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Abstract 

Background A real‑time model for predicting short‑term mortality in critically ill patients is needed to identify 
patients at imminent risk. However, the performance of the model needs to be validated in various clinical settings 
and ethnicities before its clinical application. In this study, we aim to develop an ensemble machine learning model 
using routinely measured clinical variables at a single academic institution in South Korea.

Methods We developed an ensemble model using deep learning and light gradient boosting machine models. 
Internal validation was performed using the last two years of the internal cohort dataset, collected from a single 
academic hospital in South Korea between 2007 and 2021. External validation was performed using the full Medical 
Information Mart for Intensive Care (MIMIC), eICU‑Collaborative Research Database (eICU‑CRD), and Amsterdam Uni‑
versity Medical Center database (AmsterdamUMCdb) data. The area under the receiver operating characteristic curve 
(AUROC) was calculated and compared to that for the National Early Warning Score (NEWS).

Results The developed model (iMORS) demonstrated high predictive performance with an internal AUROC of 0.964 
(95% confidence interval [CI] 0.963–0.965) and external AUROCs of 0.890 (95% CI 0.889–0.891) for MIMIC, 0.886 (95% 
CI 0.885–0.887) for eICU‑CRD, and 0.870 (95% CI 0.868–0.873) for AmsterdamUMCdb. The model outperformed 
the NEWS with higher AUROCs in the internal and external validation (0.866 for the internal, 0.746 for MIMIC, 0.798 
for eICU‑CRD, and 0.819 for AmsterdamUMCdb; p < 0.001).

Conclusions Our real‑time machine learning model to predict short‑term mortality in critically ill patients showed 
excellent performance in both internal and external validations. This model could be a useful decision‑support tool 
in the intensive care units to assist clinicians.
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Background
During the last decade, several machine learning models 
have been introduced to predict outcomes in the inten-
sive care unit (ICU) [1–3]. These models include a gra-
dient boosting machine (GBM) model for in-hospital 
mortality [3], a recurrent neural network-based model 
for major complications, and a hybridized convolutional 
neural network and long short-term memory (LSTM) 
model for 3 to 14-day mortality [4]. Previous studies have 
reported the excellent performance of models, suggesting 
their potential use in clinical practice [5].

However, the real-time clinical performance of models 
remains unclear because most models were developed to 
predict mid- to long-term outcomes using the first 24 h 
of ICU admission [6–9]. In general, the ICU mortality 
rate peaks in the first 24 h and then declines with man-
agement in the ICU [10, 11]. Before applying the models 
to routine monitoring in clinical practice, the perfor-
mance of the models should be validated.

Another challenge in applying machine learning mod-
els to real-world clinical practice is that performance 
can vary depending on the training data and clinical set-
ting [12]. A recent review article reported that approxi-
mately half of the ICU mortality prediction models have 
not been externally validated [13]. Some variables used 
in previous models, such as insurance type and diagno-
sis codes, are not standardized across countries, making 
them very difficult to apply internationally [3]. Therefore, 
models using variables commonly measured in most clin-
ical settings should be developed and validated in mul-
tinational cohorts to ensure good performance in other 
clinical settings.

Here, we aimed to develop a machine learning-based 
real-time prediction model for short-term (24 h) mortal-
ity risk in critically ill patients using only variables readily 
available from electronic health records in most clinical 
settings. We reduced the number of input parameters to 
avoid overfitting and developed an ensemble model that 
uses the collective results of many different model archi-
tectures. We then validated the model’s performance 
using international datasets from Asia, America, and 
Europe. We hypothesized that the performance of the 
real-time model for predicting short-term ICU mortal-
ity using a minimal set of common clinical variables and 
ensemble machine learning techniques would be well 
maintained in international validation.

Methods
Ethical approval
The study protocol was approved by the Institutional 
Review Board (IRB) of Seoul National University Hospi-
tal (SNUH), South Korea with the title “Development of 
a machine learning model to predict major complications 

in ICU-patient” on December 6, 2021 (IRB No. 2111–
140-1275). The IRB waived the requirement for informed 
consent due to the minimal risk of the study. This study 
was conducted in accordance with the Helsinki Declara-
tion of 1975. The Medical Information Mart for Intensive 
Care (MIMIC)-III is publicly available after IRB approval 
by the Beth Israel Deaconess Medical Center in Boston, 
MA, USA (2001-P-001699/14) and the Massachusetts 
Institute of Technology, MA, USA (0403000206) [14]. 
The eICU-Collaborative Research Database (eICU-CRD) 
is publicly available with appropriate IRB approval from 
208 hospitals in the USA [15]. The Amsterdam University 
Medical Center database (AmsterdamUMCdb) is pub-
licly available with the approval of the Amsterdam Uni-
versity Medical Center, the Dutch patient organization 
IC Connect, and the Dutch Foundation of Family and 
Patient-Centered Care.

