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Abstract 

Background Venous thromboembolism (VTE) is a severe complication in critically ill patients, often resulting in death 
and long-term disability and is one of the major contributors to the global burden of disease. This study aimed 
to construct an interpretable machine learning (ML) model for predicting VTE in critically ill patients based on clinical 
features and laboratory indicators.

Methods Data for this study were extracted from the eICU Collaborative Research Database (version 2.0). A step-
wise logistic regression model was used to select the predictors that were eventually included in the model. The 
random forest, extreme gradient boosting (XGBoost) and support vector machine algorithms were used to construct 
the model using fivefold cross-validation. The area under curve (AUC), accuracy, no information rate, balanced accu-
racy, kappa, sensitivity, specificity, precision, and F1 score were used to assess the model’s performance. In addition, 
the DALEX package was used to improve the interpretability of the final model.

Results This study ultimately included 109,044 patients, of which 1647 (1.5%) had VTE during ICU hospitalization. 
Among the three models, the Random Forest model (AUC: 0.9378; Accuracy: 0.9958; Kappa: 0.8371; Precision: 0.9095; 
F1 score: 0.8393; Sensitivity: 0.7791; Specificity: 0.9989) performed the best.

Conclusion ML models can be a reliable tool for predicting VTE in critically ill patients. Among all the models we had 
constructed, the random forest model was the most effective model that helps the user identify patients at high risk 
of VTE early so that early intervention can be implemented to reduce the burden of VTE on the patients.

Keywords Machine learning, Venous thromboembolism, Critically ill, Prediction model

Introduction
Venous thromboembolism (VTE), which includes deep 
vein thrombosis (DVT) and pulmonary embolism (PE), 
is a chronic disease that frequently recurs. About 30% 
of patients with VTE are estimated to recur within ten 
years [1, 2]. VTE often leads to patient death, long-term 
disability, and bleeding associated with anticoagulation 
therapy and is one of the major contributors to the global 
burden of disease [3]. Although PE-related mortality has 
decreased yearly, nearly 10% of PE patients die within 
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30 days of diagnosis [4]. In addition, VTE carries a signif-
icant economic burden. The US healthcare system spends 
$7–10 billion annually related to VTE events, and Europe 
spends €1.5–3.3 billion [5, 6]. Critically ill patients are at 
much greater risk of VTE than medically hospitalized 
patients. Critically ill patients face general risk factors for 
VTE, including factors like age, obesity, a prior history 
of VTE, and cancer. Moreover, they are also susceptible 
to ICU-specific risk factors such as immobilization, the 
use of central venous catheters (CVC), and mechani-
cal ventilation [7–9]. Although anticoagulants are clini-
cally given to critically ill patients to prevent thrombosis, 
the incidence of VTE in critically ill patients is still high 
[10]. Therefore, identifying patients at high risk of VTE 
through risk assessment models can help in early preven-
tion and timely treatment.

Machine Learning (ML) is the discipline in which com-
puters use algorithms to learn from data and can recog-
nize underlying patterns in the data. ML has powerful 
computational and data-fitting capabilities to find com-
plex relationships between large amounts of data. These 
features make ML well-suited for complex clinical data-
sets, and its use in clinical research is increasing yearly 
[11]. In previous studies, the ML model demonstrated 
excellent performance [12, 13]. While the performance 
of ML models is excellent, the black-box (i.e., data goes 
in, decisions come out, and inputs to outputs are opaque) 
nature of ML similarly limits its application [14, 15]. 
Therefore, understanding why and how models make 
decisions is critical to using models in clinical practice. 
Algorithms for interpreting ML models have recently 
emerged, and these algorithms can increase users’ under-
standing and trust in ML models [16].

In this paper, we report the development of an ML 
model for predicting VTE in critically ill patients. We 
also used an interpretable algorithm for the ML model to 
interpret the predictions of the model.

Methods
Data source and population
Data for this study were extracted from the eICU Col-
laborative Research Database (version 2.0) [17]. The 
database is a multicenter, publicly available ICU data-
base containing de-identified, high-granularity medical 
data on 200,859 ICU admissions from 208 centers across 
the United States from 2014 to 2015 [18]. The eICU Col-
laborative Research Database included vital signs, care 
plan documentation, disease severity measures, diagno-
ses, treatments, and laboratory results recorded by care 
providers during a patient’s ICU stay. This study’s data 
extractor and processor was granted a license to use the 
data (certification number: 11678655). Informed consent 
was waived due to the de-identified nature of the data.

In this study, all patients aged greater than or equal to 
18  years we considered for inclusion, and for patients 
with multiple ICU admissions, only the first admission 
was considered. Exclusion criteria were as follows:(1) 
ICU stay of less than 24 h; (2) VTE as an admission diag-
nosis; (3) diagnosis of VTE within 24 h of ICU admission; 
and (4) individual data missing greater than 30%. The 
flowchart for study cohort selection is shown in Fig. 1.

Feature extraction
Baseline information was extracted using Structured 
Query Language (SQL) for the 24  h following the 
patient’s admission to the ICU. Demographic informa-
tion included age, gender, body mass index (BMI), Acute 
Physiology and Chronic Health Evaluation IV score 
(APACHE IV score), previous history of VTE, history 
of cancer, and Glasgow Coma Scale (GCS). Laboratory 
parameters included hematocrit, hemoglobin, platelet 
count, white blood cell count, albumin, blood urea nitro-
gen (BUN), serum creatinine, international normalized 
ratio (INR), prothrombin time (PT), partial thromboplas-
tin time (PTT), total bilirubin, alanine aminotransferase 
(ALT), and aspartate transaminase (AST). The treat-
ment received by the patient on the first day of admis-
sion to the ICU included mechanical ventilation, CVC, 
vasopressin, sedative, transfusion of fresh frozen plasma, 
platelet transfusion, transfusion of packed red blood 
cells, pharmacologic prophylaxis, and graduated com-
pression stockings. The principal diagnosis on admission 
included cardiovascular condition, respiratory condi-
tion, gastrointestinal condition, renal condition, neuro-
logic condition, metabolic condition, trauma, and other 
conditions. Diseases that patients suffer from included 
cancer, respiratory failure, heart failure, end-stage renal 
disease (ESRD), and sepsis. We selected the maximum 
value for variables measured multiple times in 24 h. We 
used multiple interpolation to interpolate missing values 
[19]. Multiple interpolation generated multiple complete 
datasets by fitting the possible values of the missing data 
multiple times through the model. Afterwards, multiple 
interpolation analyzed the generated datasets and com-
bined the results of multiple analyses to finally obtain a 
comprehensive estimate and statistical inference. In con-
trast to single interpolation, multiple interpolation filled 
in missing values multiple times, which quantified the 
uncertainty in estimating missing values and avoided 
generating incorrect accuracies [20]. Details on missing 
values were available in Additional file 1: Fig. S1.

