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Abstract 

Background Regardless of the available antifungals, intraabdominal candidiasis (IAC) mortality continues to be high 
and represents a challenge for clinicians.

Main body This opinion paper discusses alternative antifungal options for treating IAC. This clinical entity should be 
addressed separately from candidemia due to the peculiarity of the required penetration of antifungals into the peri‑
toneal cavity. Intraabdominal concentrations may be further restricted in critically ill patients where pathophysi‑
ological facts alter normal drug distribution. Echinocandins are recommended as first‑line treatment in guidelines 
for invasive candidiasis. However, considering published data, our pharmacodynamic analysis suggests the required 
increase of doses, postulated by some authors, to attain adequate pharmacokinetic (PK) levels in peritoneal fluid. 
Given the limited evidence in the literature on PK/PD‑based treatments of IAC, an algorithm is proposed to guide 
antifungal treatment. Liposomal amphotericin B is advocated as first‑line therapy in patients with sepsis/septic shock 
presenting candidemia or endophthalmitis, or with prior exposure to echinocandins and/or fluconazole, or with infec‑
tions by Candida glabrata. Other situations and alternatives, such as new compounds or combination therapy, are 
also analysed.

Conclusion There is a critical need for more robust clinical trials, studies examining patient heterogeneity and sur‑
veillance of antifungal resistance to enhance patient care and optimise treatment outcomes. Such evidence will help 
refine the existing guidelines and contribute to a more personalised and effective approach to treating this serious 
medical condition. Meanwhile, it is suggested to broaden the consideration of other options, such as liposomal 
amphotericin B, as first‑line treatment until the results of the fungogram are available and antifungal stewardship 
could be implemented to prevent the development of resistance.
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Background
Complicated intraabdominal infections (cIAIs) are severe 
infections, which is challenging for clinicians. An intraab-
dominal infectious focus could be detected in two-thirds 
of all surgical patients presenting with sepsis [1], and epi-
demiological data show that cIAIs are the second most 
common source in patients where sepsis was the imme-
diate cause of death [2]. cIAIs are generally polymicrobial 
[3, 4], and treatment is based on effective source control 
as the main objective to reduce mortality [5] and appro-
priate therapy. However, regardless of continuous efforts, 
the mortality of this entity continues to be high, ranging 
from 20 to 60% [6].

Appropriate therapy should be considered to provide 
the best antimicrobial efficacy against the infecting path-
ogens and the greatest minimisation of the possibility of 
developing resistance. The polymicrobial nature of the 
indigenous intestinal microbiota complicates this goal of 
appropriateness; the project AGORA, an international 
task force from 79 countries, is a good example of the sci-
entific community’s efforts to optimise the rational use 
of antimicrobials for patients with cIAIs [7]. The intesti-
nal tract is an important reservoir for antibiotic-resistant 
bacteria [7]; a recent study in distinct European regions 
showed that antimicrobial resistance is common in iso-
lates from critically ill patients with cIAIs [8].

Of importance, the volume of distribution can be sig-
nificantly increased in the presence of intraabdominal 
disease [9], especially in critically ill patients where sev-
eral pharmacokinetic (PK) alterations can lead to drug 
underdosing [10]. All these could lead to insufficient 
intraabdominal levels of the drug to attaint values of 
pharmacokinetic/pharmacodynamic (PK/PD) parame-
ters predicting efficacy and avoiding emergence of resist-
ant variants.

Intraabdominal candidiasis (IAC)
IAC is caused by the overgrowth of Candida species 
within the abdominal cavity. It primarily affects critically 
ill patients, those undergoing major abdominal surger-
ies or individuals with compromised immune systems. 
Timely and effective treatment is essential to improve 
patient outcomes and reduce mortality rates. While 
guidelines exist for the management of IAC [11–15], 
there remains a crucial need to gather more evidence to 
support the recommended therapy.

Intensive care unit (ICU) patients are at the highest 
risk for invasive candidiasis [5]. After ICU admission, the 
rapid colonisation of mucocutaneous surfaces of patients 
[16] represents an important risk factor for candidemia 
[17], an entity with a mortality rate as high as 45% in a 
recently published multicentre European study [18]. 
In turn, alterations in the gastrointestinal microbiome 

precede IAC [19]. Candida peritonitis is the predomi-
nant invasive candidiasis after candidemia in the ICU 
[11]. Five species account for 92% of cases of invasive 
candidiasis: Candida albicans, Candida glabrata, Can-
dida tropicalis, Candida parapsilosis and Candida krusei 
[20].