Study population
Four different cohorts were used in this study: The SNUH 
internal cohort, MIMIC-III, eICU-CRD, and Amster-
damUMCdb datasets. The SNUH internal cohort data 
was collected from the patients admitted to five differ-
ent ICUs at SNUH: the medical ICU (MICU), surgical 
ICU (SICU), coronary care unit (CCU), cardiopulmo-
nary ICU, and emergency ICU between May 2007 and 
October 2021. Relevant data were extracted from elec-
tronic health records using SUPREME 2.0, a clinical 
data warehouse of SNUH. The MIMIC-III, eICU-CRD, 
and AmsterdamUMCdb are open datasets of critically 
ill patients that can be freely accessed after credential-
ing. The MIMIC-III includes data from 53,423 patients 
admitted to the Beth Israel Deaconess Medical Center 
between 2001 and 2012. The eICU-CRD includes 200,859 
stays from 139,367 patients admitted to 335 units at 
208 hospitals in the USA between 2014 and 2015. The 
AmsterdamUMCdb includes 23,106 stays at the Amster-
dam University Medical Center between 2003 and 2016 
(Additional file 1: Fig. E1).

Patients younger than 18, refused life-sustaining treat-
ment, had a “do not resuscitate” order, or had an ICU stay 
longer than 60 days were excluded.

Data collection and preprocessing
An overview of the study process, including data col-
lection, preprocessing, model development, and vali-
dation, is shown in Additional file 1: Fig. E2. A uniform 
preprocessing was employed across all the cohorts. Ini-
tially, diverse cohort datasets were combined into a single 
table, and similar features were grouped. Certain features 
underwent prioritization through manual assignment by 
clinical experts. For instance, invasive and non-invasive 
blood pressures were merged into a unified category, 
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prioritizing invasive blood pressure when both values 
coexisted at the same time. For the other features, the 
average value was used as the representative value when 
multiple values were recorded concurrently.

Samples were generated at each time point where at 
least one variable exists. Therefore, any variables not 
documented at that time point were treated as missing. 
Median imputation was applied when the initial value of 
the admission was missing. Otherwise, a forward-filling 
was applied to replace the missing values. Ultimately, 
standardization of feature values was conducted using 
statistical parameters derived from the training dataset.

A panel of clinical experts selected 30 candidate labo-
ratory results readily collectable from most hospitals 
(Additional file  1: Table  E1). Subsequently, occlusion 
analysis was performed using an LSTM-based model 
[16] with these variables [16]. This approach includes 
evaluating each variable’s impact on the model’s perfor-
mance by setting the values of the variable to zero and 
assessing the model’s performance on the internal tun-
ing dataset. By following the same process for all input 
features, we excluded the variable with the least decrease 
in the area under the receiver operating characteristic 
curve (AUROC) as it has the lowest impact on predic-
tion performance. The process was iteratively repeated 
until an acceptable number of features were retained 
without a substantial drop in performance (decrease in 
AUROC < 0.002).

After feature selection, the final input comprised 
nine vital signs, 16 laboratory results, and age (Addi-
tional file 1: Table E2). Values outside predefined ranges 
were treated as missing data (refer to Additional file  1: 
Table E3). Besides these features, we included three time-
delta features. The vital time-delta feature was defined as 
the time elapsed since the last measurement of any vital 
sign. The laboratory time-delta feature was defined as the 
time elapsed since the last measurement of any labora-
tory result. We also defined an ICU time-delta feature 
that measured the time elapsed since the ICU admission.

Outcome definition
In the internal cohort, the mortality label was assigned 
to each admission based on the death certificates. In 
the other cohorts, we used the in-ICU death label of the 
dataset. For admissions with mortality labels, samples 
were extracted within 24 h before the death. Non-event 
samples were extracted from the entire period of the 
admissions without mortality labels.

Model development
We trained several models with different architectures, 
including the transformer, light GBM, and LSTM-based 
deep learning (DL) models [16]. Particularly, we explored 

various LSTM-based models that integrated convolu-
tional layers, fully connected layers, and LSTM layers. 
The final DL-based model structure was determined by 
exploring the performance of mortality prediction on the 
internal tuning dataset and comprised multiple feature-
wise fully connected layers [17], three LSTM layers, and 
five fully connected layers with rectified linear unit acti-
vation [18].

