion of MDSCs is considered to play a key role in 

sepsis-induced immunosuppression [5]. Two recent stud-
ies reported a newly discovered monocyte state named 
MS1, reminiscent of M-MDSCs, of which the abun-
dance in blood of patients with sepsis correlated with 
higher mortality rates [7, 8]. The present study provides 

Fig. 5 Co‑expressed gene modules and gene set enrichment analysis in non‑infected critically ill patients stratified according to MS1 cell 
percentages in blood. A The co‑expression module identification analysis revealed distinct gene modules based on MS1 cell levels in non‑infected 
critically ill patients. Patients were categorized into low MS1 (n = 72), intermediate MS1 (n = 71), and high MS1 groups (n = 71). The size of each 
circle in the graph is proportional to ‑log10(BH adjusted p value), and the color represents the normalized enrichment score (NES). Blue indicates 
a decreased NES, and red color represents an increased NES; B The network diagrams depict the two largest differential co‑expression gene 
modules (Module 1 and Module 5) identified in the analysis, the network highlights the hub genes, which are crucial regulatory genes within each 
module; C The graph illustrates the correlation between the percentage of MS1 cells and the normalized gene expression matrix. Positive 
correlations with a BH adjusted p value < 0.05 are shown in red, negative correlations in blue; non‑significant correlations are depicted in grey; 
D Gene set enrichment analysis performed on genes that correlated with MS1 levels. The color‑coded NES values signify the enrichment score 
for each pathway; all pathways displayed a BH adjusted p value < 0.05, except for pathways marked by an asterisk (*), which indicates a BH adjusted 
p value < 0.1
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comprehensive information about the association 
between the proportion of MS1 cells, and disease pres-
entation, complications and host response aberrations 
in critically ill patients with sepsis or a non-infectious 
condition.

Previously, expression of the MS1 gene program in 
blood was reported to be negatively associated with sur-
vival in an analysis making use of 11–15 cohorts included 
in meta-analyses reporting on mortality among sep-
sis patients [7, 8]. In our study, MS1 cell abundance did 
not differ between sepsis survivors and non-survivors, 
and there were no mortality differences between patient 
groups stratified according to MS1 cell frequencies. 
Albeit non-significant, MS1 cell percentages expressed 
as a continuous variable showed a nonlinear relationship 
with mortality. While this might indicate that an increase 
in MS1 cell abundance to a certain extent may improve 
outcome, this possibility is speculative and requires vali-
dation. Notably, in the earlier meta-analyses the associa-
tion between the MS1 cell abundance and mortality was 
not consistent in all individual sepsis cohorts [7, 8].

Thus far, the relation between MS1 cell frequency, and 
the clinical presentation and disease associated compli-
cations in patients with sepsis was not studied in great 
detail. We found a clear association between the per-
centage of MS1 cells and disease severity, as evidenced 
by higher severity scores and more shock in the interme-
diate and high MS1 groups. Additionally, the high MS1 
group more often presented with abdominal infection, 
which however most likely was linked to the fact that 
these patients more often had shock on admission to the 
ICU, more so than that the MS1 expansion was related 

to the site of infection. In agreement, we and others pre-
viously reported a higher incidence of shock in sepsis 
patients with an abdominal source of infection [13, 27]. 
MS1 cells clearly exert immune suppressive effects, and 
accordingly, the proportion of MS1 cells in sepsis patients 
displayed a negative correlation with HLA class II gene 
expression [7, 8] (considered a classic sign of immuno-
suppression) [28]. Nevertheless, the MS1 score did not 
differ between patients who did and those who did not 
develop a secondary infection, a complication consid-
ered to be linked with immunosuppression [28]. In con-
trast, patients with high MS1 cell abundance more often 
developed ARDS while on the ICU, a complication that 
is considered to arise from exaggerated inflammation 
[29]. These data suggest that, in spite of the immune sup-
pressive properties of MS1 cells [7, 8], other concurrent 
host response aberrations may be dominant in the overall 
immune state of sepsis patients with high MS1 cell pro-
portions. Indeed, our comprehensive host response anal-
yses provide support for this notion.

We studied the association between MS1 cell abun-
dance and the host response by analyzing blood gene 
expression profiles and, in a more targeted way, by evalu-
ating 15 plasma biomarkers reflective of pathophysiologi-
cal mechanisms implicated in sepsis. We applied different 
gene set enrichment techniques to show that an increase 
in MS1 cell frequency is associated with a decrease in 
lymphocyte-related and interferon response genes. These 
results support the conclusions by Reyes et al. [8], high-
lighting a reduced interferon response in MS1 cells upon 
stimulation and a negative correlation between the MS1 
gene program and expression of interferon response 

