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Abstract 

Background Given the success of recent platform trials for COVID‑19, Bayesian statistical methods have become 
an option for complex, heterogenous syndromes like sepsis. However, study design will require careful consideration 
of how statistical power varies using Bayesian methods across different choices for how historical data are incorpo‑
rated through a prior distribution and how the analysis is ultimately conducted. Our objective with the current analy‑
sis is to assess how different uses of historical data through a prior distribution, and type of analysis influence results 
of a proposed trial that will be analyzed using Bayesian statistical methods.

Methods We conducted a simulation study incorporating historical data from a published multicenter, randomized 
clinical trial in the US and Canada of polymyxin B hemadsorption for treatment of endotoxemic septic shock. Histori‑
cal data come from a 179‑patient subgroup of the previous trial of adult critically ill patients with septic shock, multi‑
ple organ failure and an endotoxin activity of 0.60–0.89. The trial intervention consisted of two polymyxin B hemoad‑
sorption treatments (2 h each) completed within 24 h of enrollment.

Results In our simulations for a new trial of 150 patients, a range of hypothetical results were observed. Across 
a range of baseline risks and treatment effects and four ways of including historical data, we demonstrate an increase 
in power with the use of clinically defensible incorporation of historical data. In one possible trial result, for example, 
with an observed reduction in risk of mortality from 44 to 37%, the probability of benefit is 96% with a fixed weight 
of 75% on prior data and 90% with a commensurate (adaptive‑weighting) prior; the same data give an 80% probabil‑
ity of benefit if historical data are ignored.

Conclusions Using Bayesian methods and a biologically justifiable use of historical data in a prior distribution yields 
a study design with higher power than a conventional design that ignores relevant historical data. Bayesian methods 
may be a viable option for trials in critical care medicine where beneficial treatments have been elusive.
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Graphical abstract

Background
Sepsis is defined as life-threatening organ dysfunction 
caused by a dysregulated host response to infection [1]. 
While effective interventions for infection are available, 
treatments for sepsis have been elusive perhaps because 
no single underlying biologic process can account for 
the range of severity and distribution of organ failures 
encountered in sepsis. This variation is directly associ-
ated with hospital mortality which ranges from 2 to 32% 
[2].

Heterogeneity of the phenotype that defines sepsis is 
a significant problem for clinical trials and the problem 
cannot be solved by increasing the total sample size—
the highest mortality in sepsis occurs in a subgroup of 
patients with more than three organ failures and this 
subgroup is less common than the subgroup with fewer 
organs failing. Increasing the sample size by enrolling 
readily available but less severe cases will only increase 
the proportion of patients with lower mortality. Large 
“pragmatic” trials are rarely suitable for complex heterog-
enous conditions like sepsis. Sepsis is not alone in these 
problems. Other forms of critical illness such as acute 
respiratory distress syndrome (ARDS) and acute kidney 
injury (AKI) are similar in terms of clinical and mecha-
nistic heterogeneity and in terms of scarcity of treatment.

The classical approach to interventional clinical trials 
applied to sepsis and other critical care syndromes has 
moved confidently from one failure to another. Despite 
several examples where robust pre-clinical foundations 
existed and early-stage clinical trials showed promise, 
phase 3 clinical trials have come up short [3]. Failure at 
phase 2 or 3 usually spells “certain death” for an investi-
gational agent and yet, given the heterogeneity described 
above, benefit might still be obtainable for subgroups of 
patients (for example, those with a specific mechanism of 
disease) [4]. One potential way forward is to use Bayesian 
methods in order to incorporate prior experience with 
an intervention into later-phase clinical trials. Here we 
explore the advantages of the use of Bayesian statistical 
methods for clinical trials in the critically ill and we pre-
sent an example using an intervention for sepsis.