Outcomes
The primary outcome of this study was new VTE during 
ICU hospitalization, including DVT, PE, or both.
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Statistical analysis
Depending on whether or not it conformed to a nor-
mal distribution, continuous variables were presented 
as mean (standard deviation) or median (quartiles 1–3). 
Categorical variables were described as frequencies 
(percentages). We compared the clinical characteris-
tics of the VTE and non-VTE groups using the Student 
t-test for normally distributed continuous variables and 
the Mann–Whitney U test for non-normally distributed 
ones. Differences in categorical variables were compared 
using the χ2 test or Fisher’s precision probability test. A 
two-sided P value < 0.05 was regarded as statistically sig-
nificant. A stepwise logistic regression model was used 
to select the predictors that were ultimately included 
in the model. Akaike Information Criterion (AIC) was 
used as a selection criterion for stepwise feature selec-
tion [21]. We calculated the AIC at each step while using 
forward selection and backward elimination of predictor 
variables, stopping when further addition or removal of 
variables no longer improved the AIC, thus obtaining the 
model with the lowest AIC.

In addition, we used the DALEX package to improve 
the interpretability of the final model [16]. The DALEX 
package contains various explainers that help under-
stand the relationship between input variables and 
model outputs. The DALEX package allows us to under-
stand the importance of the variables in the model, the 

relationship between the variables and the clinical out-
comes, and assess each variable’s contribution to individ-
ual predictions.

Study design
The eICU Collaborative Research Database used in this 
study is a multicenter database of 208 hospitals. We used 
hospitals as the basic unit and randomly selected hos-
pitals containing about 70% of the patients in the final 
cohort as the training set and the remaining hospitals 
containing about 30% as the validation set for exter-
nal validation of the model. We described the hospital 
IDs included in the training and validation sets in Addi-
tional file  1: Table  S1 and described the demographic 
and clinical characteristics of the training and valida-
tion sets in Additional file  1: Table  S2. Since our data 
was characterized by class imbalance, high dimension-
ality and large sample size, we selected from common 
machine learning algorithms that are more suitable for 
our data. We finally chose random forest, extreme gra-
dient boosting (XGBoost), and support vector machine 
(SVM) algorithms for model construction and tuned the 
hyperparameters using a randomized search strategy 
with five-fold cross-validation. Five-fold cross-validation 
means dividing the dataset into five mutually exclusive 
subsets, each acting as a fold. Four folds were used in 
each round as the training set, leaving one fold as the test 

Fig. 1 Flowchart of patient selection. Abbreviations: VTE, venous thromboembolism; ICU, intensive care unit
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set. Repeat this process five times, ensuring each fold has 
acted as a test set. Cross-validation reduces model over-
fitting and improves robustness. For imbalanced data, 
machine learning models may tend to favor the dominant 
class while neglecting the minority class. To address data 
imbalance, we adjusted the classification threshold. Typi-
cally, the model’s default classification threshold is set 
at 0.5, meaning that a sample is classified as the positive 
class when the model’s output probability is greater than 
0.5 and as the negative class otherwise. However, in the 
case of class imbalance, this default threshold may not be 
the optimal choice. After considering various model per-
formance metrics, we ultimately selected a threshold of 
0.2. This means that when the model’s output probability 
is greater than 0.2, it predicts a positive result; otherwise, 
it predicts a negative result. The area under curve (AUC) 
of the receiver operating characteristic (ROC) curve, 
accuracy, no information rate, balanced accuracy, kappa, 
sensitivity, specificity, precision, and F1 scores were used 
to assess the performance of the models. This study’s sta-
tistical analysis and model construction were based on R 
version 4.3.0.

Results
Baseline characteristics
A total of 109,044 patients were enrolled in the cohort 
of this study, with 72,742 patients in the training set 
and 36,302 patients in the validation set. We divided 
the patients into VTE and non-VTE groups based on 
whether VTE occurred during ICU hospitalization, 
with 1647 (1.5%) patients in the VTE group and 107,397 
(98.5%) patients in the non-VTE group. Baseline dif-
ferences between the VTE and non-VTE groups were 
shown in Table  1. Patients who developed VTE dur-
ing their ICU stay had a higher BMI than the non-VTE 
group. Previous history of VTE and history of cancer 
were higher in the VTE group than in the non-VTE 
group. In the VTE group, ICU admissions for respira-
tory disease and sepsis were higher than in the non-
VTE group. Compared with the non-VTE group, the 
VTE group had higher prevalence of cancer, respira-
tory failure, heart failure, and sepsis; and higher rates of 
mechanical ventilation, CVC, use of vasopressors, and 
transfusion of fresh frozen plasma and packed red blood 
cells. The maximum values of platelet count, white blood 
cell count, BUN, serum creatinine, total bilirubin, ALT, 
and AST were higher in the VTE group than in the non-
VTE group. In addition, the proportion of pharmacologic 
prevention of VTE was slightly higher in the VTE group 
than in the non-VTE group. In contrast, the proportion 
of mechanical prevention was not significantly different 
between the two groups.

Feature selection and model performance comparisons
We collected a total of 43 clinical and biological variables 
within 24 h of the patient’s ICU admission. Through step-
wise logistic regression, we finally selected 24 variables, 
which were age, gender, BMI, previous history of VTE, 
history of cancer, cancer, respiratory failure, heart fail-
ure, sepsis, hematocrit, hemoglobin, platelet count, white 
blood cell count, albumin, serum creatinine, INR, PT, 
PTT, total bilirubin, ALT, AST, transfusion of packed red 
blood cells, mechanical ventilation, and CVC.