Hyperparameter optimization was performed for the 
DL-based model via the grid search method. The spe-
cific search space for each hyperparameter and the 
selected values are provided in Additional file 1: Table E4. 
The light GBM model underwent optimization using 
the Tree-Structured Parzen Estimator, an element of 
the Optuna hyperparameter optimization framework 
[19]. Each candidate model underwent individual train-
ing, and diverse ensemble combinations were explored. 
Ultimately, the most proficient ensemble configura-
tion, involving three light GBM models and a DL-based 
model, was identified as the final model. Ensemble inte-
gration entailed averaging the prediction scores of each 
model with equal weight. The transformer model was 
excluded due to relatively low performance.

Several regularization techniques were applied to 
prevent overfitting, including dropout, early stopping, 
contrastive loss as an auxiliary loss, and weight decay 
optimizers, such as AdamW and stochastic gradient 
descent. Specifically, we applied a stochastic weight-
averaging technique to obtain more generalized optima 
[20]. To mitigate the class imbalance issue, we balanced 
the training data by under-sampling the non-event class. 
For each training epoch, the model was exposed to all 
event samples and randomly selected non-event samples, 
of which the number was the multiple of all event sam-
ples. The multiple ratio was one of the hyperparameters 
and optimized. This approach ensured that, over multiple 
epochs, most of the non-event samples underwent the 
training process. Additionally, post-processing tempera-
ture scaling was used to improve the expected calibration 
error (ECE).

Performance evaluation and statistical analysis
We divided our internal cohort into development and 
test datasets. Model development was performed using 
only the development set (Additional file 1: Fig. E1). The 
development set consisted of a training and a tuning 
dataset, which were used to train the parameters and to 
find the optimal hyperparameters, respectively. The test 
dataset was used only for internal validation of the model 
performance.

We used the most recent data for the test dataset in 
the internal validation because we wanted to evaluate the 
model’s performance in a situation that reflects current 
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clinical practice. For this reason, the training dataset 
included data from patients admitted between May 
2007 and December 2018. The tuning dataset included 
data from patients admitted between January 2019 and 

December 2019. The testing dataset included all remain-
ing data, including data from patients admitted between 
January 2020 and October 2021. The rationale for seg-
menting the cohorts by year stemmed from potential 

Fig. 1 The area under the receiver operating characteristic curves for the cohorts. The label “iMORS” denotes our model, while the remaining 
models listed serve as comparisons. A internal validation on SNUH testing dataset B external validation on MIMIC C external validation on eICU‑CRD 
(D) external validation on AmsterdamUMCdb. SNUH Seoul national university hospital, MIMIC Medical information mart for intensive care, eICU-CRD 
eICU collaborative research database, AmsterdamUMCdb Amsterdam university medical center database, SPTTS single‑parameter weighted 
“track and trigger” systems, NEWS national early warning score, MEWS modified early warning score, APACHE acute physiology and chronic 
health evaluation, SAPS simplified acute physiology score, SOFA sequential organ failure assessment, AUROC area under the receiver operating 
characteristic, sen sensitivity, spec specificity
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differences in the distribution of data across seasons and 
was intended to avoid bias due to seasonal trends. The 
delineated data split ensures the inclusion of at least one 
year of data for each dataset. However, the monthly mor-
tality rate showed no specific patterns in Additional file 1: 
Fig. E3.

The AUROC was used to compare the predictive per-
formances of models. The model performance was 
compared with that of the single-parameter weighted 
track and trigger system (SPTTS) [18], Modified Early 
Warning Score (MEWS), National Early Warning Score 
(NEWS), Acute Physiology and Chronic Health Evalua-
tion (APACHE)-II, Simplified Acute Physiology Score 
(SAPS), and Sequential Organ Failure Assessment 
(SOFA) scores. If these scores require time-varying data, 
we used the most recent data available. For example, we 
processed and incorporated real-time values, such as that 
for partial pressure of oxygen and alveolar-arterial oxy-
gen difference, into the APACHE-II model.

The area under the precision-recall curves (AUPRC) 
was calculated as a secondary outcome. The calibration 
analysis was also performed, and the ECE was calcu-
lated to evaluate the models’ calibration. The mean alarm 
count per day (MACPD) was compared among the mod-
els at the same sensitivity level [21]. MACPD was calcu-
lated by dividing the total number of alarms during the 
patient’s ICU stay by the number of days in the ICU and 
then averaging these values across all ICU stays in the 
cohort. To determine the statistical significance of the 
feature values among the four cohorts, we calculated the 
p-value for each feature using the F-test.

