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Abstract 

Background In the acute distress respiratory syndrome (ARDS), specific lung regions can be exposed to excessive 
strain due to heterogeneous disease, gravity-dependent lung collapse and injurious mechanical ventilation. Com-
puted tomography (CT) is the gold standard for regional strain assessment. An alternative tool could be the electrical 
impedance tomography (EIT). We aimed to determine whether EIT-based methods can predict the dynamic relative 
regional strain (DRRS) between two levels of end-expiratory pressure (PEEP) in gravity-non-dependent and depend-
ent lung regions.

Methods Fourteen ARDS patients underwent CT and EIT acquisitions (at end-inspiratory and end-expiratory) at two 
levels of PEEP: a low-PEEP based on ARDS-net strategy and a high-PEEP titrated according to EIT. Three EIT-based 
methods for DRRS were compared to relative CT-based strain: (1) the change of the ratio between EIT ventilation 
and end-expiratory lung impedance in arbitrary units ([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/EELIAU high-PEEP]), (2) 
the change of ΔZ/EELI ratio calibrated to mL ([ΔZml low-PEEP/EELIml low-PEEP]/[ΔZml high-PEEP/EELIml high-PEEP]) using CT data, 
and (3) the relative change of ∆ZAU (∆ZAU low-PEEP/∆ZAU high-PEEP). We performed linear regressions analysis and calculated 
bias and limits of agreement to assess the performance of DRRS by EIT in comparison with CT.

Results The DRRS assessed by (ΔZml low-PEEP/EELIml low-PEEP)/(ΔZml high-PEEP/EELIml high-PEEP) and ∆ZAU low-PEEP/∆ZAU high-PEEP 
showed good relationship and agreement with the CT method (R2 of 0.9050 and 0.8679, respectively, in non-depend-
ent region; R2 of 0.8373 and 0.6588, respectively, in dependent region; biases ranging from − 0.11 to 0.51 and limits 
of agreement ranging from − 0.73 to 1.16 for both methods and lung regions). Conversely, DRRS based on  EELIAU 
([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/EELIAU high-PEEP]) exhibited a weak negative relationship and poor agree-
ment with the CT method for both non-dependent and dependent regions (R2 ~ 0.3; bias of 3.11 and 2.08, and limits 
of agreement of − 2.13 to 8.34 and from − 1.49 to 5.64, respectively).

Conclusion Changes in DRRS during a PEEP trial in ARDS patients could be monitored using EIT, based on changes 
in ΔZmL/EELIml and ∆ZAU. The relative change ∆ZAU offers the advantage of not requiring CT data for calibration.
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Introduction
Dynamic lung strain refers to the deformation of the pul-
monary parenchyma during tidal ventilation  (VT) relative 
to the end-expiratory lung volume (EELV) [1, 2]. Specific 
lung regions can be exposed to excessive strain due to 
heterogeneous disease, gravity-dependent lung collapse, 
and injurious mechanical ventilation. This excessive 
regional strain correlates with worsening local inflam-
mation in acute respiratory distress syndrome (ARDS) 
[2–4].

The gold-standard method to assess regional strain is 
computed tomography (CT). However, this is a time-
consuming procedure that exposes the patient to X-ray 
radiation [5]. As an alternative, electrical impedance 
tomography (EIT), a bedside radiation-free method, 
has been proposed for assessing regional strain [6]. In a 
proof-of-concept study, our group demonstrated a strong 
association between changes in strain measured by CT 
and changes in electrical impedance (ΔZ) at two levels of 
positive end-expiratory pressure (PEEP) [7].

A novel method of EIT-based strain was proposed by 
Gogniat et al. [6] calculating the relative change in lung 
strain at two levels of PEEP by dividing ΔZ by end-expir-
atory lung impedance (EELI), a surrogate of EELV. This 
approach is compelling as it shares similarities with the 
classical CT-based strain method. However, caution is 
warranted in utilizing EELI in arbitrary units (A.U., the 
standard EIT unit), which may provide inaccurate meas-
urements of strain due to “arbitrariness” of the absolute 
value at the end of expiration, such as the possibility of 
values close to zero or even negative (producing a non-
physiological strain). In addition, a validation study com-
paring the change of regional strain measured by CT and 
EIT is lacking.

Therefore, we aimed to determine whether EIT-based 
methods, including the recent ΔZ/EELI approach in 
A.U., can predict changes in dynamic regional strain 
between two levels of PEEP measured by CT in gravity-
non-dependent and dependent lung regions in ARDS 
patients.