Random forest, XGBoost and SVM algorithms were 
used to construct models. The fivefold cross-validated 
random search strategy resulted in the finalization of 
the hyperparameters for fandom forest as mtry = 12; 
for XGBoost as nrounds = 46, lambda = 0.0002833363, 
alpha = 0.1278563 and eta = 0.3265631; and SVM as 
sigma = 0.03212153 and C = 0.1837905. We used AUC, 
accuracy, no information rate, balanced accuracy, kappa, 
sensitivity, specificity, precision, and F1 scores to com-
prehensively evaluate the model’s performance. XGBoost 
had the largest AUC (0.9492) and sensitivity (0.7810), fol-
lowed by random forest (AUC: 0.9378; sensitivity: 0.7791) 
and SVM (AUC: 0.8290; sensitivity: 0.5911) (Table  2). 
Figure 2 described the ROC curves for the three models. 
The accuracy, kappa, specificity, precision and F1 scores 
of random forest were higher than those of XGBoost and 
SVM, as shown in Table 1. Compared to the random for-
est, XGBoost had a higher sensitivity, i.e., the number of 
underreporting (false negatives) was slightly lower in the 
XGBoost model than in the random forest model. How-
ever, the precision of the random forest was higher than 
XGBoost, i.e., the number of false positives (false posi-
tives) was lower in the random forest model than in the 
XGBoost model. The random forest had better clinical 
utility compared to XGBoost and SVM.

Explainability
We calculated feature importance using the DALEX 
package and showed the top 20 clinical variables in terms 
of importance in Fig. 3. In Additional file 1: Figs. S2–6, we 
also described the effect (positive or negative) of clinical 
characteristics on the model. Characteristics associated 
with increased incidence of VTE were higher age, BMI, 
platelet count, white blood cell count, serum creatinine, 
ALT, AST, and total bilirubin. And lower PTT, PT, and 
INR were associated with an increased incidence of VTE. 
In addition, a history of prior VTE, a diagnosis of can-
cers, heart failure, respiratory failure, sepsis, and treat-
ment with CVC, mechanical ventilation, and transfusion 
of packed red blood cells were also helpful in predicting 
VTE. Gender and cancer history were not strongly asso-
ciated with VTE prediction. We also found that albumin, 
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Table 1 Demographic and clinical characteristics between VTE and non-VTE group

Characteristics With VTE (n = 1647) Without VTE (n = 107,397) p

Demographics

 Age 67.0 (55.0–76.0) 66.0 (54.0–76.0) 0.569

 Male, n (%) 882 (53.6) 58,243 (54.2) 0.583

 Body mass index, kg/m2 29.1 (24.4–35.2) 27.5 (23.5–32.9)  < 0.001

 APACHE IV score 58.0 (43.0–80.0) 54.0 (40.0–71.0)  < 0.001

 Past history of VTE, n (%) 457 (27.7) 4641 (4.3)  < 0.001

 History of cancer, n (%) 346 (21.0) 15,722 (14.6)  < 0.001

 Glasgow coma scale 14.0 (9.0–15.0) 14.0 (10.0–15.0) 0.311

Principal diagnosis on admission, n (%)

 Cardiovascular condition 347 (21.1) 29,364 (27.3)  < 0.001

 Respiratory condition 576 (35.0) 17,329 (16.1)  < 0.001

 Gastrointestinal condition 135 (8.2) 11,053 (10.3) 0.005

 Renal condition 22 (1.3) 1847 (1.7) 0.233

 Neurologic condition 155 (9.4) 19,485 (18.1)  < 0.001

 Sepsis 289 (17.5) 14,925 (13.9)  < 0.001

 Metabolic condition 28 (1.7) 4368 (4.1)  < 0.001

 Trauma 44 (2.7) 4901 (4.6)  < 0.001

 Other condition 51 (3.1) 4125 (3.8) 0.118

 Diagnosed diseases, n (%)

 Cancer 220 (13.4) 4792 (4.5)  < 0.001

 Respiratory failure 759 (46.1) 26,110 (24.3)  < 0.001

 Heart failure 247 (15.0) 10,064 (9.4)  < 0.001

 End stage renal disease 56 (3.4) 3118 (2.9) 0.234

 Sepsis 444 (27.0) 15,543 (14.5)  < 0.001

 Treatments, n (%)

 Mechanical ventilation 688 (41.8) 40,687 (37.9) 0.001

 Central venous catheter 298 (18.1) 15,091 (14.1)  < 0.001

 Vasopressor 422 (25.6) 20,636 (19.2)  < 0.001

 Sedative 630 (38.3) 40,071 (37.3) 0.434

 Transfusion of blood product

 Platelet 42 (2.6) 2301 (2.1) 0.258

 Fresh frozen plasma 102 (6.2) 3935 (3.7)  < 0.001

 Packed red blood cells 199 (12.1) 10,250 (9.5) 0.001

 Laboratory test results

 Hematocrit, % 36.5 (31.4–41.3) 37.4 (32.5–42.0)  < 0.001

 Hemoglobin, g/dl 11.9 (10.1–13.8) 12.3 (10.6–14.0)  < 0.001

 Platelet, K/uL 226.0 (166.0–303.0) 221.0 (169.0–286.0) 0.007

 While blood cells, K/uL 12.9 (9.2–18.4) 12.2 (8.9–16.9)  < 0.001

 Albumin, g/dL 3.0 (2.6–3.6) 3.4 (2.8–3.8)  < 0.001

 Blood urea nitrogen, mg/dL 25.0 (16.0–40.0) 22.0 (15.0–36.0)  < 0.001

 Creatinine, mg/dL 1.2 (0.9–2.0) 1.1 (0.8–1.8)  < 0.001

 INR 1.2 (1.1–1.5) 1.4 (1.1–1.9)  < 0.001

 PT, s 13.3 (11.5–16.2) 15.9 (13.5–21.4)  < 0.001

 PTT, s 31.9 (27.5–39.5) 35.1 (29.4–42.6)  < 0.001

 Total bilirubin, mg/dL 0.7 (0.5–1.1) 0.6 (0.4–1.0)  < 0.001

 ALT, U/L 29.0 (18.0–56.0) 26.0 (17.0–45.0)  < 0.001

 AST, U/L 32.0 (20.0–72.0) 30.0 (20.0–58.0)  < 0.001

VTE prophylaxis method, n (%)