Feature importance
The Shapley values were calculated using randomly 
selected 300 patients in the test datasets. To ensure bal-
ance, a one-to-one sampling approach was employed, 
involving the selection of 150 events and 150 non-event 
admissions. We also calculated the change in feature 
importance over time to determine which variables are 
most important to the model’s output over time.

Subgroup analysis
In the subgroup analysis, we categorized each cohort 
into four primary subgroups: ethnicity, ICU type, length 
of stay, and age. The ethnicities were stratified into six 
groups: African American, Asian, Caucasian, Hispanic, 
Native American, and Other/Unknown. ICU types were 
classified into four categories: MICU, SICU, CCU, and 
others. Comprehensive details regarding this classifica-
tion are available in Additional file  1: Table  E5 and Fig. 
E9. Age groups were discretized into intervals of 10 years, 
except for the 18 ~ 39 years age range. The length of stay 
was divided into 8-h intervals for the initial 24 h, followed 

by subsequent intervals of 1, 2, 4, and 8  days. The divi-
sion of intervals for age and length of stay was conducted 
with reference to both the patient count and interval 
characteristics.

Results
Dataset construction
We included 307,907 of the 377,188 eligible ICU admis-
sions from four cohorts in our study (Additional file  1: 
Table E5 and Fig. E1). In the model development phase, 
70,644 non-event and 983 event ICU admissions were 
used, whereas 9,422 non-event and 137 event admis-
sions were used for internal validation. In the external 
validation, we analyzed 42,501 non-event and 1,503 event 
admissions from the MIMIC-III [14], 165,421 non-event 
and 3,663 event admissions from the eICU-CRD [15], 
and 13,279 non-event and 354 event admissions from 
AmsterdamUMCdb (Additional file  1: Fig. E1). Baseline 
characteristics and mean and standard deviation of input 
features are shown in Table  1, according to the cohort 
and event group.

Distribution discrepancy among cohorts
The NEWS was calculated based on vital signs, the 
alert, voice, pain, unresponsive scale, and the use of oxy-
gen supply. NEWS values differed significantly among 
cohorts (Additional file  1: Fig. E4). Except for alanine 
aminotransferase, aspartate aminotransferase, and 
C-reactive protein levels, all input features differed sig-
nificantly (p-values < 0.001) among cohorts (Additional 
file 1: Fig. E5).

Predictive and alarm performance
Our model yielded an AUROC of 0.964 (95% confidence 
interval [CI], 0.963–0.965) in the internal testing dataset 
and 0.890 (95% CI, 0.889–0.891) in the MIMIC-III, 0.886 
(95% CI, 0.885–0.887) in the eICU-CRD, and 0.870 (95% 
CI, 0.868–0.873) in the AmsterdamUMCdb. Notably, 
our model surpassed all other models in both internal 
and external validations, whereas all comparative models 
showed relatively similar performances (Fig. 1, and Addi-
tional file 1: Table E6, and Fig. E6).

In the calibration analysis, our model showed the low-
est ECE in the internal and external cohorts, with an 
internal ECE of 0.146 and external ECEs of 0.205, 0.199, 
and 0.254 for the MIMIC-III, eICU-CRD, and Amster-
damUMCdb, respectively (Additional file  1: Fig. E8). In 
contrast, NEWS ranked second in terms of ECE, with an 
internal ECE of 0.259 and external ECEs of 0.249, 0.197, 
and 0.309 for the MIMIC, eICU-CRD, and Amsterda-
mUMCdb, respectively.
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Regarding alarm performance, the MACPD of our model was 24–28% of that generated by NEWS (Fig. 2, 
and Additional file  1: Table  E7) in the internal testing 

Fig. 2 The mean alarm count per day (MACPD) for the study cohorts. MACPD is determined to indicate the average alarm count per bed every day. 
The MACPD values at NEWS 4, 5, and 6 cutoffs are compared with our model’s cutoff while maintaining the same sensitivity. A internal validation 
on SNUH testing dataset B external validation on MIMIC C external validation on eICU‑CRD D external validation on AmsterdamUMCdb. SNUH Seoul 
national university hospital, MIMIC Medical information mart for intensive care, eICU-CRD eICU collaborative research database, AmsterdamUMCdb 
Amsterdam university medical center database, SPTTS single‑parameter weighted “track and trigger” systems, NEWS national early warning score, 
MEWS modified early warning score
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Table 1 Baseline characteristics of the study total cohorts

