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Abstract 

Background Flow starvation is a type of patient‑ventilator asynchrony that occurs when gas delivery does not fully 
meet the patients’ ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually 
identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdi‑
agnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence 
algorithm for identifying airway pressure deformation during square‑flow assisted ventilation and patient‑triggered 
breaths.

Methods Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square‑
flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deforma‑
tion severity. Convolutional neural network and recurrent neural network models were trained and evaluated using 
accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we 
analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation.

Results 6428 breaths from 28 patients were analyzed, 42% were classified as having normal‑mild, 23% moderate, 
and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional 
neural network were 87.9% [87.6–88.3], and 86.8% [86.6–87.4], respectively. Double triggering appeared in 8.8% 
of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated 
that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10  cmH2O and 37.2% a ΔPes > 15 
 cmH2O.
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Conclusions Recurrent neural network model appears excellent to identify airway pressure deformation due to flow 
starvation. It could be used as a real‑time, 24‑h bedside monitoring tool to minimize unrecognized periods of inap‑
propriate patient‑ventilator interaction.

Keywords Airway pressure deformation, Flow starvation, Patient–ventilator interaction, Asynchronies, Artificial 
intelligence algorithms

Background
In critically ill patients under invasive mechanical venti-
lation (IMV) on square-flow assisted ventilation, visual 
inspection of the ventilator waveforms allows the detec-
tion of patient-ventilator asynchronies. During inspi-
ration, the depression or deformation of the airway 
pressure (Paw) waveform from the expected passive pro-
file reflects flow starvation [1]. Flow starvation is a type of 
patient-ventilator asynchrony that occurs when gas deliv-
ery does not fully meet the patients’ ventilatory demand 
due to an insufficient airflow and/or a high inspiratory 
effort [2, 3]. Flow starvation leads to an additional load 
on patients and an elevated energy consumption by the 
respiratory muscles that can cause patient self-inflicted 
lung injury and concentric load-induced diaphragm 
injury [4, 5] due to increased transpulmonary pressures, 
lung strain and stress. Moreover, insufficient airflow pro-
duces dyspnea, particularly air hunger which is the most 
distressing type of dyspnea [6], and could induce harmful 
asynchronies like double triggering [7, 8]. Air hunger and 
dyspnea cause patient discomfort, increase anxiety, often 
leading to higher sedative doses, promoting delirium, and 
increased duration of IMV, intensive care unit (ICU) and 
hospital stay [9, 10].

The identification of abnormal patterns of Paw wave-
form at the bedside by visual inspection of the ventilator 
requires extensive knowledge of respiratory physiology, 
and is limited for short time periods of observation, lead-
ing to massive underdiagnosis [11]. Frequently, these 
anomalous patterns can be managed by adjusting the 
ventilator [12]. Automatic methods to continuously 
identify flow starvation through the identification of 
Paw waveform deformation could warn clinicians to 
modify the ventilator settings to limit discomfort and 
to minimize the development of potentially injurious 
asynchronies.

The aim of this study was to develop a supervised arti-
ficial intelligence (AI) algorithm for continuous identifi-
cation and classification of Paw waveform deformation 
patterns in patient-triggered breaths, on square-flow 
assisted ventilation caused by a mismatch between 
the patient’s ventilatory demands and ventilator’s sup-
port. Additionally, we aimed to explore the association 
between the pattern of Paw deformation and the inspira-
tory effort evaluated by the esophageal pressure (Pes.)

Methods
Design
Ancillary analysis of two prospective cohort studies in 
adult critically ill patients receiving IMV. Patients admit-
ted to the ICU (St. Michael’s Hospital (Toronto, Canada) 
and Parc Taulí Hospital Universitari (Sabadell, Spain) 
receiving IMV > 24 h on square-flow assisted ventilation 
were included. Patients or their surrogate decision-mak-
ers provided informed consent to participate in the study 
collecting waveforms for processing and analysis.