Candida spp. are temporary or permanent parts of the 
normal endogenous flora in the gut in 40–50% of humans 
[16]. It is normally controlled by nearby bacteria and the 
host immune system [7]. However, when the gastroin-
testinal microflora within the host is altered by multiple 
possible factors (surgery, antibiotic treatments, immuno-
suppression, etc.), Candida invasion and dissemination 
within the abdominal cavity may occur. IAC is not always 
accompanied by candidemia; in fact, a recent study 
reported that only 6.9% patients with IAC had concomi-
tant blood cultures positive for Candida spp. [21]. Thus, 
diagnosis of IAC in the absence of bloodstream infec-
tion represents a challenge [22], partly due to the lack of 
a non-culture-based gold standard method. In addition, 
when Candida is present in intraabdominal samples, the 
differentiation between contamination, colonisation and 
infection is not simple since mixed infections with bacte-
ria are frequent [5] and up to 80% of patients with perito-
nitis are colonised with Candida spp. [22].

IAC encompasses complex and highly heterogeneous 
types of infection [23], with even worse outcomes than 
bacterial cIAIs [24]. In an observational, multicentre, 
prospective study in critically ill patients with commu-
nity-onset IAIs, Candida spp. isolation from peritoneal 
fluid was identified as a risk factor for mortality [25]. 
Mortality of IAC may exceed 50% [26], regardless that 
the introduction of echinocandins in the early 2000s was 
an important advance in managing invasive fungal infec-
tions [27]. The occurrence of non-bloodstream invasive 
candidiasis has increased in the last decade [28], with 
epidemiological data showing a progressive transition 
from C. albicans to non-albicans Candida species as 
etiological agents [29]. Several Candida species (C. albi-
cans, C. auris, C. tropicalis, C. parapsilosis) have been 
deemed critical/high importance to human health and 
included in the WHO fungal priority pathogens list [30]. 
But of all of them, C. auris is the most worrisome, and it 
is the first fungal pathogen classified by the CDC as an 
urgent public threat due to its association with increased 
mortality, the potential for developing pan-drug resist-
ance and its ability to become entrenched in the hospital 
environment [31]. In the last 2–3 years, there has been a 
significant increase in the number of cases caused by C. 
auris in USA [32] with outbreaks also reported in vari-
ous European countries [33]. This was accompanied by a 
tripling of the number of cases caused by echinocandin-
resistant isolates [31, 34].
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Its incidence, the risk of developing resistance in spe-
cies as C. auris and the high mortality associated with 
IAC make essential to seek strategies to optimise antifun-
gal treatment.

PK/PD principles for optimisation of IAC treatment
The management of IAC is a complex scenario where 
conditions other than the antifungal treatment (the 
patient’s condition, age, infection site, an early and ade-
quate control of the infectious source [11, 20], etc.) are 
determining factors for the outcome. A recent study 
analysing the real-life management of this entity showed 
that not all patients with Candida peritonitis received 
antifungal treatment in real clinical practice [26]. This 
review does not intend to analyse when antifungal treat-
ment should be initiated based on the risk factors for 
invasive candidiasis or diagnostic methods, as have been 
addressed in other published articles [3, 11, 35, 36]. 
Rather, it aims to focus on, once the decision to initiate 
an antifungal treatment has been made, what criteria 
should be followed to ensure the best treatment option.

To maximise antimicrobial efficacy and minimise the 
emergence of resistance, the treating drug should attain 
adequate concentrations in the site of infection. This 
simple concept limits the inference of the information 
obtained in bloodstream infections to the intraabdomi-
nal site. Being the central compartment, the bloodstream 
represents the easiest site for drug monitoring and PK/
PD assessment of drug efficacy. Nevertheless, PK vari-
ability is frequent in critically ill patients due to different 
factors [9, 10]. In the critically ill patient, there is great 
variability in pharmacokinetic parameters, and there may 
be an increase in the volume of distribution and renal 
clearance in the initial phases of the patient with cIAIs. 
These changes may particularly affect hydrophilic drugs 
[37] such as beta-lactams and echinocandins. If dosing 
is not readjusted in the presence of these changes, drug 
concentrations will not be sufficient to cover pathogens 
exhibiting less susceptibility to the treating drug, thus 
favouring the emergence of resistant mutants. To fur-
ther complicate dosing, in cIAIs there is an impaired 
tissue penetration which, together with the presence of 
indwelling surgical drains, may alter drug PK [38]. Other 
important covariates in altering effective drug concentra-
tions are body weight, serum albumin concentrations and 
application of extracorporeal treatments [39, 40].

Critical patients with fungal infections are at the high-
est need for optimal therapy since a deficient state of the 
immune system is an underlying condition for infection. 
Thus, in critically ill patients with IAC, where all the 
above-mentioned risk factors for suboptimal treatment 
and elevated mortality are frequently present, the main 
target to ensure an adequate coverage of the infecting 

species is to attain optimal antifungal concentrations in 
peritoneal fluid.