Many authors have advocated for use of Bayesian 
methods [5–10] citing (a) the flexibility that they can 
bring to the analyses of complex trials; (b) their abil-
ity to incorporate information from outside the current 
trial; and (c) their ability to better quantify the evidence 
as to whether a treatment is beneficial. It is beyond the 
scope of this paper to fully cover the Bayesian approach 
and we refer the interested reader to the many published 
articles and key textbooks that present this material to 
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a non-statistical audience [6, 8, 11, 12]. Here, we take 
the example of a randomized trial of an intervention for 
sepsis and explain the steps in designing and analyzing 
the trial based on Bayesian methods. Importantly, while 
many papers using Bayesian methods in analyses of clini-
cal trials have examined what potential priors do to the 
interpretation of completed trials [13], our goal here is 
to design a new trial. As such we have selected a single, 
empirical source of prior information and examined dif-
ferences in trial performance according to the method 
for incorporating this prior information and the choice of 
analytic method and then present a range of hypotheti-
cal results for the new trial analyzed with the proposed 
methods.

Methods
The EUPHRATES trial [14] compared 28-day mortal-
ity between 223 patients randomized to polymyxin B 
hemadsorption (PMX) and 226 to sham hemadsorption 
(control). The trial was performed in accordance with the 
responsible committee on human experimentation and 
with the Helsinki Declaration of 1975. Informed consent 
was obtained from all subjects prior to enrollment. IRB 
approval Cooper University Hospital (05/18/2010; #09-
144). Clinicaltrials.gov [NCT01046669].

Mortality was not significantly different between 
groups in the intention-to-treat analyses. In a subsequent 
post hoc analysis [15], where comparisons were restricted 
to patients completing two treatments and with a Multi-
Organ Dysfunction Score (MODS) [16] of 9 or more and 
endotoxin activity assay (EAA) results between 0.60 and 
0.89, and adjusting for baseline APACHE II and mean 
arterial pressure found an odds ratio (OR) for 28-day 
mortality of 0.52 (95% CI: 0.27–0.99) in favor of PMX. 
PMX treatment compared with control also showed 
greater improvement in MAP (median (IQR) 8 mmHg 
(− 0.5, 19.5) versus 4 mmHg (− 4.0, 11) P = 0.04) and 
ventilator-free days (median (IQR) 20 days (0.5, 23.5) 
versus 6 days (0, 20), P = 0.004). This subgroup effect is 
credible since observational studies have found reduced 
benefit for PMX for patients with lower organ failure 
scores [17]. Endotoxin activity < 0.6 equates to a burden 
of endotoxin below the threshold for benefit from PMX 
in most patients while ≥ 0.9 may identify a population too 
sick to benefit [15]. These thresholds are not arbitrary 
because of the mechanism of action of PMX. First, like 
other forms of blood purification, hemoadsorption relies 
on concentration-dependent binding; when the solute 
concentration is lower, removal will be reduced. Sec-
ond, when solute concentration exceeds an upper limit, 
the device will no longer be able to achieve an effect and 
evidence suggests that EAA ≥ 0.9 equates to an endotoxin 
load beyond the capacity of PMX to impact [18]. Third, 

using the full EUPHRATES dataset, there was a greater 
than 97% probability (> 99% in US sites) that the effect 
of PMX was more beneficial in patients with MODS > 9 
and 0.6 ≤ EAA ≤ 0.89 than in the remaining patients. Full 
details of this subgroup analysis are provided in the sup-
plement. See also Instrument for assessing the Credibility 
of Effect Modification Analyses (ICEMAN) in randomized 
controlled trials checklist (ICEMAN [19] is provided in 
the supplement). However, there is interest in confirm-
ing the benefit of PMX in this subgroup in a new clinical 
trial.

A new trial could be performed as a standalone study. 
However, if analyzed with a chi-squared test of propor-
tions, and assuming the exact 28-day mortality seen in 
the subgroup (36.7% in PMX and 47.2% in control), it 
would require 542 patients (271 per arm) to achieve 80% 
power at a one-side significance level of 0.05. While pos-
sible, such a trial would be impractical given that we are 
selecting a narrow subgroup of the overall septic shock 
population. Furthermore, the data from EUPHRATES 
would be put aside when the new data were analyzed. By 
contrast, an alternative design would be to use Bayesian 
methods and run the new trial in such a way that the new 
results could be combined with the prior results from 
those patients in EUPHRATES with both high MODS 
and a treatable range of EAA between 0.6 and 0.89 (from 
now, referred to as the “treatable cohort”) to more effi-
ciently confirm or refute the benefit in such patients. The 
new trial is called Tigris (NCT03901807)—see supple-
ment. Since the new trial will be performed exclusively 
in the US, the treatable cohort was further limited to 
patients from US sites and to achieve greater face validity, 
the full ITT cohort was used. The final treatable cohort 
from EUPHRATES was thus 179 patients, 90 PMX/89 
control, and unadjusted 28-day mortality was 36.7% ver-
sus 47.2%.