The data is represented by the number of samples (%) or the mean and ± standard deviation. The percentage adds up to 100 for both the survival and mortality 
groups within each cohort. All p-values were < 0.001 except for the activated partial thromboplastin time in the mortality group (p = 0.062)

SNUH = Seoul National University Hospital; MIMIC = Mart for Intensive Care; eICU = eICU Collaborative Research Database; Amsterdam = Amsterdam University 
Medical Center database; SBP = systolic blood pressure; DBP = diastolic blood pressure; SpO2 = Saturation of peripheral oxygen; GCS = Glasgow coma scale; 
ALT = Alanine aminotransferase; AST = Aspartate aminotransferase; BUN = Blood urea nitrogen; CRP = C-reactive protein; INR = International normalized ratio; 
WBC = White blood cell; aPTT = Activated partial thromboplastin time

Survival group Mortality group

SNUH MIMIC eICU Amsterdam SNUH MIMIC eICU Amsterdam

Number 
of admissions 
(%)

80,066 (99%) 42,501 (97%) 165,269 (98%) 13,279 (97%) 1,125 (1%) 1,524 (2%) 3,544 (2%) 354 (3%)

Number of sam‑
ples (%)

9,026,225 (95%) 5,943,127 (99%) 15,847,502 
(99%)

904,443 (98%) 113,799 (1%) 62,095 (1%) 149,646 (1%) 16,329 (2%)

Gender (female) 31,033 (39%) 17,894 (42%) 74,602 (45%) 4,442 (33%) 441 (39%) 662 (43%) 1,548 (44%) 121 (34%)

Age (year) 61.8 ± 14.6 62.1 ± 17.0 61.5 ± 16.9 59.4 ± 15.57 61.6 ± 15.7 67.1 ± 16.3 65.6 ± 16.2 63.34 ± 13.92

9 vital signs

Respiratory rate 
(/min)

19.7 ± 6.4 19.9 ± 6.0 19.7 ± 5.9 18.09 ± 6.41 22.6 ± 7.8 22.2 ± 6.9 21.9 ± 6.71 22.58 ± 6.94

Heart rate (/min) 86.4 ± 19.8 86.1 ± 17.6 85.8 ± 18.4 81.82 ± 17.07 96.5 ± 24.5 91.5 ± 19.3 93.3 ± 21.1 92.15 ± 22.77

SBP (mmHg) 125.6 ± 24.7 123.5 ± 23.2 123.6 ± 23.5 126.89 ± 25.06 114.1 ± 27.5 113.3 ± 23.9 113.1 ± 25.1 116.64 ± 30.85

DBP (mmHg) 70.6 ± 13.7 61.6 ± 14.35 64.9 ± 14.9 62.91 ± 12.83 66.0 ± 16.1 57.3 ± 13.8 59.2 ± 15.0 60.64 ± 14.74

Body tempera‑
ture (℃)

36.8 ± 0.7 37.1 ± 0.8 37.0 ± 0.7 36.71 ± 0.86 36.4 ± 1.1 36.9 ± 1.0 36.7 ± 1.3 36.09 ± 1.63

SpO2 (%) 98.2 ± 2.5 97.24 ± 2.7 96.8 ± 2.9 96.93 ± 2.88 95.9 ± 5.8 97.0 ± 3.9 96.2 ± 4.37 95.88 ± 4.21

GCS—eye 3.2 ± 1.1 3.51 ± 0.9 3.6 ± 0.8 3.41 ± 0.93 2.3 ± 1.3 2.8 ± 1.2 2.6 ± 1.3 1.65 ± 1.14

GCS—verbal 4.5 ± 1.0 4.58 ± 1.0 3.8 ± 1.7 4.48 ± 1.14 3.8 ± 1.4 3.7 ± 1.6 2.1 ± 1.6 2.17 ± 1.59

GCS—motor 5.2 ± 1.6 5.46 ± 1.2 5.7 ± 1.0 5.51 ± 1.23 3.6 ± 2.2 4.0 ± 2.0 4.0 ± 2.1 3.06 ± 2.22

16 laboratory 
results

ALT (Units/L) 83.7 ± 220.0 187.0 ± 505.2 118.8 ± 377.6 99.05 ± 279.46 206.1 ± 488.4 313.5 ± 703.9 322.51 ± 718.2 239.26 ± 432.86

AST (Units/L) 90.5 ± 270.9 236.6 ± 759.6 159.0 ± 583.6 136.07 ± 435.77 271.9 ± 720.8 558.8 ± 1371.5 506.9 ± 1234.2 329.59 ± 439.05