PK/PD analysis of antifungal options 
for the treatment of IAC
The currently recommended therapy for IAC typically 
involves antifungal agents, such as fluconazole or echino-
candins, administered either intravenously or even intra-
peritoneally. While these guidelines are based on existing 
data and expert consensus, the evidence supporting these 
recommendations remains limited. Clinical trials with a 
substantial number of participants comparing different 
antifungal agents, dosing regimens and durations of ther-
apy are scarce.

Conducting large-scale clinical trials for IAC faces 
several challenges. Firstly, the condition is relatively 
uncommon, leading to difficulties in enrolling a sufficient 
number of patients for a robust study. Secondly, patients 
with IAC often have complex medical conditions, comor-
bidities and other infections, which make it challenging 
to isolate the impact of a specific antifungal therapy on 
outcomes. Additionally, there may be ethical concerns 
in conducting placebo-controlled trials, as prompt anti-
fungal treatment is vital to prevent disease progression 
and associated complications. IAC presents with vary-
ing degrees of severity, and patient populations may dif-
fer significantly in terms of immune status, underlying 
conditions and comorbidities. The efficacy of a particu-
lar antifungal agent may not be consistent across all sub-
groups, making it essential to explore treatment response 
in specific patient subsets. Further research is needed 
to identify predictive factors that may guide treatment 
selection and optimise therapy for individual patients.

In recent years, the emergence of antifungal resist-
ance has become a growing concern in treating Candida 
infections, including IAC. Monitoring and understanding 
the patterns of antifungal resistance are critical to ensure 
the effectiveness of recommended therapies. Large-scale 
surveillance studies are necessary to assess the preva-
lence and trends of antifungal resistance among Candida 
isolates from intraabdominal infections.

The financial burden associated with antifungal ther-
apy for IAC should not be overlooked. Novel antifungal 
agents can be costly, and prolonged therapy may lead to 
increased healthcare expenses. Comparative effective-
ness research is needed to evaluate the cost-effective-
ness of different treatment options and provide valuable 
insights for healthcare policymakers.

Three drug classes, azoles, echinocandins and poly-
enes, represent the main antifungal armamentarium 
against Candida infections. C. albicans continues to be 
the most frequent species isolated from IACs, but oth-
ers, some less susceptible to antifungals, begin to gain 
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weight [41, 42]. In the SENTRY antifungal surveillance 
programme, the frequency of C. albicans decreased from 
57.4% in 1997–2001 to 46.4% in 2015–2016 [42]. In paral-
lel, this study also reported a gradual and global increase 
of C. glabrata as a causative agent of invasive candidiasis 
since 1997, with the highest rates of resistance to flucona-
zole in North America and Asia–Pacific (10.6% and 6.8%, 
respectively) [42]. The emergence of azole resistance in 
Candida species [43] as well as their interaction with 
cytochrome P450 leading to drug–drug interactions rep-
resents major inconveniences to treatment [44] in criti-
cally ill patients.

Echinocandins are concentration-dependent drugs, and 
their clinical efficacy is related to PK/PD targets as AUC/
MIC and Cmax/MIC [37]. The standard dosing regimens 
are 100  mg/day for micafungin, 200  mg (loading dose) 
followed by 100  mg/day for anidulafungin and 70  mg 
(loading dose) followed by 50  mg/day for caspofungin. 
Table 1 shows serum PK data of the three echinocandins 
in healthy volunteers and in critically ill patients from a 
recently published meta-analysis analysing 17 PK stud-
ies [37]. According to this article, in critically ill patients 
the AUC 0-24  h was lower than in healthy volunteers for 
anidulafungin and micafungin, but not for caspofungin 
[37]. However, controversial results about caspofungin 
concentrations in critical patients are found in the litera-
ture [38, 44, 45]. Echinocandins are highly bound to albu-
min (> 95%) [37, 46, 47]; thus, considering that only the 
unbound fraction is active and passively diffuses to the 
extravascular space, penetration into the peritoneal fluid 
is highly compromised for these antifungals. Recently, 
in a population PK model in critically ill patients, sev-
eral factors with potential impact on micafungin expo-
sure has been proposed, such as increased bodyweight, 
decreased plasma proteins, higher disease severity score, 
renal failure and renal replacement therapy, and liver 
impairment [48].

PK parameters of echinocandins appear to be affected 
by weight [49]. However, and despite having recom-
mended dose increases for the different echinocandins in 
these patients, there is insufficient evidence to link this 
recommendation with better therapeutic results.