The design of Tigris requires that we address two ques-
tions. 1. How will the results from the treatable cohort 
from EUPHRATES [15] be integrated with the results 
from Tigris? 2. How will the integrated results from these 
trials be analyzed?

Data integration across trials
A Bayesian analysis can summarize historical evidence on 
the size of a treatment effect through what is called the 
‘prior distribution’. Although many previous studies pro-
vide support for the notion that PMX can reduce mortal-
ity [20–23], there are numerous differences between the 
patient groups in these other studies and the proposed 
Tigris study, most notably the absence of the EAA bio-
marker to identify a group most likely to benefit from 
PMX treatment. The treatment effects from these other 
studies are not a summary of the evidence for a benefit of 
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PMX in this subgroup, so they cannot be used directly to 
construct a prior for the treatment effect in Tigris. Fur-
thermore, there are many other differences (e.g., study 
protocol, patient inclusion criteria, study location, tim-
ing of outcomes) that also introduce uncertainty about 
the applicability of those earlier findings to a new trial. 
By contrast, when we consider Pocock’s criteria [24] for 
inclusion of data from historical patients in analysis of a 
new trial, we find that the treatable cohort [15] from the 
EUPHRATES study is an ideal source of prior informa-
tion for the treatment effect in Tigris; standard of care, 
treatment, patient eligibility, evaluation of outcomes, 
investigators and ICU locations are largely the same in 
the two studies. We will demonstrate a range of uses of 
the EUPHRATES treatable cohort: (a) viewing Tigris as 
a simple continuation of that cohort, (b) down-weighting 
the prior evidence it provides or (c) ignoring the results 
entirely.

The extent to which Tigris can be seen as a con-
tinuation of enrollment into the treatable cohort from 
EUPHRATES determines how we use those historical 
data to create a prior for Tigris. To illustrate this idea, 
Fig. 1 shows a range of prior distributions formed from 
the historical APACHE-adjusted odds ratio (aOR) from 
the treatable cohort. Figure 1a treats Tigris as a straight 
continuation, and simply takes the posterior distribu-
tion of the aOR from the treatable cohort as the prior 
for Tigris. The priors in Figs. 1b and 1c acknowledge that 
the previous results may not be entirely transportable to 
this new trial and are down-weighted to be equivalent to 
data with the same observed aOR, but in a sample only 
75% or 50% of the actual size; these down-weighted pri-
ors express more uncertainty than the prior in 1a about 
the potential values of the aOR. Figure  1d takes an 
extreme view—the one taken by a classical analysis that 
uses no prior- ignoring the results in the previous study 
entirely and allowing a priori that all values of the OR are 
equally likely, no matter how biologically implausible. 
The prior appears almost as a horizontal line. Each fig-
ure also shows the prior 95% credible interval (CrI), prior 
probability that the OR for treatment is less than 1 and, 
because small differences in tail probabilities appear to 
understate the different levels of certainty in these priors, 
the corresponding odds that the OR is less than 1.

There are two broad approaches to specifying how 
much weight should be placed on the historical evidence. 
One approach uses clinical judgment to fix the weights as 
shown in Fig. 1 [25] and investigates the results of analyz-
ing new data for each of a small set of fixed weights (e.g., 
75%, 100%). The other approach is statistical and uses the 
similarity between the new data in the trial and the his-
torical data to infer the weight that should be given to the 
historical evidence; the more similar the new data and 

the historical data, the higher the weight, and vice versa. 
We assessed two statistical approaches. The first uses a 
normalized power prior [26] and the second uses what 
is called a commensurate prior [27]. Notably, even when 
the new data are in perfect agreement with the historical 
data, each of these statistical approaches still places less 
than full weight on the historical evidence.

