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Abstract 

Background Cardiac complications due to non-traumatic subarachnoid hemorrhage (SAH) are usually described 
using classical echocardiographic evaluation. Strain imaging appears to have better sensitivity than standard echocar-
diographic markers for the diagnosis of left ventricular dysfunction. The aim of this study was to determine the preva-
lence of cardiac dysfunction defined as a Global Longitudinal Strain (GLS) ≥  − 20% in patients with good-grade SAH 
(WFNS 1 or 2).

Methods Seventy-six patients with good-grade SAH were prospectively enrolled and analyzed at admission for neu-
rocritical care. Transthoracic echocardiography was performed on days 1, 3, and 7 after hemorrhage. Routine meas-
urements, including left ventricular ejection fraction (LVEF), were performed, and off-line analysis was performed 
by a blinded examiner, to determine 2-, 3-, and 4-cavity longitudinal strain and left ventricular GLS. GLS was consid-
ered altered if it was ≥  − 20%, we also interested the value of ≥  − 17%. LVEF was considered altered if it was < 50%.

Results On day 1, 60.6% of patients had GLS ≥  − 20% and 21.2% of patient had GLS ≥  − 17%. In comparison, altera-
tion of LVEF was present in only 1.7% of patients. The concordance rate between LVEF < 50% and GLS ≥  − 20% 
and LVEF ≥ 50% and GLS <  − 20% was 46%.

Conclusion Strain imaging showed a higher prevalence (60.6%) of left ventricular dysfunction during the acute 
phase of good-grade SAH (WFNS 1 or 2) than previously described.

Keywords Myocardial dysfunction, Subarachnoid hemorrhage, Speckle-tracking echocardiography, Neurocritical 
care, Tako-Tsubo, Ventricular systolic function

Background
Subarachnoid hemorrhage (SAH) is a rare but serious 
condition. Cardiac complications occurring in the early 
phase have been well described and include cardiac bio-
marker release, electrocardiogram changes, or ventricu-
lar dysfunction [1]. An association between echographic 
myocardial damage in the early phase of SAH and the 
adverse outcome has been demonstrated [2, 3]. The prev-
alence of this damage varies from 8 to 28% depending on 
the study and technique used [4].
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A newer ultrasound approach to measuring myocar-
dial function, speckle tracking imaging or strain has been 
available for several years [5]. This technique, which is 
based on analysis of deformational movements of the 
myocardium [6] appears to be more sensitive [7, 8] and 
reproducible [6, 9, 10] than techniques normally used to 
estimate left ventricular (LV) function.

2D-strain has become indispensable in cardiology but 
has only poorly been studied in SAH. In 2015, Cinotti 
et  al. found severe impairment of global longitudinal 
strain (GLS) in 37% of patients admitted to an intensive 
care unit (ICU) with a poor-grade SAH (World Federa-
tion of Neurologic Surgeons: WFNS ≥ 3), although left 
ventricular ejection fraction (LVEF) was impaired in only 
10% of patients [11]. To date, no study has examined GLS 
in patients admitted with good-grade SAH (WFNS 1 or 
2).

The main objective of this study was to determine 
the prevalence of LV myocardial dysfunction defined as 
GLS ≥ -20% on the first day after SAH. We hypothesized 
that GLS would be more sensitive than LVEF in detecting 
neurogenic stress cardiomyopathy.

Materials and methods
This prospective, single-center, and observational study 
(ClinicalTrial.gov ID:NCT03761654) was approved by 
the Ethics Committee (Ile de France Research Subjects 
Protection Committee VI-ID-RCB:2018-A02434-51, 
November  21st,2018) and was performed in accordance 
with the Declaration of Helsinki. According to French 
law, all patients were provided with written information 
about the study, and their informed consent to partici-
pate was obtained.

Patients
Inclusion criteria were all consecutive adult patients 
(≥ 18years) admitted to neuro-ICU because of a good-
grade non-traumatic SAH, defined as WFNS grade 1–2 
[12] with or without an aneurysmal cause. Non-inclusion 
criteria were poor echogenicity or inability to obtain use-
ful images, cardiac history (permanent arrhythmias, mal-
formations, surgery, ischemia, dilated cardiomyopathy, 
severe valvular disease), and refusal of the patient or the 
patient’s representative to participate in the study.

Study design and data collection
All patients were treated according to the Neurocriti-
cal Care Society guidelines [13]. They were continu-
ously monitored by pulse oximetry, electrocardiogram, 
and invasive blood pressure. The following data were 
recorded on days 1, 3, and 7 after cerebral bleeding:

• Blood analysis of high-sensitivity troponin-T and 
B-type natriuretic peptide.

• 12-lead electrocardiogram (ECG): ECG abnormali-
ties were defined as previously described [14].