Table  2 shows PK data in peritoneal fluid from pub-
lished studies [38, 39, 50]. The percentage of reduction in 
peritoneal concentrations of echinocandins with respect 
to serum concentrations was reported to be approxi-
mately 33% [38, 39, 51]. Table  3 shows  MIC90 values of 
echinocandins for different Candida species [52, 53] and 
CLSI [54] and EUCAST [55] breakpoints values. Table 4 
shows the maximum MIC values which would be cov-
ered by concentrations in peritoneal fluid considering the 
classical target AUC/MIC values defined by Andes et al. 
(3000 for all Candida species, 5000 for non-C. parapsilo-
sis species and 285 for C. parapsilosis) [56]. It should be 
noted that these reference values were obtained with PK/
PD parameters in blood, and its application to peritoneal 
concentrations has not been validated.

According to Table 3, except for anidulafungin against 
C. albicans and C. glabrata,  MIC90 values do not 
exceed breakpoints values; however, they are far from 
the maximum MIC values covered by concentrations 
in peritoneal fluid (Table  4). If MIC values in Table  4 
are considered, the percentage of isolates from sterile 
sites covered by anidulafungin would be 10.3% for C. 
albicans and < 1% for other Candida species according 
to the MIC distribution in a recent worldwide surveil-
lance study [41]. Therefore, since drug concentrations 
are suboptimal in peritoneal fluid, there is a real chance 
of promoting emergence of antifungal resistance in 
intraabdominal Candida, making of intraabdominal 

Table 1 Reported pharmacokinetic data in serum for echinocandins in healthy volunteers and critically ill patients

Cmax (mg/L) and AUC 0-24 h data (mg/L × h) for total drug of the three echinocandins in plasma from healthy volunteers and critically ill patients [37]

Healthy volunteers Critically ill patients

Cmax [95%CI] AUC 0-24 h [95%CI] Cmax [95%CI] AUC 0-24 h [95%CI]

Caspofungin 9.94 [8.99–10.89] 100.47 [87.50–113.44] 8.69 [7.67–9.70] 111.88 [98.44–125.33]

Micafungin N/A 136.40 [126.73–146.07] N/A 100.71 [84.59–116.83]

Anidulafungin 7.16 [6.62–7.71] 107.77 [99.72–115.82] 5.75 [5.21–6.29] 89.31 [82.05–96.56]

Table 2 Reported pharmacokinetic data in peritoneal fluid for 
the three echinocandins

Mean ± standard deviation

Pharmacokinetic data (Cmax, mgL; AUC 0-24 h, mg/L × h) of the three 
echinocandins in peritoneal fluid (PF) according to published articles (references 
are shown in parentheses)

Cmax in PF AUC 0-24 h in PF

Caspofungin [38, 39] 0.5 ± 0.4
1.8 ± 0.9

8.8 ± 7.8
26.0 ± 9.9

Micafungin [39] 0.9 ± 0.7
2.4 ± 1.1

18.8 ± 14.1
44.9 ± 16.3

Anidulafungin [39, 50] 0.9 ± 0.5
2.6 ± 2.2

16.8 ± 8.2
34.4 ± 20.2
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microbiota a reservoir of non-susceptible isolates, 
as occurs with bacteria. Mean peritoneal concentra-
tions of the three echinocandins were reported to be 
always below the mutant prevention concentrations in 
a recent study [39]. In  vitro, echinocandin concentra-
tions < 2  mg/L led to selection of resistance mutations 
in C. glabrata isolates [57]. Emergence of resistance 
was rapid in the laboratory; by exposing C. glabrata to 
a range of growing concentrations of micafungin, echi-
nocandin-resistant mutant colonies were generated in 
less than 48 h of incubation [58]. For all this, abdominal 
candidiasis has been pointed out as a hidden reservoir 
of echinocandin resistance, with 100% therapeutic fail-
ures despite source control interventions [59].

Echinocandins at standard doses are recommended 
at first-line therapy for candidemia in non-neutropenic 
patients in different clinical guidelines [11–15]. In the 
guidelines of the Infectious Diseases Society of Amer-
ica, strong recommendation (high-quality evidence) 
supports both the recommendation of echinocandins, 
at standard doses, as initial therapy, and of lipid formu-
lation of amphotericin B (3–5 mg/kg daily) in patients 
with suspected azole- and echinocandin-resistant 
Candida infections [12]. In the ESCMID guidelines, 
the level of recommendation is “strong” for the use of 

echinocandins and “moderate” for liposomal ampho-
tericin B [13].