A brief summary of the simulations and statistical anal-
yses of the simulations are provided here; full details can 

Fig. 1 Potential prior distributions for the APACHE‑adjusted 
odds ratio: a Prior from the treatable cohort b 75% weighted 
(25% down‑weighted) prior from the treatable cohort; c 50% 
down‑weighted prior from the treatable cohort; d uninformative 
prior, ignoring external evidence on treatment efficacy, a distribution 
that is essentially flat over the range of plausible values. Each 
figure shows the corresponding 95% central credible interval (CrI) 
and the prior probability that the odds ratio for treatment with PMX 
is less than 1, along with this same probability expressed as odds 
in favor of there being a treatment effect (i.e., a 97.0% probability 
of benefit is the same as an odds of benefit of 97 to 3 or 32.3 to 1)
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be found in the in the supplement. For each of 25 com-
binations of control group risk (40% to 60% by 5%) and 
absolute risk reductions (ARR) (0% to 20% by 5%), 2000 
trials of 150 patients (100 PMX and 50 control) were 
simulated. Each trial was analyzed with 5 different uses 
of the historical data (100% weighting, 75% weighting, 
weighting through commensurate and normalized power 
priors, and 0% weighting) with and without adjustment 
for baseline APACHE score, for a total of 10 analyses 
per trial. These Bayesian analyses estimated the odds 
ratio (OR) for mortality comparing the PMX and control 
groups and in each simulated trial, checked whether the 
trial demonstrated benefit for PMX, defined in each trial 
as a posterior probability greater than 95% that the OR 
was less than 1. The percentage of the 2000 trials dem-
onstrating benefit was used to estimate the power (or 
type I error when ARR = 0) of the corresponding analytic 
method for that control group risk and ARR. As a sen-
sitivity analysis, benefit was defined as a posterior prob-
ability greater than 97.5% that the OR was less than 1.

When TIGRIS is complete, the trial report will pre-
sent a plot of the odds ratio and its 95% credible inter-
val against weights ranging from 0 to 100% to allow the 
reader to assess the dependence of the results on the 
amount of historical information that is borrowed. We 
will also present the posterior probability of benefit as a 
function of these prior weights and will not dichotomize 
this probability at a sharp threshold of 95%, for example, 
as being “significant” or not. However, for the purposes of 
trial planning and investigating the role of the prior, we 
use these thresholds, an approach that is in keeping with 
previous literature [28].

Results
Effects of baseline risk and prior weighting on power
Each plot in Fig.  2 shows power (the probability that 
we will conclude that PMX is superior to control at the 
95% probability threshold) versus the marginal ARR for 
treatment. Each plot is for a scenario with the baseline 
risk shown in the row heading analyzed with either an 
APACHE-adjusted model (left column) or unadjusted 
model (right column). Each plot shows power curves 
versus for fixed 75% and 100% prior weighting, for prior 
weighting based on similarity of new and historical data 
using the commensurate prior and for a Bayesian analy-
sis including minimal prior information (uninformative 
prior). The results shown in Fig.  2 help us make some 
decisions about the choice of a prior and the analysis, 
no matter what the true treatment effect and preva-
lence. There are a few clear patterns. First, an analysis 
that adjusts for the baseline APACHE II score (left col-
umn) is always more powerful than the analysis that 
does not (right column). Secondly, use of a prior putting 

75% weight on the results from the treatable cohort in 
EUPHRATES (gold lines in each panel in Fig.  2) leads 
to a greater chance of detecting a true benefit for PMX 
than a prior that bases the weighting on the similar-
ity of new and historical data (red lines) or an analysis 
that disregards the historical data (black lines). Thirdly, 
the increase in power with use of historical data comes 
with this cost: if there is no true benefit of PMX in Tigris 
(ARR = 0, far left side of each plot), any analysis that com-
bines a positive signal (from the treatable cohort) with 
what will be on average a null signal (from Tigris), is more 
likely to produce a more favorable result than an analysis 
of Tigris alone [29]. The prior that adjusts the weighting 
based on the similarity of new and historical data is less 
likely to produce a favorable result in this null scenario 
than the fixed 75% weight prior. As the normalized power 
prior and commensurate prior approaches produced 
results that were practically identical, only results for the 
commensurate prior are shown. Additional file 1: Figure 
S1 presents power when benefit is defined as a posterior 
probability greater than 97.5% that the OR was less than 
1.