Methods
This study involved mechanically ventilated patients with 
ARDS under deep sedation and neuromuscular blockade 
on volume-controlled ventilation (VCV) with  VT of 6 ml/
kg of predicted body weight. The study was approved by 
the Ethics Committee of Hospital Clínico Universidad de 
Chile (N.027/2016). Dynamic strain was assessed in grav-
ity-non-dependent and dependent lung regions using 

whole-lung low radiation CT [7] and EIT (Enlight 1800, 
Timpel Medical, Brazil) simultaneously. These regions-
of-interest were selected due to physiological relevance 
[8] and simple clinical applicability. Part of the CT and 
EIT data used in this study were obtained from a previ-
ous investigation [7]. Data collection was performed 
through end-expiration and end-inspiration breath-holds 
at two PEEP levels, applied in a random order accord-
ing to the ARDS-net strategy (low-PEEP) [9] and to the 
EIT (high-PEEP). The latter was defined as the PEEP 
associated with the lowest combination of collapse and 
overdistension during a decremental PEEP trial after a 
recruitment maneuver [7, 10]. The end-inspiration holds 
were performed by configuring a continuous positive air-
way pressure (CPAP) level similar to the plateau pressure, 
while end-expiratory holds utilized CPAP at the same 
PEEP total level. The reference frames for the EIT image 
reconstruction were based on the PEEP level defined by 
the ICU team before the performed PEEP titration.

The CT strain  (StrainCT) was calculated as the ratio 
between  VT and EELV. The relative change in  StrainCT 
between low-PEEP and high-PEEP, termed dynamic rela-
tive regional strain (DRRS), was defined as  (StrainCT low-

PEEP/StrainCT high-PEEP) for each region-of-interest. The 
EIT-based strain was assessed according to the following 
methods:

(1) The relative change of ΔZ/EELI ratio in A.U. 
between the lowest and the highest value of PEEP 
([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/
EELIAU high-PEEP]).

(2) The relative change of ΔZ/EELI ratio in mL 
between the lowest and the highest value of PEEP 
([ΔZml low-PEEP/EELIml low-PEEP]/[ΔZml high-PEEP/EEL-
Iml high-PEEP]). For this calculation, we converted the 
regional EELI in mililiters  (EELIml) at low-PEEP 
using corresponding EELV measured by CT. The 
ΔZml was computed multiplying the ΔZAU by the 
ratio of  VT/ΔZAU at low-PEEP. Finally, the  EELIml at 
high-PEEP was estimated from the sum of  EELImL 
at low-PEEP and ΔEELIml calculated multiplying 
the ΔEELIAU by the ratio of  VT/ΔZAU at low-PEEP 
[11].

(3) the relative change of ∆ZAU between the lowest and 
the highest value of PEEP (∆ZAU low-PEEP /∆ZAU high-

PEEP) [7].

The summary of the protocol is shown in Fig. 1A. We 
performed linear regressions analysis and calculated bias 
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and limits of agreement to assess the performance of 
DRRS by EIT in comparison with CT.

Results
Fourteen patients (age 67 [60–76] years, 8 males) were 
included. Their worst  PaO2:FiO2 ratio during the acute 
phase of ARDS was 129 [96–167] mmHg. At the study 
entry, the mechanical ventilation time was 8 [4–12] days 
and  PaO2:FiO2 ratio was 235 [210–274] mmHg with  FiO2 
0.35 [0.30–0.36]. The median low-PEEP and high-PEEP 
values were 6 [5–7]  cm  H2O and 12 [10–14]  cm  H2O, 
respectively.

Global EELV was 1300 [1064–1706] ml at low-PEEP 
and 1901 [1472–2463] ml at high-PEEP. Global EELI 
was − 14.67 [− 28.1 to − 11.86] A.U. at low-PEEP and 
10.91 [− 7.57 to 32.53] A.U. at high-PEEP. The ΔEELIml, 
induced by PEEP changes, demonstrated a strong asso-
ciation with the ΔEELV detected by CT (Fig. 1B).

We observed a negative association between DRRS by 
∆ZAU/EELIAU and DRRS by  StrainCT in both lung regions 
(Fig.  2A; R2 ~ 0.3), and a poor agreement for both non-
dependent and dependent regions (bias of 3.11 and 2.08, 
and limits of agreement of − 2.13 to 8.34 and from − 1.49 
to 5.64, respectively).

On the other hand, DRRS based on ∆Zml/EELIml and 
∆ZAU showed good relationship and agreement with the 
reference method in both lung regions, with biases rang-
ing from − 0.11 to 0.51 and limits of agreement ranging 
from − 0.73 to 1.16 (Fig. 2C–E).

Discussion
This study demonstrated that DRRS estimation between 
two levels of PEEP is feasible at the bedside using EIT. 
The DRRS based on changes in ∆Zml/EELIml accurately 
predicts the change in lung strain assessed by CT in 
different gravitational lung regions. Our data also sug-
gests that the relative change in ∆ZAU induced by PEEP 
changes (∆ZAU low-PEEP/∆ZAU high-PEEP) can be used as a 
surrogate of DRRS.

However, the DRRS based on changes in ΔZAU/EELIAU 
exhibited a behavior that contradicts biophysically prin-
ciples when  EELIAU is negative. The negative value of 
 EELIAU is a frequent finding; indeed, its absolute value 

depends on the clinical condition at the start of EIT 
recordings (i.e., the reference frame), and it varies signifi-
cantly among subjects, and even within the same subject 
[12, 13].  EELIAU is also influenced by changes in intratho-
racic blood volume or fluid status [14]. From a physical 
perspective, the absolute values of EELI are intrinsically 
meaningless. Its value should be exclusively derived from 
its linear relationship with changes in lung air content. 
Furthermore, any attempt to avoid negative  EELIAU val-
ues, such as using a lower level of PEEP as a reference 
value for EIT reconstruction, will not yield meaningful 
DRRS value. The higher the adjustment in  EELIAU, the 
lower the DRRS value (see Fig. 2E). Therefore, relying on 
EELI measurements in arbitrary units is impractical for 
quantifying strain independently of the EIT reference.