However, there is mounting evidence in the litera-
ture, showing that echinocandin exposure is suboptimal 
in critically ill patients and dose adjustments would be 
necessary [27, 37, 39, 44, 60–62]. To this end, therapeu-
tic drug monitoring has been postulated as useful tool in 
patients at risk of suboptimal exposure [27, 44].

Since the introduction of echinocandins in clini-
cal practice at the beginning of this century, reports on 
development of resistance during or after echinocan-
din exposure have been found in the literature [63–68]. 
The cross-resistance to echinocandins and azoles in C. 
glabrata is of high concern [68].

Clinical guidelines abridge practical recommendations 
to optimise evidence-based treatments. A recent study 
including 64 centres in 20 European countries has shown 
that guideline adherence predicts survival in candidemia 
[18]. However, one of the limitations of guidelines is 
that recommendations are sometimes too general and 
could not be adequate for certain circumstances, as for 
IAC. IAC represents a frequent entity among critically ill 
patients, with characteristics in relation to dosages and 
drug distribution, and it is not addressed in the clinical 
guidelines issued by the principal infectious diseases’ 

Table 3 In vitro susceptibility and breakpoints of echinocandins for the main Candida species

a Isolates susceptible to anidulafungin and micafungin should be considered susceptible to caspofungin

MIC90 values (mg/L) of echinocandins, CLSI [54] and EUCAST [55] breakpoints for different Candida species

Caspofungin [53] Micafungin [52] Anidulafungin [52]

MIC90 CLSI EUCASTa MIC90 CLSI EUCAST MIC90 CLSI EUCAST

C. albicans 0.03  ≥ 1 0.015  ≥ 1  > 0.016 0.06  ≥ 1  > 0.032

C. glabrata 0.06  ≥ 0.5 0.03  ≥ 0.25  > 0.032 0.12  ≥ 0.5  > 0.064

C. parapsilosis 0.5  ≥ 8 1  ≥ 8  > 2 2  ≥ 8  > 4

C. tropicalis 0.06  ≥ 1 0.03  ≥ 1 N/A 0.06  ≥ 1  > 0.064

Table 4 PK/PD analysis in plasma and peritoneal fluid for the three echinocandins

HV: Healthy volunteers; CI: critically ill patients

Maximum MIC values (mg/L) which would be covered by concentrations in peritoneal fluid (see Table 2 for AUC 0-24 h values) considering the classical target AUC 0-24 h/
MIC values defined by Andes et al. (3000 for all Candida species, 5000 for non-C. parapsilosis species and 285 for C. parapsilosis) (56)

Plasma Peritoneal fluid

Maximum MIC for 
all Candida spp.

Maximum MIC for 
Non-C.parapsilosis

Maximum MIC 
for C.parapsilosis

Maximum MIC for 
all Candida spp.

Maximum MIC for 
Non-C. parapsilosis

Maximum 
MIC for C. 
parapsilosis

Caspofungin [38, 39] HV 0.033
CI 0.037

HV 0.020
CI 0.022

HV 0.35
CI 0.39

0.003 ‑0.009 0.0018‑ 0.0052 0.03–0.09

Micafungin [39] HV 0.045
CI 0.034

HV 0.028
CI 0.020

HV 0.48
CI 0.35

0.006–0.015 0.004–0.009 0.066–0.16

Anidulafungin [39, 50] HV 0.036
CI 0.030

HV 0.022
CI 0.018

HV 0.38
CI 0.31

0.006–0.011 0.0034–0.0069 0.06–0.12
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scientific societies, probably due to the lack of good qual-
ity treatment evidence for this entity [11, 69]. The current 
guidelines assume the same criteria as for candidemia 
[12], without any other type of assessment, regardless of 
published data on the low peritoneal drug penetration 
[38, 39, 50, 51].

Analysis of potential alternatives
Two important facts should make us move forward in 
response to the challenge that represents with a growing 
trend, invasive fungal infections: first, the unacceptable 
high mortality rate despite the compounds available as 
treatment; and second, the need to preserve the antifun-
gal armamentarium, especially limited compared to the 
antibacterial one. Lessons learned from the emergence of 
bacterial resistance due to the incorrect use of antibiotics 
should guide us to optimise using antifungal compounds. 
It is a reality that the use of antifungals has increased in 
recent decades and with it the number of resistant strains 
[42, 60]. Likewise, there is a trend towards greater isola-
tion of species that are resistant to older antifungals, indi-
cating that non-albicans species find a growing niche [42, 
70]. Although far from being common, multidrug-resist-
ant C. auris isolates are increasingly detected worldwide 
[71]. To avoid worrisome scenarios and to preserve cur-
rent antifungals until new compounds are available, three 
actions could be considered.