Data collection
The data from St. Michael’s Hospital was part of the 
BEARDS study (NCT03447288) and included ventilator 
waveforms (airflow and Paw) and Pes from the first 7 days 
of IMV [13]. The data from Parc Taulí Hospital Univer-
sitari included ventilatory waveforms (airflow and Paw), 
from IMV patients, continuously recorded using the Bet-
ter Care system (BCLink, Better Care, Sabadell, Spain. 
US patent No. 12/538,940) proceeding from several stud-
ies on patient-ventilator asynchronies (NCT02390024, 
NCT02714751, NCT03451461 and NCT05363332) from 
intubation to IMV liberation [17, 18]. Signals were pre-
processed by MATLAB (The MathWorks, Inc., vR2018b, 
Natick, MA, USA). BEARDS signals were filtered with a 
Butterworth low-pass filter at 15 Hz to remove noise. All 
signals were decimated at a sampling rate of 40 Hz.

Two investigators (LS and VSP) with expertise in sig-
nal processing of ventilator waveforms visually inspected 
the tracings and selected breaths for the analysis. Eligible 
tracings were those: (1) with patient-triggered breaths, 
and (2) on square-flow volume assist-control ventila-
tion. From those tracings, two subgroups of breaths 
were pre-selected. The subgroup 1 without inspiratory 
phase deformation, and the subgroup 2 with variable 
degree of deformation in the inspiratory phase on the Paw 
waveform as compared to normal breaths. Additionally, 
breaths were selected to have a balanced sampling at the 
beginning of IMV, in intermediate period and at the end 
of IMV. Finally, a sample of 6500 breaths of them were 
selected initially, and was estimated post-hoc based on 
the learning curve.

Exploration of the association between the pattern 
of Paw deformation and the inspiratory effort evaluated 
with the  delta of Pes (ΔPes) was performed only in the 
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subgroup of patients of the BEARDS study with esopha-
geal pressure tracings.

Experts’ annotation of Paw deformation severity
The selected ventilator tracings (Paw and flow) were visu-
ally inspected by five ICU senior physicians (LlB, RF, 
GMA, GM, CDH), with extensive clinical experience in 
IMV and management of asynchronies. They classified 
all breaths by identifying the amount of Paw deforma-
tion patterns as compared to a passive insufflation, which 
were stored in an interactive web application specifically 
developed for this purpose (Additional file  1: additional 
details in online data supplement  Figure E1). Paw defor-
mations were classified by the researchers in one of 3 
pattern categories: normal (or with mild deformation), 
moderate deformation and severe deformation (Fig.  1). 
Agreement between researchers about the classification 
of Paw deformation was determined with the majority 
voting method (three of five experts agreement) [14]. In 
case of disagreement between the experts, the breaths 

were re-analyzed by the senior coordinator (LlB) who 
decided whether the breaths were included or not in the 
analysis. Breaths were excluded from analysis when: (1) 2 
of the 5 annotators noted deemed them wrong/confusing 
(i.e., technical issues), and (2) the following annotation 
pattern was present: 2 votes normal-mild, 1 vote moder-
ate and 2 votes severe. The percentage of patients in each 
category can be found in online data supplement.

Double-triggering breaths were identified from the 
tracings (through a validated algorithm in the cohort of 
patients from Parc Taulí Hospital Universitari and visu-
ally in the cohort of patients from St. Michael’s Hospital), 
and were considered as a separate category in order to 
investigate their incidence.

Algorithms for detection of Paw deformation
The expert classification was used for training inde-
pendently two machine learning models for automati-
cally classifying the Paw deformation patterns: recurrent 
neural network and convolutional neural network. The 

Fig. 1 Representative examples of the airway pressure (Paw) deformation patterns classification on the pressure–time waveform. Red arrows show 
the initiation of the patient‑triggered breath. The Paw deformation in the moderate, severe and severe with double triggering tracings is represented 
by a solid black line on the Paw tracings. The asterisk shows the second breath added to the first one in the severe breaths with double triggering 
(breath stacking)
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algorithms’ input data consisted of the inspiratory phase 
of Paw waveforms, which were resampled to 80 samples to 
ensure that all breaths have the same length. The goal was 
to detect  Paw deformation during the inspiratory phase of 
patient-triggered breaths in square-flow volume assist-
control ventilation.