Fig. 6 Relation between MS1 cell proportions and previously described molecular subtypes and signatures in critically ill patients without infection. 
A Percentage of MS1 cells in Sepsis Response Signature (SRS) subtypes. Correlation analysis between the percentage of MS1 cells and B quantitative 
sepsis response signature (SRSq) score, and C Molecular Degree of Perturbation (MDP) score. ****Mann–Whitney U test p < 0.0001. rho Spearman 
correlation coefficient
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genes, and are consistent with the recognized immune 
suppressive activity of MDSCs, necessitating the inactiva-
tion of the interferon pathway [30]. On the other hand, an 
increased percentage of MS1 cells was related to upregu-
lation of TNF signaling pathways via NF-κB, IL-6/JAK/
STAT3 signaling, and inflammatory response pathways. 
These seemingly paradoxical findings fit with the current 
consensus that hyperinflammation and immune suppres-
sion co-exist in sepsis patients upon ICU admission [4], 
rather than that they represent successive phases [31]. 
Plasma biomarker analysis demonstrated only modest dif-
ferences in the inflammation domain (lower in patients 
with low MS1 cell numbers), while endothelial and coagu-
lation responses were similar across MS1 groups.

Recent studies have tried to stratify patients with sep-
sis into more homogeneous subgroups based on host 
response characteristics using various unsupervised 
clustering methods [17–19, 21, 22]. We grouped patients 
included in our cohort in these previously published 
subtypes and determined the MS1 cell frequency in 
each subgroup, thereby seeking to assess potential over-
lap. Patients with low MS1 cell percentages more often 
classified in the low mortality risk subtypes Mars3 [17], 
adaptive [18], and hypoinflammatory [21, 22], which 
is in agreement with the association between MS1 cell 
frequency and disease severity. Otherwise, MS1 cell 
proportions did not clearly align with dominant patho-
physiological mechanisms; for example, higher MS1 
cell abundances were found in the SRS1 subtype (which 
mainly reflects an immunocompromised profile) [19, 20], 
but also in the hyperinflammatory subtype (reflecting a 
subtype with dominant inflammatory host response pat-
tern); these seemingly opposing associations are in agree-
ment with our gene set enrichment analyses discussed 
above. We found positive correlations between MS1 cell 
abundance and the SRSq [19, 20] and MDP scores, which 
indicate the extent of gene expression perturbation rela-
tive to a healthy state [23–25]. Concurrently, the propor-
tion of MS1 cells had a negative correlation with HLA 
class II gene expression, corroborating earlier findings 
[7, 8] and pointing at immunosuppression [28]. Collec-
tively, these results suggest that, while MS1 cells clearly 
exert immune suppressive effects [7, 8], their abundance 
in patients with sepsis upon ICU admission should be 
considered as one aberrant feature in a broadly disturbed 
host response in patients who already are critically ill 
(i.e., have departed from normal immune homeostasis 
along divergent pathophysiological pathways).

A previous study reported that the MS1 cell fraction is 
also expanded in ICU patients with a non-infectious con-
dition, although to a lesser extent than in sepsis patients 
admitted to the ICU [7]. Contrary to these findings, our 
study found no difference between sepsis patients and 

non-infected ICU controls, and we further show that 
the presence of shock is similarly associated with MS1 
cell expansion in both groups. The discrepancy between 
our study and the one published earlier may be explained 
by differences in disease severities between sepsis and 
non-infected patients (not reported in [7]). Analyses 
seeking to associate MS1 cell frequencies with other 
host response deviations in non-infected ICU patients 
showed strong similarities with results obtained in sepsis 
patients, including a decrease in lymphocyte-related and 
interferon response genes, and an upregulation of TNF 
signaling pathways via NF-κB, IL-6/JAK/STAT3 signal-
ing, and inflammatory response pathways in patients 
with higher MS1 cell fractions. Together, these data sug-
gest that MS1 cell expansion and its relation to other host 
response aberrations are primarily determined by the 
severity of disease and not by the inciting injury, thereby 
aligning with the recently proposed new concept of criti-
cal illness [32].

Our study has strengths and limitations. We used a large 
well-annotated cohort of prospectively enrolled patients, 
allowing studies in ICU patients with or without sepsis on 
clinically relevant outcomes and associations with diverse 
host response mechanisms. The study was conducted in 
two ICUs in the Netherlands; results may not be general-
izable to other critical care settings. Our investigation was 
observational and therefore does not allow conclusions 
about causal relationships. CIBERSORTx can only esti-
mate cell abundances based on the cells represented in the 
reference matrix. Therefore, the percentages estimated 
using whole blood RNA profiles in this and previously 
reported studies [7, 8] refer to the subpopulation of cells 
within the peripheral blood mononuclear cell fraction. 
Another limitation lies in the inherent nature of decon-
volution, which does not provide a definitive picture of 
cellular composition. Although implementing scRNA-seq 
analyses and/or mass cytometry could offer more direct 
information to identify MS1 cells and confirm or refute 
the hypotheses advanced in this paper, applying these 
technologies in cohort studies of this magnitude poses 
financial and logistical challenges.

Conclusions
This study establishes a prominent association between 
elevated MS1 cell percentages, and increased disease 
severity and shock in patients admitted to the ICU 
with sepsis or a non-infectious condition. The asso-
ciation between MS1 cell abundance and diverse host 
response anomalies highlights its potential as a  indica-
tor of broad immune dysregulation, entailing not only 
immune suppression but also perturbations signifying 
exaggerated inflammation.
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