Albumin (g/dL) 3.0 ± 0.5 2.9 ± 0.7 2.7 ± 0.7 2.4 ± 0.57 2.8 ± 0.5 2.7 ± 0.7 2.5 ± 0.7 2.21 ± 0.64

BUN (mg/dL) 25.3 ± 18.8 28.8 ± 22.6 27.2 ± 21.3 24.07 ± 18.28 36.2 ± 23.6 42.0 ± 27.2 39.6 ± 26.2 31.41 ± 21.99

Bilirubin (mg/
dL)

2.0 ± 3.3 3.0 ± 5.3 1.5 ± 3.1 0.84 ± 1.36 6.1 ± 8.4 7.1 ± 9.9 3.6 ± 6.4 1.8 ± 3.36

CRP (mg/dL) 7.9 ± 7.6 9.9 ± 8.4 20.1 ± 40.0 8.54 ± 9.22 11.7 ± 8.5 12.4 ± 7.7 21.1 ± 44.5 10.97 ± 9.22

Chloride 
(mmol/L)

104.8 ± 6.4 104.9 ± 6.2 105.0 ± 7.2 107.77 ± 5.06 103.4 ± 8.2 104.5 ± 7.8 105.7 ± 7.9 106.5 ± 6.28

Creatinine (mg/
dL)

1.3 ± 1.36 1.46 ± 1.49 1.48 ± 1.5 1.17 ± 1.16 1.59 ± 1.17 2.0 ± 1.6 2.0 ± 1.5 1.79 ± 1.15

Glucose (mg/
dL)

161.6 ± 62.2 133.0 ± 46.8 147.4 ± 58.8 146.42 ± 42.21 164.1 ± 74.0 142.8 ± 64.5 152.6 ± 65.1 159.66 ± 71.51

Hemoglobin 
(g/dL)

10.5 ± 1.9 10.2 ± 1.7 10.3 ± 2.2 10.87 ± 1.76 9.7 ± 1.9 9.9 ± 1.8 10.1 ± 2.3 10.51 ± 1.92

Prothrombin 
time (INR)

1.3 ± 0.4 1.5 ± 0.7 1.6 ± 0.8 1.39 ± 0.4 1.7 ± 0.8 1.9 ± 1.0 1.9 ± 1.1 1.89 ± 0.96

Platelets  (103/
µL)

167.1 ± 103.3 224.1 ± 138.0 203.5 ± 110.0 194.83 ± 111.73 105.7 ± 83.6 163.6 ± 131.8 150.3 ± 101.6 145.58 ± 129.52

Potassium 
(mmol/L)

4.0 ± 0.6 4.1 ± 0.62 4.0 ± 0.6 4.15 ± 0.47 4.1 ± 0.8 4.3 ± 0.8 4.3 ± 0.9 4.39 ± 0.82

Sodium 
(mmol/L)

138.0 ± 5.7 138.8 ± 5.1 139.0 ± 5.9 139.33 ± 4.43 139.0 ± 8.0 138.8 ± 6.7 140.8 ± 7.3 140.77 ± 6.19

WBC  (103/µL) 11.2 ± 5.9 11.7 ± 6.3 11.8 ± 6.4 13.26 ± 5.45 11.8 ± 8.6 13.83 ± 8.7 15.2 ± 10.2 14.49 ± 8.94

aPTT (sec) 39.4 ± 18.1 42.5 ± 23.9 45.6 ± 26.3 44.04 ± 18.43 52.74 ± 24.47 52.46 ± 29.5 51.9 ± 28.4 78.06 ± 62.36
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dataset. Notably, the MACPD in the external cohorts 
was still 33–83% of the alarms generated by the NEWS.

Feature importance
The top five features included saturation of peripheral 
oxygen  (SpO2), the vital time-delta feature, the Glasgow 
Coma Scale (GCS) motor score, systolic blood pressure, 
and the laboratory time-delta feature (Additional file  1: 
Fig. E7).

Figure 3 shows an analysis of feature importance over 
time. The plot illustrates the top 10 features based on the 
absolute sum of the Shapley values. The  SpO2 value had a 
profound effect as the patients approached death. In con-
trast, in the survival group, most features contributed to 

decreased prediction scores over time. Among them, the 
contribution of the low  SpO2 was significant.

Subgroup analysis
Regarding ethnicity, our model showed similar perfor-
mance trends across groups but with slight variations 
among the Asian (including Korean), Hispanic, and 
Native American groups. Notably, our model achieved 
the highest performance for the Native American group. 
In contrast, the performance for Asians was compara-
tively lower, even though the training dataset was con-
structed in the Asian population (Additional file  1: Fig. 
E9a).