The recurrent neural network algorithm is appropri-
ate for long-sequence applications, since their architec-
ture is designed to predict an output for each element 
[15, 16]. In particular, for time series, the most com-
monly used type is the long short-term memory [17, 18], 
that learns from long-term dependencies. In this study, 
two hidden layers of 128 neurons were used and a fully 
connected layer was added at the end of the long short-
term memory to classify into one of the three categories. 
The convolutional neural network algorithm using a 1D 
convolution (1D convolutional neural network) contains 
convolution kernels/filters that can be interpreted as 
a time series application. These kernels move in a sin-
gle time direction from the beginning of a time series 
toward its end, performing the convolution. One appli-
cation behind the use of multiple filters is the ability to 
learn multiple discriminative features useful for the clas-
sification task [16]. Once the models have learned the dif-
ferent patterns the time required to detect a pattern for 
both algorithms is very similar. Additional information 
on the implemented models can be found in the online 
data supplement (Additional file  1: Figures  E2 and E3). 
Models were implemented using Python (v 3.9.7) with 
the PyTorch (v. 1.11.0) package and run on a desktop 
computer (Windows 10 Pro 64-bit, Intel(R) Core(TM) 
i7-6700 CPU @ 3.40 GHz and 16 GB RAM).

Statistics
Agreement between researchers about the classification 
of Paw deformation was determined as the percentage of 
breaths with agreement (three of five experts) consider-
ing the majority voting method [14] and the Fleiss’ kappa 
coefficient. The recurrent neural network and convo-
lutional neural network models were trained using the 
repeated holdout cross-validation method. The dataset 
was divided into an 80–20 train-validation split, with 
80% of the data used for training and 20% for validation. 
This process was repeated 15 times, with each repetition 
using a different randomly selected subset for validation. 
Subsequently, median values were derived from the out-
comes of each validation step, enhancing a more robust 
estimate of the model’s performance. Performance meas-
ures of AI algorithms (accuracy, recall, F-1 score and 
precision) were used to measure the effectiveness of the 
algorithms (Additional file  1: additional information on 
the online data supplement). To ensure an heterogeneous 
dataset and a good performance of the model, we have 

lumped together the data from both centers. Wilcoxon 
signed-rank test was used to investigate the relationship 
between the patterns of Paw deformation and inspiratory 
time (Ti) and inspiratory peak airflow. Bonferroni correc-
tion (α = 0.05/6 = 0.0083) was considered. We analyzed 
learning curves of applied models to examine sample 
size. Further details, including a comparison of the sam-
ple size to the success rate, can be found in the online 
data supplement (see Additional file 1: Figure E4).

Results
Table  1 shows the patient’s characteristics (data were 
expressed as median [interquartile range]). A total of 
6488 breaths from 28 patients receiving IMV were classi-
fied by experts: 559 from St. Michael’s Hospital and 5929 
from Parc Taulí Hospital Universitari (Fig.  2). Of these, 
in 302 breaths (4.6%) the experts disagree and were re-
analyzed; among these, 60 breaths were finally excluded. 
Therefore, the final dataset included 6428 breaths clas-
sified by experts as follows: 2708 normal-mild (42.1%), 
1535 moderate (23.8%), and 2185 severe Paw deformation 
(33.9%). The inter-expert agreement was 95.4% (Addi-
tional file  1: additional information in the online data 
supplement and Figure E5).