 Pharmacologic prophylaxis 881 (53.5) 54,782 (51.0) 0.046

 Graduated compression stockings 743 (45.1) 50,133 (46.7) 0.206
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Table 1 (continued)
VTE venous thromboembolism, BMI body mass index, GCS glasgow coma scale, ESRD end stage renal disease, CVC central venous catheter, Bun blood urea nitrogen, 
INR international standard ratio, PT prothrombin time, PTT partial thromboplastin time, ALT alanine aminotransferase, AST aspartate transaminase

Table 2 Performance of three machine learning models for predicting VTE in critically ill patients

AUC  area under curve, RF random forest, XGBoost eXtreme gradient boosting, SVM support vector machine

Models AUC Accuracy No Information 
Rate

Balanced 
Accuracy

Kappa Precision F1 score Sensitivity Specificity

RF 0.9378 0.9958 0.9858 0.8890 0.8371 0.9095 0.8393 0.7791 0.9989

XGBoost 0.9492 0.9947 0.9858 0.8894 0.8041 0.8344 0.8068 0.7810 0.9978

SVM 0.8290 0.9899 0.9858 0.7934 0.6186 0.6602 0.6237 0.5911 0.9956

Fig. 2 Receiver operating characteristic curves of the three models for predicting VTE. RF, random forest; XGB, eXtreme gradient boosting; SVM, 
support vector machine
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hematocrit, and hemoglobin were associated with an 
increased risk of VTE in a U-shaped curve. We named 
the final model Alfalfa-ICU-VTE (“Alfalfa” is the name of 
our team, representing happiness and luck).

Discussion
In this study, based on 24 variables collected within 24 h 
of ICU admission, we developed three ML models to 
provide individual predictions of whether VTE occurs 
in critically ill patients during their ICU stay. The ran-
dom forest model demonstrated the best performance. 
Through feature importance analysis, we identified the 
20 clinical variables that had the greatest impact on the 

prediction of VTE, in descending order of importance: 
PTT, AST, history of previous VTE, platelet count, res-
piratory failure, total bilirubin, hemoglobin, PT, INR, 
BMI, sepsis, serum creatinine, ALT, cancer, white blood 
cell count, CVC, mechanical ventilation, heart failure, 
history of cancer, and gender. In addition, we described 
how these variables affected the random forest model. 
Finally, through the interpretable algorithm of the ML 
model, we learned how the model obtained individual 
case predictions.

In many previous studies, ML models have shown 
excellent performance, but these models suffer from 
a lack of interpretability, i.e., these models were black 

Fig. 3 Feature importance derived from random forest model. This figure is the result of the DALEX package. The X-axis represents the loss in AUC 
calculated after randomly permuting the feature compared to the original AUC. The greater this loss, the higher the model’s importance of this 
feature. Abbreviations: PTT, partial thromboplastin time; AST, aspartate transaminase; PT, prothrombin time; INR, international standard ratio; BMI, 
body mass index; ALT, alanine aminotransferase; WBC, white blood cell; CVC, central venous catheter
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boxes. Users can input data to obtain outputs, and it was 
unclear how the model generates predictions, which lim-
ited the use of ML models in clinical settings. Even if the 
model has demonstrated a high degree of accuracy, the 
lack of understanding of why and how the model makes 
predictions inevitably causes concerns when clinicians 
want to treat or prevent patients based on the model’s 
predictions. Similarly, patient cooperation will be poor 
if the physician doesn’t understand why the algorithm is 
making predictions. Especially in complex cases with sig-
nificant healthcare consequences, the black-box nature of 
ML models will greatly hinder their application. The 2018 
European General Data Protection Regulation stated that 
when using ML algorithms for decision-making, indi-
viduals have the right to obtain meaningful information 
about the logic involved as well as the implications and 
expected consequences of such processing. The regula-
tion conveyed concerns about the opaque predictions 
of ML models [22, 23]. The interpretable ML models we 
built help users better understand the decision-making 
process of the models, thus making them more reliable 
and transparent. Our model also provided insights into 
the contribution of predictor variables to individual pre-
dicted outcomes, aiding caregivers in the development of 
more flexible care plans tailored to specific patient con-
ditions. Furthermore, our model effectively identified 
patients at high risk of thrombosis, allowing for the pri-
oritization of limited healthcare resources towards those 
requiring special attention, thereby optimizing resource 
allocation. Simultaneously, this approach assisted in 
alleviating the financial burden on patients, particularly 
those in less favorable financial situations. By strength-
ening the monitoring of high-risk thrombosis patients, 
it was conducive to early detection and treatment of 
thrombosis, reducing its impact on patients.

To further explore the contribution of these clini-
cal features to individual patient predictive outcomes, 
we randomly selected four patients from the validation 
cohort for presentation. With interpretable algorithms, 
we can visualize which clinical indicators in a given 
patient increased the prediction of VTE and which vari-
ables decreased the prediction. We showed one of these 
patients in the main text, and the remaining three are 
available in the supplemental material (Additional file 1: 
Figs. S7–9). This patient was a 76-year-old male with a 
BMI of 42.1. He had a history of previous VTE but no 
history of cancer, and he presented with respiratory fail-
ure. Laboratory markers on the first day of ICU admis-
sion showed a hematocrit of 43.3%, hemoglobin level of 
15.4  g/dl, platelet count of 115  K/uL, white blood cell 
count of 14.2  K/uL, albumin level of 2  g/dL. His serum 
creatinine was 1.6 mg/dL, INR was 0.8, PT was 10 s, PTT 

was 29.7  s, total bilirubin was 0.7  mg/dL, ALT was 42 
U/L, and AST was 29 U/L. He received mechanical ven-
tilation treatment and did not require a transfusion of 
packed red blood cells or CVC (Fig.  4). The ML model 
predicted a 29.8% risk of VTE based on the patient’s 
clinical characteristics within 24  h of admission to the 
ICU, with serum creatinine, hemoglobin, comorbid res-
piratory failure, history of previous VTE, and PT being 
the top five contributors to the increased risk of VTE, 
whereas age reduced the model’s prediction of VTE. The 
predicted outcome of the ML model was that the patient 
had a VTE, and the actual outcome was that the patient 
had a VTE while in the ICU (true positive).

