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Targeting the host response in sepsis: 
current approaches and future evidence
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Abstract 

Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death 
worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may 
develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. 
Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate 
the immune system in sepsis have failed so far to improve patients’ outcome. The underlying reason is likely multi‑
faceted including failure to identify responders to a specific immune intervention and the complex pathophysiology 
of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagu‑
lation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the het‑
erogeneous population of septic patients with consideration of their host response might led to treatments that are 
more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many 
facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.

Keywords Septic shock, Clinical studies, Disease tolerance, Immunomodulation, Immunotherapy, Biomarkers, 
Precision medicine, Immunosuppression, Personalized medicine

Introduction
Sepsis remains a leading cause of death worldwide, 
despite our advances in critical care medicine [1]. First 
immunotherapeutic approaches that aimed at controlling 
the early hyperinflammatory phase were not successful in 
clinical trials. Subsequent deeper insight into the patho-
physiology revealed that systemic hyperinflammation, 

characterized by high levels of circulating pro-inflam-
matory markers such as cytokines or ferritin and the 
concomitant presence of organ dysfunction, does not 
necessarily characterize all sepsis patients. Instead, some 
patients are found to be rather systemically immunosup-
pressed. The common denominator infection-associated 
organ dysfunction can also occur independently of these 
two extremes and local immune responses may vary from 
the blood compartment (Fig. 1) [2, 3]. As a consequence, 
sepsis was redefined as a dysregulated host response to 
infection [4]. In medicine, the field of immunothera-
peutics for other disease has rapidly evolved, leading to 
countless effective treatment strategies, e.g., to control 
tumor growth or limit autoimmunity [5]. As an anal-
ogy, the development of specific adapted therapies tar-
geting the dysregulated host response in sepsis may 
improve the outcome of some of our patients. Potentially, 
it is the heterogeneity of the syndrome and the associ-
ated difficulties in matching the right patient to a given 
treatment that resulted in little success in the clinical 
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setting so far [6]. Here, we provide an overview of current 
approaches to target the many facets of the host response 
and discuss future perspectives in the field of precision 
immunotherapy.

Targeting hyperinflammation
Selective immunomodulators
Tumor necrosis factor
Tumor necrosis factor (TNF) plays a crucial role in the 
systemic inflammatory response, and biologics that 

neutralize TNF are among the most successful drugs 
for the treatment of various chronic inflammatory dis-
eases [7]. However, initial clinical trials targeting TNF 
in sepsis patients yielded disappointing results [8–12]. 
A meta-analysis of 17 randomized controlled trials 
(RCTs) involving more than 8000 septic patients treated 
with anti-TNF showed a small but significant reduc-
tion in 28-day all-cause mortality [13]. Interestingly, in 
a study of 2634 sepsis patients, treatment with the anti-
TNF antibody (Ab) afelimomab resulted in a modest but 

Fig. 1 Model of sepsis‑induced immune responses. This extended model of sepsis‑induced immune responses describes the host inflammatory 
response before, during, and after sepsis. Infection modifies the innate and adaptive immune response for sustained periods of time, even long 
after clinical recovery. The immune response in sepsis is highly personalized and contingent upon the patient’s immune status when infection 
occurs. This status is influenced by various factors including age, comorbidities, environmental elements, and the microbiome. Moreover, each 
patient exhibits a highly intricate combination of genetic variations and epigenetic alterations, rendering their immune system a virtually unique 
selection of genes responsible for cytokines and mediators that regulate immune responses. Excessive inflammation is triggered by the release 
of pro‑inflammatory mediators by various cell types upon detecting pathogen‑associated molecular patterns (PAMPs). Simultaneously, 
the activation of the complement system, the vascular endothelium, and the coagulation system results in microcirculatory disturbances. These 
processes are exacerbated by the release of damage‑associated molecular patterns (DAMPs) as a consequence of tissue damage, the discharge 
of neutrophil extracellular traps (NETosis), and inflammatory cell death (pyroptosis). Immune suppression can develop at various time points 
and is characterized by the secretion of anti‑inflammatory cytokines, the apoptosis of T cells, B cells, and dendritic cells, T cell exhaustion, 
and the proliferation of anti‑inflammatory immune cells like regulatory T cells (Tregs) and myeloid‑derived suppressor cells (MDSCs). Immune 
suppression is further intensified by decreased expression of human leukocyte antigen–antigen D related (HLA‑DR) and heightened expression 
of programmed cell death 1 (PD‑1) and its corresponding ligand (PD‑L1). Post sepsis, the immune response can return to pre‑sepsis status; however, 
many sepsis survivors later succumb to secondary infections, chronic critical illness, post‑sepsis syndrome, and post‑intensive care syndrome (PICS), 
severely impacting quality of life. A persistent sepsis‑induced immune dysfunction can eventually lead to long‑term death
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significant reduction in 28-day mortality if serum IL-6 
levels were > 1000 pg/mL, while patients with lower IL-6 
levels did not benefit from treatment [14]. This suggests 
that a specific subset of patients identified by biomarkers 
may benefit from anti-TNF therapy.