• Transthoracic echocardiography (TTE): TTEs were 
performed with a Vivid S6¬Æ or a Vivid S70¬Æ 
(GE Healthcare, Wauwatosa, WI, USA) equipped 
with a 2.5-MHz transducer. TTE were performed by 
a trained and experienced anesthesiologist who had 
no knowledge of the clinical data. The usual meas-
urements (E wave, E deceleration, A wave, lateral E’ 
waves, E/A ratio, E/E’ ratio, Aortic velocity time inte-
gral, cardiac output, lateral S’ wave, tricuspid regur-
gitation velocity, inferior vena cava diameter) and 
LVEF by Simpson’s biplane method were collected. 
LVEF impairment was defined as < 50%. Echographic 
cine loops were also recorded in apical 2-, 3-, and 
4-cavity views for offline analysis of the strain.

Offline analysis was performed using EchoPAC® soft-
ware (GE Healthcare) by a single-blinded investigator. 
The longitudinal strain was measured in 2-, 3, and 4 cavi-
ties to determine the GLS of the LV. An altered strain was 
defined as ≥ -20% [15]. We were also interested in the 
strain threshold of ≥ -17%, which appears to be associ-
ated with increased mortality in SAH population [3].

Study aim
The main objective was to determine the prevalence of 
LV dysfunction, defined as a GLS ≥  − 20% on the first day 
after SAH.

Statistical methodology
Continuous data were described in terms of 
mean(standard deviation) or median [interquartile 
range] according to their distribution. Categorical data 
were described by their count (percentage). Correlation 
between echographic data was calculated considering 
repeated measurements [16]. The concordance rate was 
estimated from a four-quadrant plot showing LVEF and 
GLS. Continuous variables were compared using the Wil-
coxon test. All analyses were performed with R version 
4.0.2 (June 2020).

Results
Study population
During the study period, 252 patients were eligible (Addi-
tional file 1) and 74 patients (46 females) were analyzed. 
Patients’ characteristics are listed in Additional file  2. 
Thirty-three patients had a complete record of longi-
tudinal strain in the 2, 3, and 4 cavities on day-1, which 
allowed measurements of GLS.
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Echographic data
Hemodynamic and echographic data for each day are 
shown in Table  1. There was no difference in the mean 
GLS between men and women, respectively, − 19 
[-21; − 18] and − 20 [-22; − 18]; p = 0.2. On day 1, 60.6% of 
patients had GLS ≥  − 20% and the proportion of patients 
with GLS ≥  − 17% was 21.2%. Alteration of LVEF was 
present in 1.7% of patients on day-1. LVEF and GLS 
were not correlated (p = 0.693). The concordance rate 
between LVEF < 50% and GLS ≥ -20% and LVEF ≥ 50% 
and GLS < -20% was 46% (51/110). When considering 
a strain threshold of − 17, the concordance rate rises to 
80%  (Fig.  1). There appears to be no variation between 
days for LVEF, GLS, 4C-LS (Additional file 3). The evolu-
tion of GLS during follow-up in patients with normal or 
altered GLS at day 1 is shown in Additional file 4.

Biomarkers and electrocardiographic data
Troponin was elevated in 50% of patients on day-1, in 
48% on day-3, and in 37% on day-7, with median values 

of 19ng/L[12–58], 13ng/L[8–43], and 14ng/L[9–75], 
respectively. BNP elevation was present in 98% of 
patients on day-1, in 92% on day-3, and in 78% on day-
7, with median values of 114pg/mL [45–225], 81pg/
mL [30–149], and 45pg/mL [22–76], respectively. The 
overall relationships between troponin and GLS and 
between troponin and LVEF were very weak (r = 0.136; 
p = 0.362 and r = 0.06; p = 0.528, respectively). ECG 
abnormalities were present in 52% of patients at day-1.

Intra‑ and interobserver variability
The reproducibility of GLS measurements was tested 
before the study. GLS were measured twice in six 
patients by the same observer(GC) and a second 
observer(DG). The mean difference was calculated and 
divided by the mean of the two values. For GLS meas-
urements, intraobserver reproducibility was 4.0 ± 3.7% 
and interobserver reproducibility was 5.3 ± 5.9%.

Table 1 Hemodynamic and echographic data

n: available data

Values are median [25th to 75th percentile] or Values are numbers (percentage)

BPM: Beats Per Minute; LVEF: Left Ventricular Ejection Fraction; VTI: Velocity Time Integral; TRV: Tricuspid Regurgitation Velocity

Day 1 Day 3 Day 7
n n n

Heart rate (BPM) 60 70 [62–75] 70 70 [65–75] 67 73 [63–80]

Mean arterial pressure (mmHg) 61 100 [88–110] 70 100 [92–112] 68 100 [93–110]

Cardiac output (L/min) 58 5.1 [4.1–6.1] 70 4.9 [3.9–5.5] 65 4.8 [4.1–5.8]

Systemic vascular resistance (dyn·s/cm5) 58 1607 [1318–2042] 69 1866 [1314–2094] 65 1606 [1366–2095]

E wave (cm/s) 62 80 [68–90] 71 79 [67–94] 68 76 [62–87]

E deceleration (ms) 60 213 [166–259] 71 201 [165–223] 68 199 [176–263]

A wave (cm/s) 62 70 [23–85] 71 67 [60–83] 68 71 [58–81]