Reassessment of echinocandin doses [60]
In parallel with an increasing number of articles inform-
ing on suboptimal drug exposure in critically ill patients, 
there is an increasing request on the need to update rec-
ommended echinocandin dosages in clinical guidelines 
[60, 72]. Echinocandins are well-tolerated antifungals 
since they inhibit beta-glucan synthesis, a target not 
found in humans [27, 44, 73]. A Monte Carlo simula-
tion justified higher doses of echinocandins, especially 
in those patients weighing > 70  kg and infected by non-
albicans species [51]. Several clinical trials have inves-
tigated high dosages, with a favourable safety outcome 
[74–77]. However, no significant differences in efficac-
ity were found when compared with standard doses in 
clinical trials [76, 77], a fact which could be related to 
the well-described limitation of this type of studies to 
include enough patients infected by isolates exhibiting 
high MIC values (patients who can make the difference 
in efficacy between the two treatments) due to the lim-
ited sample size [60]. In the absence of clinical data, the 
prudent setting of cut-off values exclusively guided by 
PK/PD principles would be an option to be considered. 
Nevertheless, research should be conducted to determine 
whether humans may experience issues associated with 
high dosing, as reported in a mouse model in which an 

initial decrease in C. glabrata in the gut was followed by 
a rebound to original levels now characterised by a high 
level of resistant yeast [78]. Rezafungin is a next genera-
tion echinocandin derived from anidulafungin. Its main 
advantages are linked to its pharmacokinetic character-
istics that allow once-a-week administration, enhance its 
penetration to difficult-to-reach anatomical sites such as 
the peritoneal cavity and lower the probability of resist-
ance promotion [79]. However, we need more clinical 
studies on the performance of rezafungin in patients with 
cIAIs. In development, fosmanogepix is a new potential 
alternative targeting the fungal enzyme Gwt1 and exhib-
iting a high oral bioavailability that has shown promising 
efficacy and safety results in an open-label Phase II study 
[80]. Once more, it would be desirable, as for every new 
compound, to be tested in the treatment of IAC during 
the clinical development stage.

Is there enough evidence to consider polyenes as first-line 
therapeutic alternative?
Amphotericin B is a well-known drug as it was discovered 
more than 70 years ago. It has shown to be a nephrotoxic 
drug and it is placed as second-line antifungal in most 
guidelines. Some confusion arises with this side effect 
between its formulations which have similar clinical and 
microbiological efficacy but differences in toxicity. Keane 
et  al. conducted a systematic review of a head-to-head 
comparison of amphotericin against other antifungals, 
and there was no evidence of clinical inferiority [68]. 
Liposomal amphotericin B is a lipid-based formulation 
of amphotericin B reducing the risk of nephrotoxicity of 
amphotericin deoxycholate [81–83]. It also allows con-
siderable dose increases with respect to the conventional 
formulation, which contributes to improving the antifun-
gal effectivity [84]. The literature shows that fewer severe 
drug-related adverse events occur with the liposomal for-
mulation than with the conventional one [44, 82]. In two 
recent studies evaluating liposomal amphotericin B as 
outpatient therapy [85, 86], although approximately 50% 
of patients presented some renal injury during treatment, 
adverse events could be well managed, and only 12% 
of patients required readmission for these events [85] 
or treatment discontinuation in only one patient [86]. 
High doses of the drug were identified as a risk factor 
for nephrotoxicity [85]. On the other hand, a favourable 
safety aspect of liposomal amphotericin B is that drug–
drug interactions are irrelevant [87], an important factor 
in critically ill patients.

Liposomal amphotericin B presents good antimicro-
bial efficacy against Candida spp. and a very low risk of 
development of resistance [87, 88]. It displays concen-
tration-dependent fungicidal activity with a prolonged 
post-antifungal effect in time-kill studies [82]. The Cmax/
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MIC ratio seems the target PK/PD parameter linked to 
efficacy, although more information is required [82, 89]. 
More data on the pharmacokinetics of liposomal ampho-
tericin B in critically ill patients would also be desirable 
[44]. A recently published study showed considerable 
intra- and inter-patient variability for plasma Cmax and 
AUC, without identified responsible covariates [89]. 
In that study, Cmax (mg/L) was 20.0 [14.1–27.9] and 
43.7 [41.3–64.4] with the 3 mg/kg/day and 5 mg/kg/day 
doses, respectively [89]. Of maximum interest was that 
the values of these PK parameters, which were meas-
ured in critically ill patients, were not significantly dif-
ferent from those in healthy volunteers [89]. Since PK/
PD targets have only been poorly defined for liposomal 
amphotericin B, the added value of calculating Cmax/
MIC or AUC/MIC target attainment is unclear. Hence, 
the potential clinical consequences of the large variabil-
ity in exposure cannot be derived [89]. In addition, due to 
the lipophilic characteristics of amphotericin B, the expo-
sure in different tissues might differ, and it might be less 
affected by pathophysiological changes than hydrophilic 
drugs [89, 90]. Furthermore, the authors have measured 
total amphotericin B concentrations while the active 
amphotericin B is in the liposome [88, 91]. Of impor-
tance in critically ill patients, neither dialysis nor hemo-
filtration reduced Cmax or AUC values of amphotericin 
B in serum [84].