Interleukin‑1 receptor
IL-1 signaling is mediated by the two distinct ligands 
IL-1α and IL-1β, both of which act on the IL-1 recep-
tor (IL-1R) to trigger inflammation [15]. While IL-1 β 
is mainly released by activated immune cells, IL-1α is 
a nearly ubiquitous alarmin released by injured tissue. 
There has long been interest in the deleterious role of 
IL-1R signaling in sepsis, but RCTs did not show a sig-
nificant prolongation of survival [16, 17]. Interestingly, a 
retrospective analysis of 529 sepsis patients found that 
anakinra significantly reduced mortality when base-
line plasma IL-1RA levels were above 2071  pg/mL [18]. 
In a further re-analysis of an multicenter (m)RCT, 763 
patients were re-grouped according to the presence of 
features of macrophage activation syndrome (MAS) in 
the form of disseminated intravascular coagulation (DIC) 
and hepatobiliary dysfunction (HBD) [19]. In this study, 
anakinra was associated with a significant improvement 
in survival of patients with sepsis and concomitant HBD/
DIC. Recently, the mRCT SAVE-MORE has stratified 
coronavirus disease 2019 (COVID-19) patients with mild 
to severe pneumonia according to a soluble urokinase-
type plasminogen activator receptor (suPAR) level ≥ 6 ng/
mL and tested anakinra compared to standard of care 
(SoC) [20]. Anakinra treatment provided higher odds for 
clinical improvement and lowered the 28-day mortality 
from 6.9 to 3.2%. SuPAR and MAS features illustrate the 
biological and clinical consequences of hyperinflamma-
tion such as coagulopathy and tissue damage [21]. The 
results of the above studies therefore suggest that these 
classes of biomarkers may enable more targeted anakinra 
treatment in sepsis.

Interleukin‑6
Interleukin-6 (IL-6) is another important cytokine 
involved in the innate immune response in sepsis [6]. 
IL-6 inhibitors are the approved treatment for the hyper-
inflammatory state of CAR-T cell-induced cytokine 
release syndrome [22]. Recently, IL-6 inhibition has 
been studied in the COVID-19 pandemic with conflict-
ing results. However, two studies pooling data from 
previous trials involving more than 10,000 critically ill 
COVID-19 patients show that IL-6 inhibitor administra-
tion was associated with lower 28-day all-cause mortal-
ity [23, 24]. Although it is currently unclear whether IL-6 
inhibition has similar benefits in other cases of sepsis, a 
recent Mendelian randomization analysis suggests that 

IL-6 receptor blockade was associated with lower mor-
tality in 11,643 patients of the UK Biobank cohort with 
non-COVID-19 sepsis [25]. Overall, these data suggest 
that a mRCT of IL-6 inhibition in sepsis, ideally as part 
of a predictive enrichment approach, should at least be 
considered.

Complement inhibition (anti‑C5a)
The complement system is a key regulator of immunity 
that bridges the innate to the adaptive response, and that 
contributes to opsonization and lysis of invading patho-
gens. The complement cascade can by activated via three 
pathways by invading pathogens and also via, e.g., tis-
sue damage and the associated release of endogenous 
danger molecules (DAMPs) [26]. Normally, the comple-
ment system plays a protective role but can also directly 
contribute to a hyperinflammatory state triggering the 
development of complications like multiple-organ failure. 
Experimental studies have linked hyperinflammation and 
endothelial barrier breakdown with complement activa-
tion and some trials have shown benefits using inhibitory 
strategies in non-human primates and pigs with regard 
to the incidence of organ failure, coagulopathy, and even 
survival [27–30]. A phase IIa mRCT (SCIENS-trial) 
investigated complement inhibition in sepsis using three 
different doses of a monoclonal anti-C5a antibody (vilo-
belimab). This pharmacodynamics/-kinetic study dem-
onstrated efficient inhibition of C5a and some secondary 
efficacy endpoints. The authors reported that patients 
receiving higher dosages of vilobelimab had more inten-
sive care unit (ICU)-, vasopressor-, and ventilator-free 
days [31] (Table 1).