The analysis using only Tigris data, as expected, has 
a 5% chance of meeting the 95% probability threshold 

Fig. 2 Power (probability of demonstrating benefit at the 95% 
probability threshold) versus treatment benefit (expressed as the true 
absolute risk reduction) with APACHE‑adjusted and unadjusted 
analyses for four different uses of the historical data and control 
group risk of mortality of 40–60%
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for benefit (the black lines in Fig. 2 have “power” of 5% 
when ARR = 0). When the true ARR in Tigris is 0, some 
Tigris trial results will vary randomly below an ARR of 
0 and, when combined with any use of the historical 
data, may meet the 95% probability threshold for bene-
fit. Our planned analyses therefore have a small chance 
of determining that PMX is effective when it is not effec-
tive in Tigris. Conversely when the ARR in Tigris is in the 
neighborhood of 15%, there is still a small chance that we 
will conclude that PMX is ineffective even though it is 
highly effective. Still, an analysis combining the histori-
cal data with data from the new trial will provide a better 

representation of the true effect than either the historical 
data or the new trial data taken separately.

Potential outcomes for various scenarios
Figure  3 provides distributions of observed APACHE-
adjusted ORs from the 2000 simulated trials with a base-
line risk of 50%, coded according to whether they meet 
the 95% probability threshold for benefit; a similar plot 
showing unadjusted ARRs can be found in Additional 
file 1: Figure S2 and a plot with Bayesian posterior esti-
mated of unadjusted ORs can be found in Additional 
file 1: Figure S3.

Fig. 3 For scenarios with a baseline risk of 50%, distributions across 2000 trials of estimated APACHE‑adjusted odds ratios according to the true 
absolute risk reductions and colored according to whether the Bayesian analysis returns a probability of benefit larger or smaller than 95%. In 
each panel, each method of analysis (on the x‑axis) has the same 2000 trials as input, but more of them lead to a positive finding (colored blue) 
when more weight is place on the historical evidence. For the planned fixed weighting of 75%, an observed adjusted OR of approximately 0.66 
or lower (the threshold separating blue and gold dots) leads to a positive trial conclusion. The blue labels indicate the percentages of simulated 
trials where we conclude benefit (i.e., the power) for the corresponding absolute risk reduction and use of historical data
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Figures  2 and 3 summarize results over thousands of 
simulated trials. Table 1 provides a more concrete dem-
onstration of how the different analytic approaches may 
lead to different conclusions in a single trial. This table 
shows results of analyses of eight potential trial results, 
all having an observed control group mortality of 44% 
(22/50), but with observed mortality in the 100 patients 
treated with PMX ranging from 24% up to 44%. For 
observed absolute risk reductions (ARR) from 20% (the 
first block of rows) and 15% (the second block of rows), 

Tigris alone would satisfy the criterion of > 95% prob-
ability of benefit in both adjusted and unadjusted analy-
ses (cells a and b). The commensurate prior and 75% 
weighted prior produce still higher probabilities of ben-
efit. In the case of an 11% ARR (33% vs 44%), the adjusted 
analysis for Tigris alone (cell d in the table), produces 
only a 92.3% probability of the OR being less than one, 
a value that rises to 96.1% with the commensurate prior 
and 98.4% with 75% weight on the prior (cell c). Here, 
even though the ARR of 11% is almost identical to the 

Table 1 Examples of posterior results for potential Tigris outcomes analyzed with different weights on the prior, and with observed 
PMX absolute risk reductions of 0–20%