The validation dataset consisted of 1287 breaths includ-
ing 536 normal-mild (41.7%), 309 moderate (24.0%), 
and 442 severe Paw deformation (34.4%). The confu-
sion matrix (Fig.  3) shows the breakdown of the clas-
sification provided by the machine learning classifiers 
compared to the human expert labels for the validation 

Table 1 Patients’ demographic and clinical characteristics at 
admission

Data are represented as median [25th, 75th percentiles] or percentages. 
Definition of abbreviations: APACHE II: Acute Physiology and Chronic Health 
Evaluation. ICU: Intensive care unit. LOS: length of stay. MV: mechanical 
ventilation

Patients’ demographic and clinical characteristics at 
admission

n = 28

Age 63 [57–70]

Female (%) 4 (14%)

Reason for MV, n (%)

Pneumonia 11 (39%)

Sepsis 3 (11%)

COVID-19 10 (36%)

Other causes 4 (14%)

APACHE II at admission 14 [11–23] 

SOFA 7 [5–9.2]

Median duration of MV (range), in days 17 [13–26]

Median ICU–LOS (range), in days 23.5 [16–34.8]

Median hospital–LOS (range), in days 39 [23–63.5]

ICU mortality (%) 5 (18%)
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phase. The recurrent neural network algorithm accu-
rately classified 92% of normal-mild (493/536), 80.6% of 
moderate (249/309), and 90.5% of severe (400/442) Paw 
deformation, and 145 breaths of total validation dataset 
(11.3%) were misclassified. The recurrent neural net-
work algorithm performed very well at the extremes 
(severe vs. normal-mild), as it labeled only one severe 
breath as normal-mild and two normal breaths as severe. 
Overall, the recurrent neural network performance had 
87.9% [87.6–88.3] accuracy, 87.7% [87.5–88.2] precision, 
87.9% [87.6–88.3] recall and 87.7% [87.4–88.1] F1 score. 
The convolutional neural network algorithm accurately 

classified 92% of normal-mild (493/536), 74.4% of moder-
ate (230/309), and 89.6% of severe (396/442) Paw defor-
mation, and 168 breaths (13.1%) were misclassified. 
Again, error between the extremes (severe vs. normal-
mild) were negligible: 2 normal-mild breaths were clas-
sified as severe, and 17 severe breaths were classified 
as normal-mild. Overall, the convolutional neural net-
work performance was 86.8% [86.6–87.4] accuracy, 87% 
[86.7–87.3] precision, 86.8% [86.6–87.4] recall and 86.9% 
[86.6–87.3] F1 score. (Additional file 1: Table E1 in online 
data supplement shows details of performance metrics 
obtained during the training and validation process for 
the 15 times models were trained.)

Median ventilator inspiratory time, peak inspiratory 
airflow, respiratory rate, positive end expiratory pressure 
(PEEP) and expiratory time were similar between the 
breaths corresponding to the 3 groups of Paw deforma-
tion. Tidal volume was lower in the most severe patterns, 
with no statistically significant differences (Additional 
file 1: Figure E6 and Table E2 in the online data supple-
ment). Double triggering was only present in breaths 
with severe Paw deformation (8.8% of breaths with severe 
deformation).

In the secondary analysis of BEARDS patients with 
esophageal pressure measurements ΔPes was > 8  cmH2O 
in 2.4%, 35.4%, and 94.8% of breaths with normal-mild, 
moderate or severe Paw deformation, respectively, 
whereas ΔPes was > 10  cmH2O in 74.4% of breaths with 
severe Paw deformation (Additional file  1: Additional 
information in Table  E3 online data supplement). Fig-
ure 4 shows representative examples of Paw, airflow and 
Pes tracings corresponding to breaths of different severity.

Fig. 2 Flowchart of the breath annotation procedure from ventilator 
tracings

Fig. 3 Confusion matrix for the recurrent neural network (RNN) and convolutional neural network (CNN) validation processes, respectively. The 
implemented models provide a strong performance for normal‑mild and severe patterns. The reported performance metrics are the average 
across the 15 repetitions
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Discussion
The main findings of this study are: (1) AI models can 
detect and classify breath-by-breath Paw deformation 
patterns with high accuracy; (2) breaths classified as hav-
ing severe Paw deformation exhibit stronger inspiratory 
efforts; (3) double triggering only occurs in breaths with 
severe Paw deformation.