Non‑selective immunomodulators
Corticosteroids
Glucocorticoids have potent anti-inflammatory proper-
ties such as inhibition of innate immune response and 
endothelial activation [32]. Clinical trials of glucocorti-
coids in sepsis yielded controversial results, with some 
showing improved outcomes and others reporting no or 
even adverse effects [33]. Therefore, current guidelines 
contain only a weak recommendation for hydrocortisone 
in septic shock [34]. Recently, however, a clear indication 
for dexamethasone in severe COVID-19 has been estab-
lished, shedding new light on the efficacy of glucocorti-
coids in a homogenous population of critical ill patients 
[35–37]. In addition, recent data, including the CAPE-
COD trial, showed that patients with severe community-
acquired pneumonia who received hydrocortisone had a 
lower mortality rate [38, 39]. These promising data from 
specific patient populations may also lead to a renais-
sance of glucocorticoid therapy in the context of sub-
grouping sepsis patients [37].
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Vitamin C
Vitamin C is an antioxidant with pleiotropic anti-
inflammatory activity that is depleted in response to 
oxidative stress, which is one reason to investigate the 
effect of vitamin C, either alone or in random combi-
nations with hydrocortisone and thiamine [20]. While 
initial studies suggested improved outcomes in sep-
sis [6], further studies could not confirm a beneficial 
effect. The CITRIS-ALI RCT showed that vitamin C 
did not significantly improve organ dysfunction scores 
or inflammatory markers in patients with sepsis and 
ARDS [40]. Similarly, the VITAMINS trial, which 
examined the use of vitamin C in septic shock, found 
no significant improvement in survival without vaso-
pressor administration for 7 days [41]. The LOVIT trial, 
an RCT including patients with septic shock, found that 
vitamin C therapy increased the risk of a composite end 
point-death or persistent organ dysfunction at day 28 
[42]. Yet, recent meta-analyses found an improvement 
in delta—sequential organ failure assessment (delta-
SOFA) score and a reduction in the duration of vaso-
pressor use, whereas short-term mortality was not 
affected [43, 44]. Because the role of vitamin C in sepsis 
remains uncertain, it should only be used in the context 
of RCTs. Such studies are underway and may provide 
more insight into optimal dosing and treatment dura-
tion, as well as the patient population that will benefit 
most from vitamin C therapy (Table 1).

Antibiotics with anti‑inflammatory properties
In addition to their antibacterial action, tetracyclines 
and macrolides in particular exert pleiotropic immu-
nomodulatory effects that may be able to limit the 
hyperinflammatory response in patients with sepsis. In 
experimental sepsis, tetracyclines limit the inflamma-
some-caspase-1 pathway and promote disease toler-
ance to infection [45–48]. In a RCT of 231 dengue fever 
patients, treatment with doxycycline was associated 
with lower mortality, which correlated positively with 
lower levels of pro-inflammatory cytokines [49].

Recent studies using macrolides in acute respira-
tory distress syndrome (ARDS) patients have shown a 
survival benefit and shorter time to successful discon-
tinuation of mechanical ventilation [50]. An mRCT 
found no effect of clarithromycin on mortality in sep-
sis patients with respiratory and multiple-organ dys-
function [51] (Table  1). However, clarithromycin was 
associated with a lower recurrence of sepsis, a signifi-
cant increase in monocyte human leukocyte antigen-
DR isotype (HLA-DR) expression, and an expansion of 
monocytes, suggesting a possible role for macrolides in 
immune recovery [51].

(Activated) protein C and thrombomodulin
A controlled interaction between the endothelium, the 
immune, and the coagulation system is a conserved and 
physiologically required process. Nevertheless, in dys-
regulated settings it can spark systemic microvascular 
clotting, often referred to as immunothrombosis [52]. In 
sepsis, these phenomena can contribute to disseminated 
intravascular coagulation (DIC), thus further damaging 
tissues and organs opening potential avenues for thera-
peutic targets [6]. Yet, anticoagulants like heparin and 
P2Y12 inhibitors show only variable benefits accompa-
nied by high bleeding risks [53].