Our findings indicated that lower PTT, PT and INR 
were associated with an increased risk of VTE in criti-
cally ill patients. PTT was a blood test that characterizes 
blood coagulation and was related to the intrinsic and 
common pathways of coagulation. Several population-
specific studies have also shown that low levels of PTT 
were associated with an increased risk of VTE [24, 25]. 
Lower PTT may be due to increased coagulation factor 
activity in the intrinsic or common pathway or resistance 
to activated protein C, increasing the risk of thrombosis 
[24, 25]. PT was another coagulation test to assess tissue 
factors and common coagulation pathways. Lower lev-
els of PT were associated with an increased risk of VTE, 
possibly due to increased activity of coagulation factors 
II, V, VII, X and fibrinogen [26]. INR was a mathematical 
conversion form of PT and was related to VTE similarly 
to PT.

Our findings showed that higher ALT, AST and total 
bilirubin were associated with an increased risk of VTE. 
In some previous studies, researchers observed that 
abnormal liver function may increase the incidence of 
thrombosis in patients, which was similar to our find-
ings [27–30]. Coagulation factor VIII is one of the most 
potent drivers of thrombin generation, and the increased 
risk of thrombosis in patients with abnormal hepatic 
function may be associated with significantly elevated 
plasma levels of coagulation factor VIII [31]. In patients 
with hepatic insufficiency, high levels of von Willebrand 
factor and underexpressed low-density lipoprotein recep-
tor-associated protein together maintain high plasma lev-
els of factor VIII [32, 33]. Von Willebrand factor binds to 
factor VIII and protects it from cleavage and premature 
clearance by plasma proteases [34]. Low-density lipopro-
tein receptor-associated protein mediates cellular uptake 
and degradation of factor VIII [35].

Like a previous study that prospectively explored risk 
factors for VTE in ICU patients, our results showed 
that critically ill patients with a history of VTE were 
at higher risk for VTE, reaffirming that VTE was a 
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relapsing disease [7]. In addition, we found that criti-
cally ill patients with comorbid cancers were more likely 
to develop VTE. Cancer patients are often in a hyperco-
agulable state. The presence of cancer tends to activate 
the coagulation cascade, promote platelet activation, and 
increase the aggregation status of blood cells, such as 
platelets and leukocytes [36]. In addition, cancer treat-
ments such as chemotherapy and targeted therapies may 
promote thrombosis through mechanisms that are not 
fully understood [37, 38]. The findings also pointed to 
sepsis as similarly increasing the risk of VTE. Sepsis is a 
syndrome of the systemic inflammatory response caused 
by infection, and inflammation is considered a common 
pathway for VTE formation triggered by many risk fac-
tors. Inflammation of the vessel wall induces thrombo-
sis, and the inflammatory and coagulation systems are 
coupled through common activation pathways [39]. The 
systemic inflammatory response induced by sepsis leads 
to activation and depletion of coagulation factors and 
platelets, impaired fibrinolytic function, disruption of 
the vascular endothelial barrier, and loss of physiologic 
antithrombotic factors such as thrombomodulin [40]. 
Our findings also showed that respiratory and heart 

failure were risk factors for VTE, which was similar to the 
results of previous studies [41, 42].

We also found that receiving CVC and mechani-
cal ventilation increased the risk of VTE. CVC and 
mechanical ventilation are frequently used in the ICU 
as important therapeutic measures to maintain vital 
signs in critically ill patients. Still, their presence also 
puts critically ill patients at increased risk of throm-
bosis. When CVC is exposed to the bloodstream due 
to the lack of a normal endothelial layer of the blood 
vessel wall, CVC cannot inhibit platelet adhesion and 
coagulation. Therefore, in some cases, CVC activates 
the contact pathway, ultimately leading to thrombosis 
[43]. Decreased venous return and restricted mobil-
ity due to increased intrathoracic pressure in patients 
undergoing mechanical ventilation may be responsible 
for the increased risk of thrombosis [9]. In an accompa-
nying clinical trial, researchers found that mechanical 
ventilation led to pulmonary and systemic coagulation 
disorders in patients, which may be another reason 
mechanical ventilation increases the risk of thrombosis 
[44]. A previous retrospective cohort study also sug-
gested that mechanical ventilation is an independent 

Fig. 4 Explaining of patient prediction results. This figure was made with the DALEX package for explaining random forest model predictions. 
Abbreviations: WBC, while blood cells; BMI, body mass index; PT, prothrombin time; ALT, alanine aminotransferase; AST, aspartate transaminase
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risk factor for VTE [45]. Furthermore, it should be 
noted that mechanically ventilated patients often 
require lung scans, which may increase the rate of PE 
diagnosis.

This study has some strengths and weaknesses. We 
used advanced ML techniques for modeling. The pow-
erful computational and fitting capabilities of ML algo-
rithms enable the construction of complex models. In 
addition, we used the DALEX package to explain the 
decision-making process of the ML model, helping clini-
cal users better understand the model’s predictive pro-
cess. Moreover, our study included 109,044 patients 
from 207 centers, giving our model some generalizabil-
ity. The limitation of this study was that it was retrospec-
tive, and inevitably there will be some bias. Second, the 
study lacked validation in prospective clinical trials to 
determine the exact performance of the model in the 
real world. Thirdly, the interpolation values generated 
by the multiple interpolation method were based on the 
estimation of the statistical model, and thus there was 
an estimation error. This meant that the interpolated 
values may have some deviation from the true values, 
which may have some impact on the performance of the 
machine learning model. Finally, immobilization is one of 
the important risk factors for VTE, yet this clinical vari-
able was not included in our model. Although informa-
tion on immobilization after ICU admission was available 
in the eICU database, it was not available before ICU 
admission. We planned to use the clinical characteris-
tics of patients within 24 h of ICU admission for predic-
tion and therefore did not include immobilization in the 
predictor variables. Subsequently, we will integrate the 
model into a web page to make it easy to use as an online 
tool. Additionally, we have devised plans to integrate the 
model with the hospital’s case management system, auto-
mating the assessment of patients’ VTE risk. We will then 
embark on a prospective study within our hospital to 
validate the model’s performance in real-world scenarios. 
Depending on the model’s performance within our sin-
gle-center setting, we will contemplate its extension for 
prospective multicenter validation.