Even fewer data on concentrations in peritoneal fluid 
could be found in the literature. For amphotericin des-
oxycholate, some years ago a good linear correlation 
was found between serum and peritoneal levels [92], 
but no data are available for liposomal amphotericin B. 
A published case series in paediatric patients concluded 
that peritoneal liposomal amphotericin B concentra-
tions were significantly lower than in plasma, hampering 
to attain the Cmax/MIC target value [93]. Considering 
 MIC90 values for the different Candida species (MICs 
of 0.5–1 mg/L) [41, 52, 53], Cmax of liposomal ampho-
tericin B in peritoneum should be at least 4.5 mg/L. To 
our knowledge, no more data on peritoneum concentra-
tions are available, making difficult its PK/PD assessment 
for IAC. The increase in vascular permeability due to the 
destruction of infected tissues has been postulated as the 
fact increasing the transfer of liposomal amphotericin B 
to infected regions resulting in higher antifungal concen-
trations and in  vivo antifungal effects [94]. In one case, 
a much higher concentration of amphotericin B was 
observed in the infected lung lesion than in uninfected 
lung tissue which support the hypothesis that liposomal 
amphotericin B accumulates in lesions of fungal infection 
[88, 91, 95]. In the peritoneal study, half of the patients 
received liposomal amphotericin B as prophylaxis [93], 
making it difficult to draw conclusions. According to the 

literature, liposomal amphotericin B attains fungicidal 
activity concentrations in difficult-to-reach compart-
ments, as peritoneum, among others [68]. A systematic 
review concluded that no differences in clinical efficacy 
could be found between amphotericin B, echinocandins 
or voriconazole in critically ill patients with invasive 
candidiasis [68]. For this reason, the authors suggested 
that all three types of antifungals should be considered 
first-line therapy, and the guide for the definitive choice 
should be local Candida species epidemiology and sus-
ceptibility [68]. This recommendation of advancing lipo-
somal amphotericin B into first-line therapy in updated 
guidelines are supported by other authors [69, 96, 97] 
based on its low propensity to elicit acquired resistance 
[88] and especially in cases of previous azole exposure 
[97]. Although fluconazole could not be considered 
as appropriate empirical therapy for invasive candidi-
asis due to the existing resistance in non-albicans species 
[68], further de-escalation to fluconazole reaches consen-
sus in case of susceptibility of the Candida isolate when 
the patient is clinically stable [11].

An adding effect of liposomal amphotericin B is the 
powerful action against biofilm formation. Peritoneal 
biofilm formation can alter MIC and minimum bacteri-
cidal concentrations (MBC) due to the growth of matrix-
enclosed bacteria. Experimental studies have described 
the presence and evolution of bacterial biofilms (mature 
multilayer polymicrobial biofilms) on the peritoneal sur-
face during severe secondary peritonitis, with deep pen-
etration in the abdominal wall after 48–72 h of puncture/
ligation [98]. Fungal superinfection of such cavities is a 
source of non-adequate antifungal penetration.

Consideration of combination therapy followed 
by de-escalation when microbiological information 
is available
Combination of antifungals seems attractive for some 
fungal infections with adequate resolution. The main 
concern is to determine whether a combination of anti-
fungal drugs could develop antagonism or deleteri-
ous effects from the individual drugs that have been 
administered.

On the other hand, combination of antifungals has 
been widely addressed to maximise the antifungal effect 
through the potential synergistic effect of different com-
pounds [99]. Although in vitro and in vivo (animal mod-
els) results showed promising [100–104], there is limited 
clinical evidence for a single combination. A systematic 
review identified 92 studies on combination antifungal 
therapy in the literature, 55 of them referring to clini-
cal practice [104]. Combinations included azoles plus 
echinocandins (36%), 5-flucytosine combination thera-
pies (24%), polyenes plus azoles (18%), polyenes plus 
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echinocandins (16%) and other types of combination 
therapy (6%) [104]. Targets were “difficult-to-treat infec-
tions (endocarditis, osteoarticular, etc.)” or “difficult-to-
treat infecting Candida species” [104]. Only one study 
addressed fungal peritonitis with combination therapy 
(intravenous amphotericin B and oral flucytosine with 
deferred catheter replacement) and showed a lower tech-
nique failure rate but similar length of hospitalisation and 
mortality [105]. Due to the high heterogeneity of data 
from studies included in the review, specific conclusions 
could not be drawn as a basis for their practical clinical 
application. In view of the growing number of fungal 
infections, their high mortality and the limited number 
of antifungals available, further research on combined 
therapies in clinical trials with an adequate sample size 
of patients suffering from pathologies such as IAC, which 
represents a challenge not only for clinical efficacy but 
also to preserve the susceptibility of intestinal microbi-
ota, would be welcome.