Activated protein C (APC) is a naturally occurring 
anticoagulant that when given as the recombinant form 
(Xigris [drotrecogin alfa]) inhibits and reduces the 
expression of tissue factor; it was the first biologic spe-
cific agent to be approved for the treatment of severe 
sepsis and septic shock based on the PROWESS trial 
that showed a reduction in 28-day mortality [54]. These 
results could not be replicated in subsequent trials, ulti-
mately leading to the withdrawal of APC in 2011 from 
the market [55, 56].

More recently, the focus has been on recombinant 
thrombomodulin (ART-123), which promotes protein C 
activation and has additional anti-inflammatory prop-
erties [57]. However, treatment with ART-123 did not 
improve survival in three RCTs [58–60]. A recent meta-
analysis of these trials found that ART-123 reduced 
28-day mortality only in a subgroup of patients with evi-
dence of sepsis-associated coagulopathy [61].

Bioactive adrenomedullin
The response of the endothelium to inflammatory stimuli 
is per se an evolutionary-derived protective mechanism 
to control infections. Any of its physiological func-
tion can be affected [62]. As a net result, the quiescent 
“healthy” endothelium changes toward a procoagulant, 
pro-adhesive, pro-inflammatory, and hyper-permeable 
phenotype together with a macrovascular vasoplegia 
(Fig. 2). All these alterations are part of a complex physi-
ological response to an infection, but the simultaneous 
and systemic occurrence can have fatal consequences.

Among all endothelial alterations, systemic capillary 
leakage is a particularly relevant player in the pathophysi-
ology of septic multiple-organ failure. The molecular 
mechanisms involved in the formation of gaps between 
adjacent endothelial cells (EC) are tightly controlled by 
a variety of proteins that might serve as therapeutic tar-
gets. As an example, bioactive adrenomedullin (bioADM) 
is a small molecule with differential functions dependent 
on both its localization (intra-/ or extravascular) and the 
target cell (EC or vascular smooth muscle cells (VSMC)). 
Intravascular bioADM has protective anti-permeability 
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effects. However, if it is localized outside the vasculature 
this protection is lost triggering increased permeability. 
Simultaneously, extravascular bioADM promotes VSMC 
relaxation thereby aggravating hypotension and shock. 
Adrecizumab is a non-functional antibody to bioADM. 
Ligation increases its size thereby losing the capability to 
migrate to the interstitial space but maintaining its ben-
eficial barrier protective effects. A recent feasibility RCT 
(AdrenOSS-2) confirmed not only safety of the substance 
but also some promising signals with regard to secondary 
efficacy endpoints [63, 64] (Table 1).

Extracorporeal blood purification
The field of extracorporeal strategies to modulate the 
host response has been growing over the last decade. 
Focusing on adsorptive technologies, it has been postu-
lated that the removal of pro-inflammatory mediators 
during early and severe septic shock might be beneficial. 
Numerous uncontrolled reports support this notion, but 
evidence from controlled trial is sparse. Besides a few 
negative trials and trials that even indicated potential 
harm [65, 66], a 2023 meta-analysis including RCTs and 
propensity matched analysis did not show any benefit 