For age and length of ICU stay, the performance trends 
were consistent across the external cohorts, with the 

Fig. 3 The average Shapley values in the internal testing dataset over time. The Shapley values are first averaged by hours for each admission 
and then averaged across all admissions. The black line represents the average prediction score. The average Shapley values are added 
to the prediction score in the figure. A For event admissions, we collected the values 24 h before death. B In the case of normal admissions, we 
gathered the values 24 h before random points to mitigate selective bias
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AUROC decreasing as the length of ICU stay and age 
increased. This suggested that our model performed 
relatively better in predicting outcomes in patients with 
shorter stays and younger ages (Additional file  1: Fig. 
E9c, d). Regarding the ICU type, we grouped the different 
ICU types into four categories: MICU, SICU, CCU, and 
others. Detailed information on this classification is pro-
vided in (Additional file 1: Fig. E10). Our model showed 
significantly better performance for the MICU, except for 
the AmsterdamUMCdb, while achieving a lower perfor-
mance for the CCU than for all ICUs in all cohorts (Addi-
tional file 1: Fig. E9b).

Discussion
In this study, we developed and internationally validated 
a machine learning-based model for real-time mortality 
prediction within 24 h in critically ill patients. Although 
we developed our model based on single-center data, 
using common clinical features and ensemble techniques, 
our model outperformed conventional risk scores in the 
real-time application to the internal and external valida-
tion cohorts. However, the performance slightly declined 
in the external validation.

Previous studies have reported machine learning-based 
mortality prediction models for critically ill patients can 
achieve significantly better predictive performance than 
conventional scoring systems, such as the APACHE II 
or SAPS II [6, 9, 22–25]. However, most models were 
designed to predict mortality at a single time point such 
as 24  h after admission [22, 25], which hardly reflects 
management during the ICU stay. Real-time models have 
been only used during the first 24 h after admission [24], 
with a 1-day interval [23], or for long-term outcomes 
[6]. We developed a model that can be applied hourly, 
intended for real-time monitoring in the ICU, and evalu-
ated its performance.

Previous studies have also reported that the accuracy of 
mortality prediction models declines in the later stages of 
the ICU stay [6, 26]. Despite exhibiting a similar decline 
in performance over time, our model’s AUROC remained 
above 0.82 in both internal and external validations, 
except for the AmsterdamUMCdb (Additional file 1: Fig. 
E9c). This could be interpreted as our model trained to 
predict short-term mortality and optimized for real-time 
performance. In both internal and external datasets, the 
score of our model consistently increased in the mortal-
ity cases as death approached, showing its utility for real-
time monitoring in the ICU (Fig. 2a).

When applying real-time models in clinical practice, 
alarm fatigue is one of the major concerns that can lead to 
the complete inactivation of the alarms [27]. However, at 
a sensitivity level of 0.891, the MACPD of our model was 
2.344, fewer than three alarms per bed per day. Although 

the alarm rate was increased more than twofold in the 
MIMIC-III, threefold in the AmsterdamUMCdb, and 
fourfold in the eICU-CRD, it was still significantly lower 
than that of the NEWS and was fewer than 10 alarms per 
bed per day. We considered this alarm rate acceptable 
and would not increase the risk of alarm fatigue.

Our model included features routinely measured and 
monitored in the ICU, such as heart rate,  SpO2, or GCS, 
including commonly monitored variables that allow our 
model to be easily applied in daily care, without requiring 
specialized laboratory tests or monitoring equipment. 
Moreover, the model explained the predictions for each 
patient at each point in time. As shown in Additional 
file 1: Fig. E7, the Shapley values indicated the impact of 
each input feature on the model output. As the European 
Union’s General Data Protection Regulation took effect 
as a law in April 2018, the interpretability of the algo-
rithmic decision-making model became essential [23]. 
Nevertheless, whether changing the variables based on 
feature importance improves the outcomes requires fur-
ther investigation.

Although our model showed better calibration with 
the lowest ECE compared to other scoring systems, it 
still tended to underestimate the risk of mortality in both 
internal and external cohorts. The low mortality rate in 
the developmental cohort (1%) may be attributed to the 
underestimating model. Other models besides iMORS 
were initially developed to provide early warnings for the 
deterioration of patients in general wards and underes-
timate the risk of mortality [28]. Furthermore, although 
some models, such as APACHE II, were developed to 
suggest the risk of mortality for ICU patients, they pro-
vide an overall risk of mortality rather than short-term 
mortality. Considering that the calibration analysis of the 
cohort with the highest mortality rate, AmsterdamUM-
Cdb, showed the highest ECE for all prediction mod-
els when compared to other datasets, we can speculate 
about the potential underestimation due to differences in 
mortality rate.