Considering all the arguments mentioned above, the 
authors propose the algorithm in Fig.  1 on the use of 
antifungals in ICU patients with intraabdominal candidi-
asis. By analysing this algorithm, basic recommendations 
could be expressed as:

Step one: If sepsis or septic shock with candidemia or 
endophthalmitis is present, because echinocandins do 
not reach therapeutic concentrations in eyes and the cen-
tral nervous system [106, 107], liposomal amphotericin B 
should be the option.

Step two: In the case of sepsis or septic shock with-
out the two above-mentioned sources of infection, prior 
exposure to antifungals will determine the choice of the 

drug. If previous treatment with echinocandins and/or 
fluconazole, liposomal amphotericin B is preferred, in the 
absence of previous treatment, echinocandins or liposo-
mal amphotericin B is recommended. If C. glabrata is 
highly suspected, liposomal amphotericin B should be 
initiated based on reports of treatment failure with echi-
nocandins due to resistance [108, 109].

Step three: If there is an epidemiological risk of C. 
auris, a combined liposomal amphotericin B+ echino-
candin treatment is recommended due to the high resist-
ance of the fungus.

Step four: If sepsis/shock is not present, treatment 
may be more conservative. We suggest starting an echi-
nocandin in case of previous fluconazole treatment or 
suspected C. glabrata infection. Although echinocandin 
resistance may be present in C. glabrata, given the sta-
bility of the patient, treatment can be adjusted with the 
fungogram at 48  h. If the fungogram is not available, 
liposomal amphotericin B is recommended until species 
identification.

Finally, antifungal stewardship is always recommended 
once the fungogram results are available.

Conclusions
According to the literature, the percentage of reduction 
in echinocandin concentrations in peritoneum with 
respect to serum is approximately 33% [38, 39, 51]. Our 
PK/PD analysis of published data showed that  MIC90 
values of echinocandins are lower than breakpoints 
values except for anidulafungin against C. albicans and 
C. glabrata. However, these  MIC90 are far above the 
maximum MIC values covered by concentrations in 

Fig. 1 Proposed algorithm on the use of antifungals in ICU patients with intraabdominal candidiasis
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peritoneal fluid. This implies that the percentage of iso-
lates from sterile sites covered by anidulafungin would 
be < 10% considering the MIC distribution in a recent 
worldwide surveillance study [41]. Suboptimal drug 
concentrations in peritoneal fluid represent a risk for 
emergence of antifungal resistance in intraabdominal 
Candida, making of intraabdominal microbiota a reser-
voir of non-susceptible isolates, as occurs with bacteria. 
Further studies determining concentrations of antifun-
gals in peritoneal samples as the one planned [110] or 
the recently published with voriconazole [111] repre-
sent the first step to achieve the adequate dosing in this 
entity. A current opinion in the literature indicates that 
guidelines should be updated by separating the recom-
mendations for candidemia and abdominal candidiasis 
with a revision of echinocandin doses and the inclusion 
of other antifungals such as liposomal amphotericin B. 
In the meantime, an algorithm is proposed considering, 
in addition to echinocandins, liposomal amphotericin 
B as first-line therapy facing sepsis and candidemia or 
prior antifungal treatment. To address C. auris, a com-
bination therapy of liposomal amphotericin B and echi-
nocandin is proposed. Once species and fungogram are 
known, antifungal stewardship is warranted to preserve 
as much as possible available antifungals.

In conclusion, while current guidelines provide valu-
able recommendations for the management of IAC, 
the evidence supporting these therapeutic approaches 
remains limited. To enhance patient care and optimise 
treatment outcomes, there is a critical need for more 
robust clinical trials, studies examining patient het-
erogeneity and surveillance of antifungal resistance. 
Such evidence will help refine the existing guidelines 
and contribute to a more personalised and effective 
approach in treating this serious medical condition. 
Investing in research and fostering collaborations 
among healthcare professionals and researchers can 
improve our understanding of IAC and advance the 
field of antifungal therapy for the benefit of patients 
worldwide.
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