Fig. 2 Vascular endothelial dysfunction in the pathogenesis of septic organ injury. The vascular endothelium plays a crucial role in inflammation, 
immunothrombosis, and vascular barrier integrity. During sepsis, the activation of a highly complex inflammatory cascade by pathogen‑associated 
molecular patterns (PAMPs) and damage‑associated molecular patterns (DAMPs) triggers the production of pro‑inflammatory, proapoptotic, 
and procoagulant mediators by both immune cells and vascular endothelial cells (ECs). Toll‑like receptor (TLR) signaling causes nuclear 
translocation of transcription factor NF‑kb, leading to a deleterious cytokine release syndrome. The luminal surface of the vascular endothelium 
is lined by the endothelial glycocalyx (eGC), a gel‑like carbohydrate‑rich structure. In sepsis, heparanase‑1 (HPA‑1) activity is upregulated inducing 
degradation of the eGC. Glycocalyx shedding exposes embedded adhesion molecules such as intracellular adhesion molecule‑1 (ICAM‑1) 
and vascular adhesion molecule‑1 (VCAM‑1) which both enable leukocyte rolling, adhesion, and transmigration. Loss of the eGC, junctional 
disassembly, and EC apoptosis result in capillary barrier dysfunction, increased permeability, and interstitial tissue edema. Besides amplifying 
the inflammatory host response, ECs also promote a prothrombotic state leading to microvascular clotting and frequently disseminated 
intravascular coagulation (DIC). A lack of cleavage of von Willebrand factor (VWF) due to reduced levels of a disintegrin and metalloproteinase 
with a thrombospondin type 1 motif, member 13 (ADAMTS13) contributes to the accumulation of ultra‑large VWF (ULVWF) multimers facilitating 
platelet adhesion to injured endothelium. The upregulation of tissue factor which initiates extrinsic coagulation and plasminogen activator inhibitor 
1 (PAI‑1), the main inhibitor of fibrinolysis, further augments the process of sepsis‑induced immunothrombosis
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but also no harm with regard to mortality [67]. Thera-
peutic plasma exchange (TPE) has shown some promis-
ing results in removing injurious and replacing protective 
but consumed proteins thereby rebalancing hemostasis 
in septic shock [68–70]. This approach does not only 
address the immune response but also targets the well 
establish link to coagulopathy and vascular barrier break-
down. Two examples are the von Willebrand (VWF) sys-
tem and the endothelial glycocalyx (eGc).

First, to avoid microangiopathic obstruction of the 
microcirculation, systemically released VWF is enzy-
matically cleaved by a disintegrin and metalloprotein-
ase with a thrombospondin type 1 motif, member 13 
(ADAMTS13). During septic shock, this process con-
sumes ADAMTS13 aggravating microvascular clotting 
and consequently organ malperfusion. Second, the eGC 
is a gel-like layer that mostly consists of sugars such as 
proteoglycans and glycosaminoglycans that regulates 
inflammation, permeability, and coagulation. In sepsis, 
a distinct regulation of counteracting enzymes (i.e., hep-
aranases) can lead to massive degradation of the eGC 
[71].

TPE can rebalance these disequilibria by remov-
ing VWF and heparanase-1 and by replacing protective 
ADAMTS13 and heparanase-2 [72]. Two meta-analysis 
even suggests a potential survival benefit triggering large 
mRCTs in both Europe (EXCHANGE-2, NCT05726825) 
and Canada (PLEXSIS, NCT05093075) that are about to 
start soon [73, 74] (Table 1).

Immune augmentation strategies
Immunostimulatory cytokines and growth factors
Granulocyte–macrophage colony‑stimulating factor
Granulocyte–macrophage colony-stimulating factor 
(GM-CSF), a hematopoietic growth factor, restores HLA-
DR expression on monocytes [75]. In sepsis patients 
with decreased monocytic HLA-DR, an mRCT dem-
onstrated GM-CSF reduced the need for mechanical 
ventilation and increased TLR2/4-induced cytokines 
[76]. A meta-analysis found improved infection resolu-
tion, but no associated mortality benefit [77]. In a recent 
mRCT assessing HLA-DR-guided GM-CSF therapy’s 
impact on ICU-acquired infection in immunosuppressed 
septic patients, no differences were observed in ICU-
acquired infection or 28-day mortality [78]. The study 
ended prematurely after enrolling 98 of 166 planned 
patients, limiting conclusive findings. Comprehensive 
immunophenotyping beyond monocyte HLA-DR may 
be needed for better predictive enrichment. In light 
of this approach, a recent RCT in children with sep-
sis defined immunoparalysis treated with GM-CSF as 
an LPS-induced TNF production capacity < 200  pg/mL 
(NCT05266001) (Table 2).

Interferon gamma
Interferon gamma (IFNγ) activates macrophages, NK 
cells, and neutrophils, bolstering immune responses 
against pathogens [79]. In septic patients, low IFNγ-
secretion is linked to secondary infection or death, 
while IFNγ-treatment increases HLA-DR expression 
and production of pro-inflammatory cytokines [80–83]. 
An mRCT on IFNγ for sepsis-related immune paralysis 
ended early due to slow enrollment (< 30% CD14 mono-
cytes with HLA-DR) [84]. Another mRCT uses a cutoff of 
< 5000 HLA-DR receptors per CD14 monocyte for sep-
tic immunosuppression treatment [85] (Table  2). How-
ever, high IFNγ levels in early sepsis are associated with 
secondary candida infection, suggesting its role as an 
immunosuppressive mediator [86]. These negative effects 
might contribute to the early termination of another RCT 
to prevent hospital-acquired pneumonia in a heteroge-
neous group of patients, highlighting the need to stratify 
septic patients for IFNγ use in an immunosuppressive 
subphenotype [87].