A major goal of IMV is to unload the respiratory mus-
cles to avoid exhaustion while avoiding muscle atro-
phy [19, 20]. However, during clinical situations of high 
inspiratory demands or insufficient delivered airflow, 
patients may develop strong inspiratory efforts [21]. This 
may be associated with dyspnea and both patient self-
induced lung injury and myotrauma [22, 23]. In square-
flow volume assist-control ventilation, sometimes the 
patient triggers the ventilator by slightly lowering Paw, 
followed by the mechanical insufflation that intends to 
reduce the work of breathing [20]. The muscular pres-
sure could be estimated by the difference in Paw between 
passive and active circumstances. The greater drop in the 
Paw waveform during insufflation, the greater inspiratory 
effort of the patient [12, 24, 25]. Although the Paw wave-
form can be quickly examined during square-flow volume 

assist-control ventilation to identify a significant defor-
mation [26], underdiagnosis is frequent, either because of 
failure to recognize the deformation or because profes-
sionals can only inspect waveforms for short time periods 
[11].

Convolutional neural network and recurrent neural 
network models have shown the best results on auto-
matically detecting patient-ventilator asynchronies e.g., 
double triggering, ineffective effort, delayed cycling and 
premature cycling [15, 17, 18, 27–30]. Convolutional 
neural network algorithms detected different types of 
patient-ventilator asynchronies with an accuracy rang-
ing from 97 to 99% [15, 17, 18, 27–30] whereas recurrent 
neural networks, in particular long short-term memory, 
performed slightly lower results between 91 and 98.3% 
[15]. In the present study, two different neural networks 
have been implemented, a long short-term memory and 
a 1D convolutional neural network. Convolutional neu-
ral networks are currently considered the most advanced 
models due to their best results in patient-ventilator 
asynchronies detection, but in our study, the recurrent 
neural network model showed similar accuracy. One 
explanation may be that recurrent neural networks are 

Fig. 4 Representative examples of airway pressure (Paw), airflow and esophageal pressure (Pes) tracings during square‑flow assisted control 
ventilation corresponding to normal‑mild breath, moderate breath, severe breath and double triggering, respectively. The esophageal swing 
is represented by solid black lines on the Pes tracings, which increases in relation to the different patterns (the greater the swing, the greater 
the inspiratory effort)
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also suited to handle time-dependent sequences or data 
[15]. These networks use time series information to iden-
tify patterns between input and output. The memory of 
recurrent neural network algorithms allows them to learn 
more about the long-term dependencies of the data and 
understand the full context of the sequence when making 
the next prediction [15, 31].

Currently, the gold standard for the identification and 
quantification of strong inspiratory efforts is the meas-
urement of Pes swing. However, it is not commonly used 
due to its complexity and invasiveness [32–34]. Similarly 
to our study, Telias et al. [34] have recently developed an 
automated algorithm based on Pes measurements that 
accurately generates and quantifies the muscular pressure 
for synchronous and dyssynchronous inspiratory efforts. 
They suggest that those patients with strong efforts 
detected by the algorithm might benefit from Pes moni-
toring. In recent years, several continuous monitoring 
systems that integrate signals in real-time have emerged 
and, through the application of validated algorithms, can 
automatically and continuously identify asynchronies 
[13, 35–38]. In the present study, a high percentage of 
breaths classified as severe exhibit ΔPes > 8 or 10  cmH2O, 
suggesting that Paw deformation is frequently associated 
with strong muscular efforts.

Double triggering was present exclusively in breaths 
with a severe Paw deformation (8.8% of them) [34]. Dou-
ble triggering is one of the most potentially injurious 
patient-ventilator asynchronies in assisted volume-con-
trolled ventilation, due to the high Paw and very high tidal 
volume resulting from the accumulation of two consecu-
tive breaths [39–41]. This can generate higher transpul-
monary and transvascular pressure gradients, increasing 
tissue stress and strain, and resulting in an unequal pres-
sure distribution in lung-dependent areas [42], which can 
favor ventilator-induced lung injury [43, 44]. Among the 
factors associated with the development of double trig-
gering, short ventilator inspiratory time and/or low air-
flow setting have also been recognized as important [41].