Regarding all subgroups of age, sex, ethnicity, insur-
ance, and ICU type in both internal and external cohorts, 
our model showed good performances with an AUROC 
of > 0.85, suggesting the universal applicability of the pre-
diction model for all types of critically ill patients. Inter-
estingly, the AUROC of our model was highest for Native 
Americans in both the MIMIC-III and eICU-CRD and 
lowest for Asians in the eICU-CRD (Additional file 1: Fig. 
E8a). This divergence could be attributed to the limited 
number of Native American patients and possible differ-
ences in the data distribution of the Asian population in 
the eICU-CRD as compared to the Korean cohort used 
for training. Our model showed good predictive ability 
for all types of ICU, with AUROCs > 0.90 in the internal 
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testing dataset and 0.83 in the external cohorts. In both 
internal testing dataset and external cohorts, the AUROC 
was consistently lower for the CCU than for the other 
ICU types except for AmsterdamUMCdb. This can be 
attributed to the distinct features of the CCU, which play 
a role in both the ICU and the post-procedural care unit 
after the cardiac intervention. At SNUH, the CCU plays 
a limited role as an ICU and does not provide specialized 
modalities, such as mechanical ventilators or continuous 
renal replacement therapy. Limited therapeutic options, 
such as the characteristics or severity of the illness, may 
affect the distribution of patients in the CCU.

The applicability of prediction models in clinical prac-
tice is as crucial as predictive performance. As our model 
utilized vital signs and laboratory tests routinely meas-
ured in the ICU, and the input design incorporated real-
time updates with each new value, our model suggests 
the potential for an automated mortality prediction using 
real-time data from electronic health record systems. 
Furthermore, the model’s explainable nature, which iden-
tifies factors contributing to predicted mortality, indi-
cates its potential utility as a clinical decision-support 
tool in clinical practice. Therefore, clinical trials that 
validate the clinical utility of the model are warranted. 
Additionally, improving the model’s performance by uti-
lizing additional input, newer architecture, and more 
data should be considered in future studies.

This study has several limitations. First, we developed 
our model using data from a single tertiary academic 
hospital where the distribution of patients differed from 
that of other institutions. The presence of a specialized 
unit for close monitoring in the general ward, such as a 
“sub-ICU,” might imply an increased severity of illness 
in patients who are admitted to the ICU. Although the 
external validation using the MIMIC-III, eICU-CRD, and 
AmsterdamUMCdb showed that the model had good 
performance, the mortality rate was similar to or even 
higher in the external cohorts. Therefore, the prediction 
model should be applied with caution, and recalibration 
may be required for other cohorts, particularly those 
with lower mortality rates. Second, the predictive perfor-
mance was reduced in the external cohort. As shown in 
Additional file 1: Table E2, there were differences in mor-
tality among the cohorts, while the cohorts from the USA 
(MIMIC and eICU-CRD) are relatively similar. The differ-
ence in the severity of each feature may reduce the mod-
el’s performance. Third, the model’s performance on the 
external cohorts showed a decreasing trend as the ICU 
length of stay was prolonged and patients’ age increased. 
Except for the subgroup of the age 70–79 in the Amster-
damUMCdb, there was a consistent decline in the mod-
el’s predictive performance as patients’ ages increased 
and their ICU stay duration prolonged (Additional file 1: 

Fig. E9c, d). Despite a reduction in performance in high 
mortality risk subgroups, the model demonstrated an 
acceptable AUROC of over 0.8 across all age and ICU 
length of stay subgroups except for the subgroup with an 
ICU length of stay of more than 8  days in the Amster-
damUMCdb. Finally, all the validations in this study 
were conducted retrospectively. Therefore, unavoidable 
bias may occur, and prospective validation is required. 
Whether predicting mortality in ICU can improve out-
comes should also be evaluated in future studies.

Conclusions
In conclusion, we successfully developed a real-time 
ensemble machine learning model to predict short-term 
mortality in the ICU. This model was trained using a sin-
gle-center dataset from South Korea. However, external 
validation using the publicly available MIMIC-III, eICU-
CRD, and AmsterdamUMCdb showed that the model 
performance was reliably maintained across international 
cohorts. If our results are confirmed in future prospec-
tive studies, this model has the potential to serve as a 
useful decision-support tool when monitoring real-time 
risk in ICU patients.
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