Thymosin alpha 1
Thymosin alpha 1 (TA1) is a peptide synthesized pri-
marily in the thymus gland and has long been known to 
modulate, enhance, and restore immune function. TA1 
activates TLR2 and -9 in myeloid and dendritic cells, pro-
moting adaptive responses and CD4+/CD8+ T cell mat-
uration [88]. An mRCT with 367 septic patients showed 
increased monocyte HLA-DR expression and a trend 
toward improved survival (p = 0.06) in patients receiv-
ing TA1 [89]. A meta-analysis of 12 trials revealed lower 
sepsis mortality, but caution is needed due to individual 
study quality and size [90]. A large mRCT involving 1106 
patients was recently completed. Its results may provide 
further insight into the therapeutic effect of TA1 in sepsis 
(NCT02867267 and NCT04901104, Table 2).

Immunoglobulins
Intravenous immunoglobulins (IVIg) are used to neu-
tralize microbes, reduce apoptosis of immune cells, 
limit inflammation, and mediate phagocytosis by mac-
rophages. In septic patients, studies have demonstrated 
correlations between survival probability and concen-
trations of IgG, IgM, and IgA [91, 92]. RCTs on IVIg 
treatment in sepsis showed conflicting outcomes. Meta-
analyses indicated reduced mortality with IVIg and IgM-
enriched IVIg (IVIgM) [93, 94]. However, due to study 
quality variations, dosing differences, and control meas-
ures, evidence quality is low. Current guidelines advise 
against IVIg use in sepsis [34]. A large RCT is currently 
underway to investigate the effect of IVIgM therapy in 
sepsis patients (NCT03334006) (Table  2). This trial is 
monitoring several biomarkers, including Igs, cytokines, 
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and cellular HLA-DR expression, to determine which 
subgroup of patients (those with hyperinflammation or 
immunosuppression) may benefit from IVIgM treatment.

Mesenchymal stem cells
Multipotent mesenchymal stem cells (MSCs) hold prom-
ise for sepsis immunotherapy due to their immunomodu-
latory, antimicrobial, regenerative, and anti-apoptotic 
properties. In preclinical models, MSC application rebal-
ances inflammation by suppressing pro-inflammatory 
cytokines and enhancing anti-inflammatory mediators 
[95, 96]. MSCs restore organ structure and function, 
including kidneys and liver, and boost phagocytic activ-
ity of monocytes against gram-negative sepsis [97, 98]. 
Meta-analyses indicate lower sepsis mortality with MSC 
therapy in animal models [99, 100]. Phase I trials on sep-
tic shock patients and COVID-19 ARDS cases showed 
MSCs’ safety and limited adverse events [101–103]. Sev-
eral ongoing phase I and II sepsis trials (NCT03369275, 
NCT02883803, NCT04961658) will provide more 
insights into MSC therapy’s safety and efficacy (Table 2).

Immune checkpoint inhibitors
Immune checkpoint receptors are important immune 
modulators that are critical for self-tolerance and regu-
lation of ongoing immune responses. Several checkpoint 
receptors including programmed cell death protein 1 
(PD-1), B and T lymphocyte attenuator (BTLA), and 
lymphocyte activation gene 3 (LAG-3), along with their 
respective ligands such as PD-L1, are upregulated on 
leukocytes during sepsis [104]. PD-1/PD-L1 upregula-
tion on CD4+ lymphocytes and plasmacytoid dendritic 
cells is seen in sepsis-related immunosuppression [105]. 
Increased BTLA and PD-1 expression on CD4+ lympho-
cytes links to secondary infections, prolonged ICU stays, 
and higher mortality [106, 107]. Targeting PD-1/PD-L1 
in preclinical studies counters apoptosis, restores cell 
function, and improves survival [108–110]. Ex vivo inhi-
bition of the PD-1/PD-L1 pathway reduced apoptosis, 
improved immune cell function, and increased cytokine 
production in leukocytes from septic patients [111, 112]. 
In a case study of an immunocompromised patient with 
refractory fungal sepsis, it was observed that combined 
administration of anti-PD-1 antibody and IFNγ resulted 
in an increase in lymphocyte count and enhanced expres-
sion of monocytic HLA-DR [113]. The PD-1 inhibitor 
nivolumab was shown to be well tolerated in two-phase 
I trials conducted in immunocompromised patients with 
sepsis [114, 115] (Table 2). In these two trials, nivolumab 
also appeared to improve immune function by increasing 
monocytic HLA-DR expression and lymphocyte counts.