The outperformance of the relative changes in ∆Zml/
EELIml for assessing DRRS was expected because this 
approach intrinsically cancelled the influence of absolute 
values of EELI (A.U.), retaining only its relative changes 
to a reference condition. A strong correlation between 
∆EELV and ∆EELI during a PEEP trial is a fundamental 
requirement for employing this approach [11, 15]. To 
achieve this, we avoided changes in patient positioning 
between PEEP steps and also any bolus of intravenous 
infusions. The current study used for first time CT data 
to perform the correlations between ∆EELV and ∆EEL-
Iml at global and regional level. Our findings reinforce the 
close association between CT and EIT for EELV-related 
data, validating its use for calculating DRRS. The major 
limitation of this approach is the requirement of a base-
line CT data for calibration.

An alternative is using the relative changes in ∆ZAU 
as a surrogate of DRRS. The ability of ∆Z to capture the 
change of strain in response to increase in PEEP was 
also suggested in the Gogniat et  al. [6] study. Despite 
similar  VT at PEEP 15 and ZEEP in the pigs (333 ± 71 ml 
and 334 ± 74, respectively, p = non-significant), ∆ZAU 
significantly increased between PEEP 15 and ZEEP 
(from 0.35 ± 0.90 to 0.46 ± 0.14  A.U., p < 0.05). There-
fore, ∆ZAU in lung parenchyma exhibits a behavior 
similar to that observed in other biological tissues in 
response to mechanical deformation [16]. However, it 
is essential to acknowledge two important points: (1) 

(See figure on next page.)
Fig. 1 Experimental protocol and correlation between changes in lung volume by computed tomography (CT) and electrical impedance 
tomography (EIT) related data. A Experimental protocol of a representative case. Traces of airway pressure (upper row), impedance change 
in non-dependent (middle row) and dependent (lower row) lung regions during the study timeframe are shown. Two levels of PEEP were applied 
in random order (in this representative case, first low-PEEP and then high-PEEP, after a recruitment maneuver). At both PEEP levels, end-expiratory 
and end-inspiratory holds were applied to obtain positive end-expiratory pressure and end-expiratory lung impedance (EELI), and airway plateau 
pressure and end-inspiratory lung impedance (EILI), respectively. The impedance change (ΔZ) corresponded to the difference between EILI 
and EELI. CT and EIT assessments were performed at the same time. B Linear correlation between delta end-expiratory lung volume (ΔEELV) 
CT-measured and the change of lung volume obtained from changes in end-expiratory lung impedance (ΔEELIml)
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Fig. 1 (See legend on previous page.)
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regional ΔZAU may be influenced by the regional redis-
tribution of ventilation induced by higher PEEP levels, 
and (2) the ΔZAU ratio at low-PEEP/high-PEEP is not 
a direct measurement of strain, as traditionally estab-
lished by the ratio  VT/EELV.

Our findings must be interpreted with caution due to 
some limitations: (1) being a clinical study of limited 
size; (2) only two levels of PEEP were evaluated and (3) 
the selection of regions-of-interest was based on the 
gravity gradient, not accounting for individualized lung 
injury distribution.

In conclusion, changes in DRRS during a PEEP trial 
in ARDS patients could be monitored using EIT, based 
on changes in ΔZmL/EELIml and ∆ZAU. While the ∆Z 
method may be slightly less precise compared to the 
standard ΔZmL/EELIml method, it offers the advantage 
of not requiring any CT data for calibration. Further 
research is needed to explore the clinical significance 

of the ΔZAU low-PEEP/ΔZAU high-PEEP method in lung 
protection, as well as its comparison with other VILI 
determinants like transpulmonary pressure.
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EELV  End-expiratory lung volume
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Fig. 2 Association and agreement between CT-based DRRS and the different EIT-based methods evaluated in non-dependent and dependent 
lung regions. A Association between DRRS by CT and DRRS by ΔZAU/EELIAU. B Association between DRRS by CT and DRRS by ΔZml/EELIml. 
C Association between DRRS by CT and DRRS by ΔZAU (For A–C individual values and linear regression curves with 95% confidence bands 
for both regions analyzed are shown). D Agreement between CT-based DRRS and the different EIT-based methods. For this analysis, the differences 
between the individual value of CT-based DRRS and the respective EIT-based DRRS values are shown with mean and standard deviation for each EIT 
method. E Illustration of changes in EELI induced by PEEP using different references for EIT reconstruction (PEEP 5  cmH2O and PEEP 7  cmH2O). Note 
that modifying the reference results in arbitrary DRRS values (both in absolute levels and the differences between the PEEP steps), with an increase 
in reference EELI values which leads to lower DRRS
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