Our study make a significant contribution to the field 
of patient-ventilator asynchrony detection. Firstly, it 
introduces an innovative solution for classifying flow 
starvation during square-flow assisted ventilation using 
convolutional neural network and recurrent neural net-
work models. The majority of existing patient-ventilator 
asynchrony algorithms [37, 45] primarily focus on iden-
tifying common forms of asynchronies such as double 
triggering, ineffective effort, and short- and prolonged 
cycling. In contrast to previous studies [27–30] employ-
ing a binary classification for asynchrony classification, 
our work adopts a multiclass approach. This approach 
enables clinicians to differentiate, for instance, between 
moderate and severe degrees of Paw deformation. 

Secondly, our dataset construction strategy, which incor-
porates waveforms from two different medical centers, 
allows us to assess the extrapolation capability of deep 
learning methods. To ensure a balanced representa-
tion and prevent overemphasis on specific patients, the 
number of breaths per patient in each class was capped 
at a maximum of 350 breaths. Additionally, breaths were 
selected to create a balanced sample across the initial, 
intermediate, and final stages of IMV. Thirdly, the archi-
tectural design of our implemented models utilizes a sin-
gle branch corresponding to the inspiratory phase of the 
Paw waveform, with a fixed size of 80 sample points as 
input to the tensor. This results in models of lower com-
plexity compared to other studies [27, 30] that employ 
deep learning approaches for the classification of patient-
ventilator asynchronies. Lastly, our work presents an 
automated algorithm for detecting flow starvation, aim-
ing to improve the underdiagnosis of patient-ventilator 
asynchronies by visual examination of ventilator wave-
forms at the bedside [11, 46]. The AI model could pro-
vide an accurate classification of breaths with severe 
Paw deformation, based on the analysis of Paw waveform. 
Therefore, the continuous assessment of Paw deformation 
by using AI technologies could alert clinicians about the 
presence of excessively high inspiratory efforts or associ-
ated with insufficient airflow.

This study has limitations. First, the deep learn-
ing model was only applied to IMV under square-flow 
assisted ventilation, but it is one of the most widely used 
mode of ventilation [47, 48]. Our AI model stands as an 
initial technological approach that needs further evalua-
tion and implementation with additional data and other 
ventilator modes to enhance its robustness and genera-
bility. Currently the ventilators do not provide alarm sys-
tems to notify the presence of abnormal Paw waveforms 
patterns. From a clinical perspective, computerized sys-
tems are needed to connect and agnostically interoperate 
ventilator waveforms. A continuous analysis of Paw wave-
forms using AI models could potentially be integrated 
into ICU mechanical ventilators or monitoring centers, 
providing valuable support and alert tool for clinicians 
[49–51]. Second, the recurrent neural network and con-
volutional neural network models need to be trained with 
sufficient data [52], and although our sample of about 
6500 breaths may appear small, it has yielded very good 
performance on the training and validation datasets. 
Higher large-scale labeling efforts are costly and time-
consuming, and often require extensive domain knowl-
edge or technical expertise to implement a particular 
medical task, often resulting in large-scale inefficiencies 
in clinical AI workflows. Furthermore, these methods 
can only predict events on which they have been trained, 
which restricts their widespread applicability. Therefore, 
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these label learning methods may not be as powerful in 
environments where access to a diverse set of high-qual-
ity data is limited [53].

Conclusions
Our study shows that AI, in particular recurrent neural 
networks, could be an excellent tool to identify airway 
pressure deformation associated to strong inspiratory 
efforts during square-flow volume assist-control ven-
tilation, allowing to minimize unrecognized periods of 
abnormal and potentially injurious patient-ventilator 
interaction.
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AI  Artificial intellligence
cmH2O  Centimeters of water
ICU  Intensive Care Unit
IMV  Invasive mechanical ventilation
Paw  Airway pressure
PEEP  Positive end expiratory pressure
Pes  Esophageal pressure
Ti  Inspiratory time
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