Personalized immunotherapy
The heterogeneity of sepsis, spanning from its broad defi-
nition to the conundrum surrounding its pathophysiolog-
ical inception and development, has hindered successful 
immunomodulatory therapies. Traditional subgrouping 
based on single traits or biomarkers falls short. Advances 
in computing and data have enabled investigating this 
diversity to find patient subgroups (subphenotypes) with 
shared characteristics, biological mechanisms, and treat-
ment responses (Fig.  3). Modern subphenotyping relies 
on unsupervised clustering algorithms such as k-means 
clustering or the very prominently used latent class 
analysis. Briefly, these algorithms identify data clusters 
in multi-dimensional space to infer different subpheno-
types based on these clusters, but can be influenced by 
cohort biases and data collection. The sepsis subpheno-
types identified to date can be subdivided into two main 
groups:

Clinical subphenotypes
Several studies have undergone efforts to identify clini-
cal subendotypes. An example is Seymour and colleagues 
seminal work, identifying α, β, γ, and δ phenotypes via 
k-means clustering [116]. α had least organ dysfunction; 
β was older with comorbidities; γ and δ showed inflam-
mation, with δ having higher lactate and vasoplegia. 
Mortality ranged from 2% (α) to 32% (δ), affecting inter-
vention outcomes due to varied subphenotypes in trials. 
Similarly, Kudo et al. described four coagulopathy-based 
sepsis phenotypes, responding differently to recombi-
nant human thrombomodulin [117]. Other studies inves-
tigated subphenotype-specific treatment responses in 
fluid resuscitation, antibiotic delay, temperature trajec-
tories, progression to septic shock, and hemodynamics 
[118–122].

Biological subphenotypes
This field covers protein-based biomarkers, proteomics, 
immune-phenotyping, transcriptomics, and metabo-
lomics. Three subphenotypes based on whole-blood RNA 
patterns showed variations in glucocorticoid signaling, 
immunity, and zinc balance, linked to disease severity and 
mortality [123]. A multiplex messenger RNA quantifica-
tion platform was developed, revealing distinct responses 
to glucocorticoid therapy [124, 125]. Davenport et  al. 
identified two sepsis response signatures (SRS) from 
blood leucocyte transcriptomic clustering [126]. SRS1 
subphenotype linked to higher mortality, while SRS2 
showed endotoxin tolerance and T cell exhaustion, asso-
ciating with HLA class II downregulation. In VANISH 
trial analysis, SRS2 had increased mortality with hydro-
cortisone therapy [127]. Other subphenotypes include 
molecular diagnosis and risk stratification for sepsis 
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(MARS) subphenotypes from genome-wide mRNA clus-
tering and “inflammopathic,” “adaptive,” and “coagulo-
pathic subphenotypes from pooled transcriptomic data 
[128, 129]. Alternative sepsis subphenotyping methods 
involve flow cytometry-based immunophenotyping and 

combined transcriptomic, proteomic, and metabolomic 
data [130, 131]. The PROVIDE trial recently investigated 
whether a hyperinflammatory subphenotype (identified 
by serum ferritin > 4420  ng/mL) benefits from anakinra 
treatment and immunoparalyzed individuals (identified 