Examples of analyses of potential Tigris results showing observed absolute risk reductions of 0% to 20% from an observed control group event rate of 44% (22/50). 
Both adjusted and unadjusted analyses are shown, for fixed weights of 100%, 75%, and 0% (analysis of Tigris only) on the prior from the treatable cohort and the 
commensurate prior. The results show the odds ratio (OR) and 95% CrI, along with the posterior probability that the OR is < 1. Each shaded block of results is based on 
the same simulated dataset; all data sets share a single set of APACHE II values, with identical sample means and standard deviations in the PMX and control groups. 
For cell annotations (a–i), see the results section

Observed mortality in 100 
PMX versus 50 control

Use of historical data in prior Adjusted by APACHE Unadjusted

OR Pr(OR < 1) OR Pr(OR < 1)

24% versus 44% (ARR 20%) 100% fixed weight 0.46 [0.28, 0.76] 100.0 0.53 [0.33, 0.85] 99.5

75% fixed weight 0.45 [0.27, 0.76] 99.9 0.51 [0.31, 0.84] 99.6

Commensurate 0.44 [0.21, 0.85] 99.3 0.47 [0.23, 0.84] 99.5

None (Tigris only) 0.38 [0.16, 0.88] 98.9 (a) 0.40 [0.19, 0.82] 99.3 (a)

29% versus 44% (ARR 15%) 100% fixed weight 0.52 [0.32, 0.84] 99.6 0.59 [0.36, 0.93] 98.8

75% fixed weight 0.52 [0.31, 0.87] 99.4 0.58 [0.35, 0.96] 98.2

Commensurate 0.52 [0.28, 0.95] 98.3 0.56 [0.39, 0.98] 97.9

None (Tigris only) 0.50 [0.24, 1.04] 96.9 (b) 0.52 [0.26, 1.05] 96.6 (b)

33% versus 44% (ARR 11%) 100% fixed weight 0.56 [0.35, 0.92] 99.0 0.64 [0.40, 1.03] 96.8

75% fixed weight 0.56 [0.34, 0.95] 98.4 (c) 0.63 [0.39, 1.05] 96.2

Commensurate 0.57 [0.31, 1.07] 96.1 0.64 [0.35, 1.13] 94.0

None (Tigris only) 0.59 [0.28, 1.22] 92.3 (d) 0.62 [0.31, 1.26] 90.9

37% versus 44% (ARR 7%) 100% fixed weight 0.63 [0.39, 1.00] 97.6 0.69 [0.43, 1.08] 94.7

75% fixed weight 0.64 [0.38, 1.07] 95.7 (e) 0.70 [0.42, 1.15] 92.1

Commensurate 0.66 [0.36, 1.28] 89.7 0.71 [0.40, 1.29] 87.5

None (Tigris only) 0.73 [0.35, 1.56] 79.9 (f ) 0.75 [0.37, 1.49] 79.9

39% versus 44% (ARR 5%) 100% fixed weight 0.65 [0.40, 1.05] 96.2 0.72 [0.45, 1.13] 92.1

75% fixed weight 0.67 [0.40, 1.12] 93.8 0.73 [0.44, 1.20] 89.5

Commensurate 0.69 [0.39, 1.31] 88.1 0.76 [0.42, 1.39] 83.0

None (Tigris only) 0.76 [0.37, 1.60] 76.6 0.81 [0.42, 1.63] 72.3

41% versus 44% (ARR 3%) 100% fixed weight 0.66 [0.40, 1.09] 94.8 0.74 [0.47, 1.18] 89.5

75% fixed weight 0.69 [0.40, 1.17] 91.4 0.76 [0.46, 1.27] 85.5

Commensurate 0.72 [0.40, 1.41] 83.8 0.80 [0.45, 1.47] 77.2

None (Tigris only) 0.83 [0.40, 1.72] 69.3 0.88 [0.45, 1.75] 63.5

43% versus 44% (ARR 1%) 100% fixed weight 0.70 [0.43, 1.12] 93.1 0.77 [0.49, 1.22] 86.6