Conclusion
ML modeling can be a reliable tool for predicting VTE in 
critically ill patients. Among all the models we have con-
structed, the random forest model was the most effective 
model that helped the user identify patients at high risk 
of VTE early so that early intervention can be imple-
mented to reduce the burden of VTE on the patients.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13054- 023- 04683-4.

Additional file 1. Supplementary Appendix.

Acknowledgements
Not applicable.

Author contributions
JZ initiated the study. CG performed data extraction and analyses. CG drafted 
the first version of the manuscript. JZ, FM, and SC critically reviewed the 
manuscript and revised it. All gave final approval and agree to be accountable 
for all aspects of work ensuring integrity and accuracy.

Funding
This work has been supported by the Science and Technology Innovation 
Startup Fund of Fujian Maternal and Child Health Hospital (YCXY 23-02).

Availability of data and materials
The datasets presented in the current study are available in the eICU Collabo-
rative Research Database (version 2.0) (https:// physi onet. org/ conte nt/ eicu- 
crd/2. 0/). Though datasets are de-identifed, restrictions have been imposed 
on data sharing since they contain sensitive information. Before accessing 
the data, the researcher must sign the relevant convention. To access the 
data, interested researchers must meet all of the following requirements: be 
a credentialed user of https:// physi onet. org/, finish required training and sign 
the data use agreement for the project. All the code used for this project is 
available on github (https:// github. com/ bbpob/ alfal fa- vte).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 August 2023   Accepted: 11 October 2023

References
 1. Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol. 

2015;12(8):464–74. https:// doi. org/ 10. 1038/ nrcar dio. 2015. 83.
 2. Kearon C. Natural history of venous thromboembolism. Circulation. 

2003;107(23 Suppl 1):I22–30. https:// doi. org/ 10. 1161/ 01. CIR. 00000 78464. 
82671. 78.

 3. Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic 
aspects. Circ Res. 2016;118(9):1340–7. https:// doi. org/ 10. 1161/ CIRCR 
ESAHA. 115. 306841.

 4. Bikdeli B, Wang Y, Jimenez D, et al. Pulmonary embolism hospitalization, 
readmission, and mortality rates in US older adults, 1999–2015. JAMA. 
2019;322(6):574–6. https:// doi. org/ 10. 1001/ jama. 2019. 8594.

 5. Grosse SD, Nelson RE, Nyarko KA, Richardson LC, Raskob GE. The 
economic burden of incident venous thromboembolism in the United 
States: a review of estimated attributable healthcare costs. Thromb Res. 
2016;137:3–10. https:// doi. org/ 10. 1016/j. throm res. 2015. 11. 033.

https://doi.org/10.1186/s13054-023-04683-4
https://doi.org/10.1186/s13054-023-04683-4
https://physionet.org/content/eicu-crd/2.0/
https://physionet.org/content/eicu-crd/2.0/
https://physionet.org/
https://github.com/bbpob/alfalfa-vte
https://doi.org/10.1038/nrcardio.2015.83
https://doi.org/10.1161/01.CIR.0000078464.82671.78
https://doi.org/10.1161/01.CIR.0000078464.82671.78
https://doi.org/10.1161/CIRCRESAHA.115.306841
https://doi.org/10.1161/CIRCRESAHA.115.306841
https://doi.org/10.1001/jama.2019.8594
https://doi.org/10.1016/j.thromres.2015.11.033


Page 11 of 11Guan et al. Critical Care          (2023) 27:406  

 6. Barco S, Woersching AL, Spyropoulos AC, Piovella F, Mahan CE. European 
Union-28: an annualised cost-of-illness model for venous thromboem-
bolism. Thromb Haemost. 2016;115(4):800–8. https:// doi. org/ 10. 1160/ 
TH15- 08- 0670.

 7. Cook D, Crowther M, Meade M, et al. Deep venous thrombosis in 
medical-surgical critically ill patients: prevalence, incidence, and risk fac-
tors. Crit Care Med. 2005;33(7):1565–71. https:// doi. org/ 10. 1097/ 01. ccm. 
00001 71207. 95319. b2.

 8. Minet C, Lugosi M, Savoye PY, et al. Pulmonary embolism in mechanically 
ventilated patients requiring computed tomography: prevalence, risk 
factors, and outcome. Crit Care Med. 2012;40(12):3202–8. https:// doi. org/ 
10. 1097/ CCM. 0b013 e3182 65e461.

 9. Minet C, Potton L, Bonadona A, et al. Venous thromboembolism in the 
ICU: main characteristics, diagnosis and thromboprophylaxis. Crit Care. 
2015;19(1):287. https:// doi. org/ 10. 1186/ s13054- 015- 1003-9.

 10. PROTECT Investigators for the Canadian Critical Care Trials Group and the 
Australian and New Zealand Intensive Care Society Clinical Trials Group, 
Cook D, Meade M, et al. Dalteparin versus unfractionated heparin in criti-
cally ill patients. N Engl J Med. 2011;364(14):1305–1314. https:// doi. org/ 
10. 1056/ NEJMo a1014 475.

 11. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. 
eDoctor: machine learning and the future of medicine. J Intern Med. 
2018;284(6):603–19. https:// doi. org/ 10. 1111/ joim. 12822.

 12. Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of 
volume responsiveness in patients with oliguric acute kidney injury 
in critical care. Crit Care. 2019;23(1):112. https:// doi. org/ 10. 1186/ 
s13054- 019- 2411-z.