E/A ratio 60 1.1 [0.9–1.4] 71 1.1 [0.9–1.4] 68 1.1 [0.9–1.3]

E’ wave (cm/s) 62 12 [10–14] 71 11 [9–13] 67 12 [9–14]

E/E’ ratio 62 7 [6–8] 71 7 [6–9] 67 7 [5–8]

LVEF (%) 60 65 [60–71] 71 66 [62–72] 68 66 [59–74]

LVEF < 50% (n) 60 1 (1.7) 71 1 (1.4) 68 4 (5.9)

Aortic VTI (cm) 60 24 [21–27] 71 23 [21–27] 67 24 [21–26]

S’ (cm/s) 59 17 [15–19] 71 16 [14–19] 66 17 [15–20]

TRV (m/s) 59 2.3 [1.9–2.6] 69 2.2 [1.7–2.6] 65 2.2 [1.7–2.5]

Inferior vena cava diameter (cm) 58 1.4 [1.0–1.7] 65 1.3 [0.9–1.7] 61 1.2 [0.9–1.7]

2-Cavity Longitudinal Strain 45  − 20 [− 23– − 18] 46  − 19 [− 22– − 17] 48  − 19 [− 21– − 16]

3-Cavity Longitudinal Strain 49  − 19 [− 22– − 16] 53  − 21 [− 19– − 17] 50  − 20 [− 22– − 17]

4-Cavity Longitudinal Strain 55  − 19 [− 21– − 16] 69  − 19 [− 21– − 17] 62  − 19 [− 21– − 17]

Global Longitudinal Strain 33  − 20 [− 23– − 17] 38  − 20 [− 21– − 18] 39  − 20 [− 22– − 18]

Global Longitudinal Strain ≥  − 20 (n) 33 20 (60.6) 38 21 (55.3) 39 22(56.4)

4C- Global Longitudinal Strain ≥  − 20 (n) 55 34 (61.8) 69 39 (56.5) 62 40 (64.5)

Global Longitudinal Strain ≥  − 17 (n) 33 7 (21.2) 38 6 (15.8) 39 7 (17.9)

4C- Global Longitudinal Strain ≥  − 17 (n) 55 20 (36.4) 69 15 (21.7) 62 16 (25.8)
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Fig. 1 Relationship between left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). A Strain threshold of − 20. B Strain 
threshold of − 17
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Discussion
This study showed that on day 1 after SAH, more than 
60% of patients had GLS ≥  − 20%, and the proportion of 
patients with GLS ≥  − 17% was 21.2%. In comparison, 
alteration of LVEF was present in only 1.7% of patients 
on day-1.

Markers of left ventricular injury
The prevalence of LV dysfunction during SAH varies 
from 8 to 28% depending on the study and technique 
used [4, 17]. Cinotti et  al. were the first to investigate 
the contribution of GLS to the diagnosis of stress cardi-
omyopathy during severe SAH [11]. In poor-grade SAH 
(WFNS ≥ 3), they found GLS impairment, in 37% of 
patients, although LVEF impairment occurred in only 
10% on day 1. These results were confirmed in 2020 by 
Kagiyama et  al., who found a GLS >  − 17% in 24% of 
patients with SAH of any grade, compared with 9% of 
patients with LVEF < 50% [3]. In this study, GLS >  − 17% 
was an independent risk factor for in-hospital mortal-
ity. In our study, we focused on the good-grade SAH 
population. Altered GLS was defined as GLS ≥  − 20% 
and affected 60.6% of patients at day 1, compared with 
1.7% with LVEF < 50%. In addition, we found 21.2% 
of patients with GLS ≥  − 17%. Our results showed a 
higher prevalence of LV dysfunction during SAH than 
in previous studies, although our population was less 
severe. This could be explained by a better sensitivity of 
the strain method compared with the usual echocardio-
graphic markers, and by a different definition of altered 
GLS than in the two previous studies.

Strain ranges
The range of normal strain values remains under discus-
sion. In a cohort of 549 healthy volunteers, the value of 
normal GLS of left ventricle was − 22.5 ± 2.7% [18]. In 
ICU, higher values are suggested to define impaired GLS 
[19]. In our study, we decided to take a GLS value ≥  − 20% 
as the pathological limit. We also analyzed the value 
of − 17, which appears to be associated with increased 
mortality in the population SAH [3].

Study limitations
Our study has some limitations. Strain measurement 
was only available in 33 patients for the GLS and in 55 
patients for the 4C-LS and we did not have a reference 
cardiac ultrasound in our patients. Although the operator 
measuring GLS was blinded to LVEF measurements, the 
assessor was not blinded to visual LVEF since the strain is 
measured on ultrasound cine loops.

Conclusion
Strain imaging reveals a higher prevalence of LV dysfunc-
tion during good-grade SAH (WFNS 1 or 2) than usual 
echographic markers. Early detection of patients with 
altered strain should allow initiation of short- and medium-
term echocardiographic monitoring. Further studies are 
needed to determine the impact of strain alteration in this 
population and to propose individualized management.
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