75% fixed weight 0.73 [0.43, 1.22] 88.7 (g) 0.79 [0.49, 1.29] 82.1

Commensurate 0.80 [0.45, 1.55] 75.5 0.85 [0.48, 1.60] 70.9

None (Tigris only) 0.93 [0.46, 1.88] 57.6 0.95 [0.48, 1.92] 55.6

44% versus 44% (ARR 0%) 100% fixed weight 0.72 [0.44, 1.16] 91.0 0.79 [0.50, 1.23] 85.0

75% fixed weight 0.74 [0.44, 1.26] 86.5 (h) 0.81 [0.49, 1.32] 79.8

Commensurate 0.85 [0.46, 1.73] 68.3 (i) 0.88 [0.50, 1.68] 66.0

None (Tigris only) 1.02 [0.49, 2.15] 47.8 1.00 [0.50, 2.00] 49.8
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10.5% absolute risk reduction in the treatable cohort, the 
commensurate prior gives as much credence to the his-
torical data as a 50% weighted prior (result not shown) 
and returns a probability of benefit of 96.1%, i.e., less 
than the 97% probability found in the prior. Using the 
planned 75% weight on the prior, an observed ARR of 
7% (37% vs 44%) is approximately the boundary in these 
eight datasets for reaching the 95% probability thresh-
old for declaring PMX effective. This result gives only a 
79.9% probability of benefit in Tigris alone in the adjusted 
analysis (cell f ), but a 95.7% probability when combined 
with the prior (cell e). In the four potential Tigris trial 
results that are less favorable (observed ARRs of 5% or 
less), the posterior probability of benefit in both adjusted 
and unadjusted analyses fall below the 95% threshold 
when the prior data are down-weighted to 75%, included 
through the commensurate prior, or ignored. It may be 
surprising that a finding of a 1% ARR or even no effect in 
Tigris (cells g and h) can translate into a posterior proba-
bility of benefit of 87%-89% (odds of ~ 7:1 to 8:1) but note 
that this is lower than the 97% prior probability of benefit 
(odds 32:1) that we began with; a negative result in Tigris 
will reduce our belief that PMX is effective. Notably, as 
an absolute 0% ARR is quite dissimilar to the result in the 
treatable cohort (10.5% ARR), the commensurate prior 
gives less credence to the prior data and returns a poste-
rior probability of benefit of 68.3% (cell i).

Discussion
The synthesis of results from a prior trial into the analysis 
of a new trial expresses the view that science is engaged 
in knowledge-building. For example, the totality of what 
we know about PMX in the target population will be 
best represented by the synthesized results once Tigris is 
completed. The use of Bayesian analyses forces an explicit 
expression of how previous findings will be used in the 
analysis of new data. Interpretation of results from a 
standalone trial often involves qualitative comparisons to 
other trials or observational data, but with no clear mes-
sage about what the totality of evidence means.

On the weight of existing evidence, there is a weak rec-
ommendation against PMX hemadsorption in 2021 Sur-
viving Sepsis Campaign Guideline [30]. Two systematic 
reviews [22, 23] concluded that hemadsorption in general 
and hemadsorption with PMX specifically, reduced mor-
tality in patients with sepsis. A third meta-analysis found 
no benefit from trials with low risk of bias [31]. A pro-
pensity score-matched comparison of PMX to non-PMX 
hemadsorption in 4141 matched pairs found a reduc-
tion in all-cause in-hospital mortality with PMX treat-
ment [20]. However, when PMX is used for all patients 
with sepsis or even septic shock, the overall treatment 
effect will be attenuated because not all patients will be 

able to benefit because most do not have endotoxin activ-
ity in the target range. Furthermore, not all patients with 
high endotoxin activity have sufficient organ dysfunction 
to warrant therapy. Fujimori et al. reported that PMX is 
not effective when the patients Sequential Organ Failure 
Assessment (SOFA) scores are < 7 [17]. Thus, using both 
an organ failure threshold and an EAA range to enrich 
the patient population ensures that a larger effect size will 
be achieved. By contrast, most trials in critical illnesses 
such as sepsis, have used more pragmatic approaches 
that maximize sample size, on the premise that a larger 
sample size always increases power of the test of an inter-
vention. The problem is that adding patients who cannot 
benefit actually reduces power because it lowers the aver-
age effect size—it simply isn’t possible to improve trial 
efficiency by enrolling the wrong patients.