 13. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, et al. Dynamic and explainable 
machine learning prediction of mortality in patients in the intensive care 
unit: a retrospective study of high-frequency data in electronic patient 
records. Lancet Digit Health. 2020;2(4):e179–91. https:// doi. org/ 10. 1016/ 
S2589- 7500(20) 30018-2.

 14. Watson DS, Krutzinna J, Bruce IN, et al. Clinical applications of machine 
learning algorithms: beyond the black box. BMJ. 2019;364:l886. https:// 
doi. org/ 10. 1136/ bmj. l886.

 15. Medicine TLR. Opening the black box of machine learning. Lancet Respir 
Med. 2018;6(11):801. https:// doi. org/ 10. 1016/ S2213- 2600(18) 30425-9.

 16. Biecek P. DALEX: explainers for complex predictive models in R. J Mach 
Learn Res. 2018;19(1):3245–9.

 17. Pollard T, Johnson A, Raffa J, Celi LA, Badawi O, Mark R. eICU collabora-
tive research database (version 2.0). PhysioNet (2019). https:// doi. org/ 10. 
13026/ C2WM1R.

 18. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU 
Collaborative Research Database, a freely available multi-center database 
for critical care research. Sci Data. 2018;5:180178. https:// doi. org/ 10. 1038/ 
sdata. 2018. 178.

 19. Zhang Z. Multiple imputation with multivariate imputation by chained 
equation (MICE) package. Ann Transl Med. 2016;4(2):30. https:// doi. org/ 
10. 3978/j. issn. 2305- 5839. 2015. 12. 63.

 20. Li P, Stuart EA, Allison DB. Multiple imputation: a flexible tool for handling 
missing data. JAMA. 2015;314(18):1966–7. https:// doi. org/ 10. 1001/ jama. 
2015. 15281.

 21. Vrieze SI. Model selection and psychological theory: a discussion of 
the differences between the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC). Psychol Methods. 2012;17(2):228–43. 
https:// doi. org/ 10. 1037/ a0027 127.

 22. Regulation P. Regulation (EU) 2016/679 of the European parliament and 
of the council. Regulation (EU). 2016;679:2016.

 23. Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical 
concerns that arise from using complex predictive analytics in health 
care. Health Aff (Millwood). 2014;33(7):1139–47. https:// doi. org/ 10. 1377/ 
hltha ff. 2014. 0048.

 24. Aboud MR, Ma DD. Increased incidence of venous thrombosis in patients 
with shortened activated partial thromboplastin times and low ratios 
for activated protein C resistance. Clin Lab Haematol. 2001;23(6):411–6. 
https:// doi. org/ 10. 1046/j. 1365- 2257. 2001. 00421.x.

 25. Tripodi A, Chantarangkul V, Martinelli I, Bucciarelli P, Mannucci PM. A 
shortened activated partial thromboplastin time is associated with the 
risk of venous thromboembolism. Blood. 2004;104(12):3631–4. https:// 
doi. org/ 10. 1182/ blood- 2004- 03- 1042.

 26. Dorgalaleh A, Daneshi M, Rashidpanah J, Roshani Yasaghi E. An overview 
of hemostasis. In: Dorgalaleh A, editor. Congenital bleeding disorders. 
Cham: Springer; 2018. https:// doi. org/ 10. 1007/ 978-3- 319- 76723-9_1.

 27. Okuda K, Ohnishi K, Kimura K, et al. Incidence of portal vein thrombosis 
in liver cirrhosis. An angiographic study in 708 patients. Gastroenterology. 
1985;89(2):279–86. https:// doi. org/ 10. 1016/ 0016- 5085(85) 90327-0.

 28. Francoz C, Belghiti J, Vilgrain V, et al. Splanchnic vein thrombosis in candi-
dates for liver transplantation: usefulness of screening and anticoagula-
tion. Gut. 2005;54(5):691–7. https:// doi. org/ 10. 1136/ gut. 2004. 042796.

 29. Gulley D, Teal E, Suvannasankha A, Chalasani N, Liangpunsakul S. Deep 
vein thrombosis and pulmonary embolism in cirrhosis patients. Dig Dis 
Sci. 2008;53(11):3012–7. https:// doi. org/ 10. 1007/ s10620- 008- 0265-3.

 30. Søgaard KK, Horváth-Puhó E, Grønbaek H, Jepsen P, Vilstrup H, Sørensen 
HT. Risk of venous thromboembolism in patients with liver disease: a 
nationwide population-based case-control study. Am J Gastroenterol. 
2009;104(1):96–101. https:// doi. org/ 10. 1038/ ajg. 2008. 34.

 31. Tripodi A, Primignani M, Chantarangkul V, et al. An imbalance of pro- vs 
anti-coagulation factors in plasma from patients with cirrhosis. Gastroen-
terology. 2009;137(6):2105–11. https:// doi. org/ 10. 1053/j. gastro. 2009. 08. 
045.

 32. Lisman T, Bongers TN, Adelmeijer J, et al. Elevated levels of von Willebrand 
Factor in cirrhosis support platelet adhesion despite reduced functional 
capacity. Hepatology. 2006;44(1):53–61. https:// doi. org/ 10. 1002/ hep. 
21231.

 33. Hollestelle MJ, Geertzen HG, Straatsburg IH, van Gulik TM, van Mourik JA. 
Factor VIII expression in liver disease. Thromb Haemost. 2004;91(2):267–
75. https:// doi. org/ 10. 1160/ TH03- 05- 0310.

 34. Lenting PJ, van Mourik JA, Mertens K. The life cycle of coagulation factor 
VIII in view of its structure and function. Blood. 1998;92(11):3983–96.

 35. Saenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role 
of the low density lipoprotein-related protein receptor in mediation of 
factor VIII catabolism. J Biol Chem. 1999;274(53):37685–92. https:// doi. 
org/ 10. 1074/ jbc. 274. 53. 37685.

 36. Falanga A, Russo L, Milesi V, Vignoli A. Mechanisms and risk factors of 
thrombosis in cancer. Crit Rev Oncol Hematol. 2017;118:79–83. https:// 
doi. org/ 10. 1016/j. critr evonc. 2017. 08. 003.