Fig. 3 Overview of the potential research pathway leading from data to the identification of functional endotypes. First, clinical and biological 
data have to be collected in the framework of observational cohorts or randomized controlled trials. Critical relevance lies in the collection 
of samples that allow the implementation of high‑throughput biological analyses in a second step. Optimally data from multiple databases are 
bundled in order to allow a robust subphenotype discovery. In a third step, data are fed into an unsupervised machine learning pipeline, which 
hopefully identifies clusters of patients in the given multi‑dimensional variable constellation. These clusters or subphenotypes have then to be 
validated in an external prospective cohort, and optimally, a parsimonious model is then elaborated that allows identification of subphenotypes 
at the bedside with a minimal number of variables. Finally, and as the ultimate goal of phenotyping, a biological correlate or ideally, a treatable 
trait, is identified for each subphenotype, which can be targeted by means of a specific medication, leading to the transition from a subphenotype 
to a functional endotype
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by < 5000 HLA-DR/monocytes) benefit from rhIFNy 
administration [84]. However, the 36 hyperinflammatory 
patients randomized to receive IL-1Ra or placebo before 
premature discontinuation of the study showed no dif-
ference in 28-day mortality. A follow-up study called the 
ImmunoSep trial with an expanded therapeutic window 
for the treatment of hyperinflammation by anakinra is 
currently recruiting [85].

Summary and future perspectives
The sepsis syndrome arises from a complex dysregulation 
in the host’s response to pathogens (Fig.  1). Immuno-
therapeutics demonstrated promising preclinical efficacy, 
yet clinical applicability struggles due a lack of in depth 
knowledge and efficient monitoring tools to individual-
ize specific targeted treatment strategies [6]. Recogniz-
ing sepsis’s heterogeneity as a key factor, initial distinct 
response phenotypes have been identified using both 
biomarkers and clinical data (Fig. 2) [116] showing their 
potential in post hoc subanalyses of prior negative RCTs 
pinpointing certain phenotypes potentially benefiting 
from immunotherapy [19, 116, 127]. The first prospective 
RCTs using biomarkers for such predictive enrichment 
are on the way [84, 85]. Granularity might be further 
raised by zooming-in on the “-omics” level describing so-
called sepsis endotypes. Obviously complicated by prac-
tical implementation issues where new biomarkers that 
can be used in the ICU would be highly desirable (ideally 
by Point-of-Care devices). We have no doubts that iden-
tification of treatable traits through “-omics” technolo-
gies will improve our chances of a successful therapeutic 
immune modulation. Computational tools like artificial 
intelligence and machine learning approaches will lev-
erage extensive clinical and immune data helping us to 
uncover such new treatable traits [132].

The role of the microbiome and host metabolism in 
shaping the response to infection is poorly understood. 
Understanding patients’ immunologic and metabolic sta-
tus pre-sepsis can reveal risk factors and immune balance 
targets. Sepsis is highly dynamic, and tracking immune 
changes remains challenging for tailored treatment. 
Longitudinal immune parameter recording, including 
biomarkers and cell responsiveness, will aid flexible treat-
ment paths guiding the immune system toward optimal 
state [133].

It is important to acknowledge that many therapeutic 
concepts oversimplify sepsis by focusing solely on sys-
temic inflammation somewhat neglecting that organ dys-
function is the common denominator that determines 
the transition from an uncomplicated infection to sep-
sis. These failing organs become dysfunctional [134] as 
a consequence of an insufficient tissue damage control 
response and mismatch of energy demands and supplies 

[135, 136]. Mechanisms behind disease progression 
to sepsis are unclear, but protective cellular responses 
to stress signals, called disease tolerance to infection, 
reduce infection-associated consequences [137]. Serum 
metabolome and proteome integration in humans sup-
ports the hypothesis of a dysregulated metabolism [138]. 
It is of surprise that little work has been done to directly 
target the organ dysfunction apart from the (upstream) 
immune response. A first clinical phase II study that 
investigates repurposing epirubicin to improve tissue 
damage control is currently recruiting patients (EPOS-
1; NCT05033808) [139]). Further potential molecular 
metabolic targets such as lactate, glutamine, pyruvate, or 
ketone bodies have been identified in translational stud-
ies, but remain to be tested in a personalized manner in 
clinical trials [140–143].

In our opinion, the current separation between hyper-
inflammation and immunosuppression is not sufficient 
to stratify all septic patients for immunomodulatory 
approaches. We need to find better ways to investigate 
their host responses that are physiologically not sepa-
rated but rather closely linked to one another. In addi-
tion to that, we need to seek a better understanding of 
organ dysfunction in the large group of patients without 
these extreme immune-dysregulations [84, 144]. Recent 
advances to personalize and monitor therapies should 
allow us to modulate immunity and improve disease tol-
erance of the individual septic patient.
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