Importantly, the Bayesian analysis we have illustrated 
is entirely consistent with trials recently conducted to 
evaluate therapies of COVID-19. In fact, if EUPHRATES 
had not stopped entirely, but stopped enrollment only of 
those with EAA ≥ 0.90 and continued to enroll patients 
with EAA in the 0.60 to 0.89 range with MODS > 9 (an 
enrichment phase), it would resemble many of the large 
platform trials that have had so much success recently 
[32, 33]. If that had been the case, the treatment effect 
in the EAA-defined subgroup could have been estimated 
from all the patients who were in the EAA-defined sub-
group in both the pre- and post-enrichment phases of 
the trial. When all the patients are pooled in this way, 
this is equivalent to forming a prior from the data in the 
first part of the trial, putting 100% weight on that prior, 
and updating it the with data from the second part of the 
trial. Finally, the selection of the treatable cohort from 
EUPHRATES (i.e., the group used to generate the prior 
used for Tigris) was not based on statistical “fishing” but 
rather, is supported by the literature. Observational stud-
ies have found reduced benefit for PMX for patients with 
lower organ failure scores [17], and endotoxin activity 0.9 
or higher equates to a burden of endotoxin often beyond 
the capacity of the device to clear [18]. The ICEMAN 
instrument [19] provided in the supplement provides a 
detailed assessment of credibility for effect modification 
analyses such as this one.

We acknowledge that there will be criticism of our 
planned analysis because it uses an informative prior to 
increase the power of the Tigris trial at the expense of an 
increased frequentist type I error rate. The criticism is 
that if the true effect of PMX in TIGRIS is exactly zero, 
our analysis has a greater than 5% chance of concluding 
benefit for PMX when we use a 95% threshold for con-
cluding benefit. Along with this criticism might come a 
suggestion that we use a more stringent threshold (e.g., 
Probability (benefit) > 99%), in order to attain 5% type I 
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error rate. However, it has been shown [29, 34] that use 
of a more stringent threshold negates any power gains 
that come from using an informative prior. If data from 
EUPHRATES are used to create an informative prior 
favoring treatment, the type I error rate will be greater 
than (100-P)%, when we set the threshold for declaring 
benefit at P%. As it is not possible both to have power 
gains and strict control of type I error with our informa-
tive prior, there is no advantage to our use of such a prior 
if type I error control is of paramount concern. A criti-
cism of power gains made at the expense of an increased 
type I error rate is a criticism of the use of an informa-
tive prior favoring treatment. The trade-offs inherent in 
the use of prior information are implicit in FDA guidance 
for the use of Bayesian statistics in medical device trials, 
[35] which sanctions loosened type I error control with 
the use of credible prior information: “When using prior 
information, it may be appropriate to control type I error 
at a less stringent level than when no prior information is 
used. For example, if the prior information is favorable, 
the current trial may not need to provide as much infor-
mation regarding safety and effectiveness. The degree to 
which we might relax the type I error control is a case-
by-case decision that depends on many factors, primar-
ily the confidence we have in the prior information.” We 
believe this same logic extends beyond device trials. The 
question of the importance of type I error (or p-values) in 
study design cannot be resolved here. However, we have 
presented a study design that transparently adheres to 
Bayesian principles of data synthesis, along with its fre-
quentist operating characteristics and anticipate healthy 
debate about our approach when Tigris is complete and 
analyzed.

Conclusion
Using Bayesian methods and a biologically credible prior 
distribution yields a study design with a much smaller 
sample size than a standalone trial. In our example, when 
the prior distribution places 75% weight on the histori-
cal data, the power for demonstrating benefit at the 95% 
probability threshold is greater than 80% for ARR of at 
least 14% in a sample of 150 patients randomized 2:1 in 
favor of the intervention. Bayesian methods may be a via-
ble option for trials in critical care medicine where treat-
ments have been elusive.
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