 37. Grover SP, Hisada YM, Kasthuri RS, Reeves BN, Mackman N. Can-
cer therapy-associated thrombosis. Arterioscler Thromb Vasc Biol. 
2021;41(4):1291–305. https:// doi. org/ 10. 1161/ ATVBA HA. 120. 314378.

 38. Falanga A, Marchetti M. Anticancer treatment and thrombosis. Thromb 
Res. 2012;129(3):353–9. https:// doi. org/ 10. 1016/j. throm res. 2011. 10. 025.

 39. Branchford BR, Carpenter SL. The Role of Inflammation in Venous Throm-
boembolism. Front Pediatr. 2018;6:142. https:// doi. org/ 10. 3389/ fped. 
2018. 00142.

 40. Foley JH, Conway EM. Cross talk pathways between coagulation and 
inflammation. Circ Res. 2016;118(9):1392–408. https:// doi. org/ 10. 1161/ 
CIRCR ESAHA. 116. 306853.

 41. Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. 
Circulation. 2003;107(23 Suppl 1):I9–16. https:// doi. org/ 10. 1161/ 01. CIR. 
00000 78469. 07362. E6.

 42. Geerts WH, Pineo GF, Heit JA, et al. Prevention of venous thromboembo-
lism: the seventh ACCP conference on antithrombotic and thrombolytic 
therapy. Chest. 2004;126(3):338S-400S. https:// doi. org/ 10. 1378/ chest. 
126.3_ suppl. 338S.

 43. Citla Sridhar D, Abou-Ismail MY, Ahuja SP. Central venous catheter-related 
thrombosis in children and adults. Thromb Res. 2020;187:103–12. https:// 
doi. org/ 10. 1016/j. throm res. 2020. 01. 017.

 44. Choi G, Wolthuis EK, Bresser P, et al. Mechanical ventilation with 
lower tidal volumes and positive end-expiratory pressure prevents 
alveolar coagulation in patients without lung injury. Anesthesiology. 
2006;105(4):689–95. https:// doi. org/ 10. 1097/ 00000 542- 20061 0000- 00013.

 45. Havlicek EE, Goldman ZA, Faustino EVS, Ignjatovic V, Goldenberg NA, 
Sochet AA. Hospital-acquired venous thromboembolism during invasive 
mechanical ventilation in children: a single-center, retrospective cohort 
study. J Thromb Haemost. 2023. https:// doi. org/ 10. 1016/j. jtha. 2023. 06. 
035.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1160/TH15-08-0670
https://doi.org/10.1160/TH15-08-0670
https://doi.org/10.1097/01.ccm.0000171207.95319.b2
https://doi.org/10.1097/01.ccm.0000171207.95319.b2
https://doi.org/10.1097/CCM.0b013e318265e461
https://doi.org/10.1097/CCM.0b013e318265e461
https://doi.org/10.1186/s13054-015-1003-9
https://doi.org/10.1056/NEJMoa1014475
https://doi.org/10.1056/NEJMoa1014475
https://doi.org/10.1111/joim.12822
https://doi.org/10.1186/s13054-019-2411-z
https://doi.org/10.1186/s13054-019-2411-z
https://doi.org/10.1016/S2589-7500(20)30018-2
https://doi.org/10.1016/S2589-7500(20)30018-2
https://doi.org/10.1136/bmj.l886
https://doi.org/10.1136/bmj.l886
https://doi.org/10.1016/S2213-2600(18)30425-9
https://doi.org/10.13026/C2WM1R
https://doi.org/10.13026/C2WM1R
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.3978/j.issn.2305-5839.2015.12.63
https://doi.org/10.3978/j.issn.2305-5839.2015.12.63
https://doi.org/10.1001/jama.2015.15281
https://doi.org/10.1001/jama.2015.15281
https://doi.org/10.1037/a0027127
https://doi.org/10.1377/hlthaff.2014.0048
https://doi.org/10.1377/hlthaff.2014.0048
https://doi.org/10.1046/j.1365-2257.2001.00421.x
https://doi.org/10.1182/blood-2004-03-1042
https://doi.org/10.1182/blood-2004-03-1042
https://doi.org/10.1007/978-3-319-76723-9_1
https://doi.org/10.1016/0016-5085(85)90327-0
https://doi.org/10.1136/gut.2004.042796
https://doi.org/10.1007/s10620-008-0265-3
https://doi.org/10.1038/ajg.2008.34
https://doi.org/10.1053/j.gastro.2009.08.045
https://doi.org/10.1053/j.gastro.2009.08.045
https://doi.org/10.1002/hep.21231
https://doi.org/10.1002/hep.21231
https://doi.org/10.1160/TH03-05-0310
https://doi.org/10.1074/jbc.274.53.37685
https://doi.org/10.1074/jbc.274.53.37685
https://doi.org/10.1016/j.critrevonc.2017.08.003
https://doi.org/10.1016/j.critrevonc.2017.08.003
https://doi.org/10.1161/ATVBAHA.120.314378
https://doi.org/10.1016/j.thromres.2011.10.025
https://doi.org/10.3389/fped.2018.00142
https://doi.org/10.3389/fped.2018.00142
https://doi.org/10.1161/CIRCRESAHA.116.306853
https://doi.org/10.1161/CIRCRESAHA.116.306853
https://doi.org/10.1161/01.CIR.0000078469.07362.E6
https://doi.org/10.1161/01.CIR.0000078469.07362.E6
https://doi.org/10.1378/chest.126.3_suppl.338S
https://doi.org/10.1378/chest.126.3_suppl.338S
https://doi.org/10.1016/j.thromres.2020.01.017
https://doi.org/10.1016/j.thromres.2020.01.017
https://doi.org/10.1097/00000542-200610000-00013
https://doi.org/10.1016/j.jtha.2023.06.035
https://doi.org/10.1016/j.jtha.2023.06.035

	Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data source and population
	Feature extraction
	Outcomes
	Statistical analysis
	Study design

	Results
	Baseline characteristics
	Feature selection and model performance comparisons
	Explainability

	Discussion
	Conclusion
	Anchor 20
	Acknowledgements
	References


